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In this review article, we summarize the current insight on the role of Connexin- and
Pannexin-based channels as modulators of sensory neurons. The somas of sensory
neurons are located in sensory ganglia (i.e., trigeminal and nodose ganglia). It is well
known that within sensory ganglia, sensory neurons do not form neither electrical
nor chemical synapses. One of the reasons for this is that each soma is surrounded
by glial cells, known as satellite glial cells (SGCs). Recent evidence shows that
connexin43 (Cx43) hemichannels and probably pannexons located at SGCs have an
important role in paracrine communication between glial cells and sensory neurons.
This communication may be exerted via the release of bioactive molecules from SGCs
and their subsequent action on receptors located at the soma of sensory neurons. The
glio-neuronal communication seems to be relevant for the establishment of chronic pain,
hyperalgesia and pathologies associated with tissue inflammation. Based on the current
literature, it is possible to propose that Cx43 hemichannels expressed in SGCs could
be a novel pharmacological target for treating chronic pain, which need to be directly
evaluated in future studies.

Keywords: gap junction channel, hemichannel, sensory neurons, gliotransmitters, satellite glial cells

HEMICHANNELS AND PANNEXONS

It is well accepted that paracrine and autocrine cellular communication are critical for cellular
and tissular function. Among the main proteins that play a role in these processes are connexins
and pannexins. Connexins are unique transmembrane proteins, because they form two different
types of channels; hemichannels and gap junction channels (GJCs). While hemichannels are
formed by the oligomerization of six connexins, GJCs are formed by the serial docking of two
hemichannels, each one provided by one of the contacting cells. On the other hand, a pannexon
is formed by 6 subunits of a transmembrane protein called pannexin. Despite connexins and
pannexins being very different in terms of sequence, they share a common plasma membrane
topology, which comprises four transmembrane domains, two extracellular loops, one intracellular
loop and both the N- and C-terminus facing the cytoplasm (Panchin, 2005). Another difference
between connexins and pannexins is that unlike connexins, pannexins are believed to form
pannexons only, and not gap junction-like structures (Sosinsky et al., 2011). This may be
explained because pannexons (at least those formed by pannexin1 (Panx1) and pannexin3 (Panx3))
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are glycosylated (Sosinsky et al., 2011; Penuela et al., 2014),
which is believed to block the interaction between pannexons,
preventing the docking and formation of gap junction
like-structures (Locovei et al., 2006; Huang et al., 2007;
Penuela et al., 2007, 2009). However, some studies suggest
that the formation of gap junction like-structures composed of
pannexins could depend of the cell type. For example, in HeLa
cells Panx1 and Panx3 may form GJCs, with different properties
compared to those formed by connexins (Bruzzone et al., 2003;
Sahu et al., 2014).

At the plasma membrane both hemichannels and pannexons
are mostly kept in a closed state to prevent cell lysis (Retamal
et al., 2015; García et al., 2016). Because these two type
of channels are permeable to ions and large molecules,
such as ATP and glutamate (Montero and Orellana, 2015).
Moreover, the persistent opening could cause passive loss of
ion gradients and metabolites (Retamal et al., 2015). However,
the relationship between pannexons and cell death is more
complex, because it is well known that P2X7-ATP receptor
has a close interaction with Panx1, and hence, pannexon
opening can trigger the activation of P2X7 receptors channels
(Pelegrin and Surprenant, 2006; Iglesias et al., 2008). Moreover,
when Panx1 channels open, the released ATP is able to
activate P2X7 receptors, which have been associated with the
induction of cell death in several cell types, like T-cells (Shoji
et al., 2014), Schwann cells (Luo et al., 2013), tumoral cells
(Bian et al., 2013) and astrocytes (Wang et al., 2012) among
others.

As mentioned above, under physiological conditions
hemichannels and pannexons are mainly closed. However,
their low open probability is enough to allow these channels
to participate in several cellular functions. Accordingly,
open hemichannels allow the flow of molecules such as
ATP (Stout et al., 2002), glutamate (Ye et al., 2003), NAD+
(Bruzzone et al., 2001), lactate (Karagiannis et al., 2016),
glucose (Retamal et al., 2007) and glutathione (Stridh et al.,
2008) through the plasma membrane. Moreover, there
are several post-translational modifications that increase
hemichannel activity, such as phosphorylation, S-nitrosylation,
intracellular Ca2+ increments and intracellular reducing
redox potential among several others (Retamal et al., 2006,
2007; De Vuyst et al., 2009; Batra et al., 2014), which can
increase their opening probability in several processes at
physiological conditions. Interestingly, connexins are not only
found at the cellular plasma membrane. In fact, connexin43
(Cx43) hemichannels have been detected in the mitochondria
and may be important for mitochondrial Ca2+ and K+

uptake (Boengler et al., 2013; Gadicherla et al., 2017), and
in mitochondrial hypoxia/reoxygenation preconditioning
(Schulz and Heusch, 2006). Moreover, Cx43 hemichannels
have been involved in myocardial cell death (Gadicherla et al.,
2017). On the other hand, connexin26 (Cx26) hemichannels
participate in light processing in the retina, via extracellular
potentials in cones modulated by current flowing through
connexin hemichannels at the tips of horizontal cell dendrites
(Kamermans and Fahrenfort, 2004). Most importantly for
this review, in the central nervous system, hemichannels

participate in astrocyte to neuron communication in both
physiological and pathological conditions, as has been
revised extensively by Cheung et al. (2014) and Orellana
(2016).

We would like to point it out that, despite all the
advances in the field, knowledge on the pharmacology
of hemichannels and pannexons is still limited as it has
been recently discussed (Nielsen et al., 2017). Among all
hemichannel inhibitors mimetic peptides are probably the
most specific and have been used in studies both in vitro
and in vivo (O’Carroll et al., 2013; Abudara et al., 2014)
representing nowadays a powerful tool for hemichannel
research.

WHAT IS GLIOTRANSMISSION?

For several years the dogma in synaptic transmission stated
that in chemical synapses ‘‘information’’ was transmitted
from the presynaptic to the postsynaptic neuron. However,
in the late nineties Araque et al. (1999) introduced the
term ‘‘tripartite synapse’’, which referred to the fact that in
addition to the pre and postsynaptic neurons, astrocytes that
surround chemical synapses are able to modify the synaptic
microenvironment and modulate synaptic transmission. To
this end, astrocytes express multiple neurotransmitter receptors
which allow them to sense synaptic activity (Orellana and
Stehberg, 2014) and release molecules that induce responses
in neurons. These transmitters are currently known as
gliotransmitters (Montero and Orellana, 2015; Harada et al.,
2016).

Among glial cells, astrocytes are possibly the most
studied in terms of gliotransmitter release, and among
all the molecules that are released from astrocytes (for
more details see Moraga-Amaro et al., 2014; Montero and
Orellana, 2015), the three gliotransmitters that have the
greatest evidence for modulating synapses are glutamate,
ATP and D-serine (Giaume et al., 2013; Harada et al.,
2016). Astrocytes have several gliotransmitter release
mechanisms, such as vesicle-based exocytosis (Jorgacevski
et al., 2017), P2X7 receptor (Suadicani et al., 2006),
maxi-anion channel (Liu et al., 2008), pannexons (Prochnow
et al., 2012) and hemichannels (revised by Orellana et al.,
2016).

Astrocytes express mainly Cx43 and Panx1 which form
functional hemichannels under both physiological and
pathological conditions (Huang et al., 2007; Montero and
Orellana, 2015). Recent evidence supports the role of
hemichannels and pannexons in the interaction between
glial cells and neurons at the central nervous system. For
example, antidepressants such as fluoxetine, duloxetine,
paroxetine, reboxetine, amitriptyline, imipramine and
venlafaxine have been reported to inhibit LPS-induced
opening of astrocytic Cx43 hemichannels (Jeanson et al.,
2016). This result opens the possibility that Cx43 hemichannels
may be involved in depression—at least to some extent.
This idea is further supported by evidence showing that
chronic stress—a model used to induce depressive-like
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behaviors in rodents—induces increased Cx43 hemichannel
and Panx1 pannexon opening in hippocampal astrocytes,
with a concomitant Cx43 dependent increase in extracellular
glutamate and ATP (Orellana et al., 2015) Additionally,
Cx43 hemichannels have been shown to be required for fear
memory consolidation in the basolateral amygdala (Stehberg
et al., 2012). In this work, it was suggested that one or more
gliotransmitters released through Cx43 hemichannels are
critical for memory consolidation (Stehberg et al., 2012).
Similarly, pannexons formed by Panx1 also participate in
the maintenance of the synaptic strength and plasticity
of hippocampal neurons (Prochnow et al., 2012; Ardiles
et al., 2014). In conclusion, Cx43 hemichannels and
Panx1 pannexons are very important for the fine tuning
of the synaptic activity in the central nervous system,
and is very likely that this role is accomplished through
the release of gliotransmitters such as glutamate, ATP and
D-serine.

CONNEXINS AND PANNEXINS IN
SENSORY GANGLION CELLS

As presented above, within the central nervous system,
evidence for the participation of connexin and pannexin
channels is accumulating (Thompson et al., 2008; Orellana
and Stehberg, 2014; Orellana et al., 2016). However, in
the peripheral nervous system, information on the role
of these proteins in glio-neuronal communication is only
beginning to emerge. Probably the first study that suggested
that connexins have a role in sensory neuron activity was
performed in primary co-cultures of sensory neurons from
rat dorsal root ganglia (DRG) and smooth muscle cells.
In this study, it was found that sensory neurons expressed
mRNAs for Cx40 and Cx43, possibly mediating IP3-mediated
calcium coupling between those two cell types (Ennes et al.,
1999). Those results suggest that at least in tissue culture,
connexin-based channels allow sensory neurons to couple
metabolically with smooth muscle cells. Then Chen et al.
(2002), demonstrated that rat petrosal neurons do not express
Cx43 under normal conditions but satellite glial cells (SGCs)
do. Interestingly, Cx43 immunoreactivity was detected in
neurons after 2 weeks of hypoxia. Similarly, Cx43 has
been reported in SGCs of spinal (Procacci et al., 2008)
and trigeminal (Ohara et al., 2008) ganglia. Additionally,
in another study, neurons and SGCs from the trigeminal
ganglion were shown the expression of Cx26, Cx36 and Cx40
(Garrett and Durham, 2008). More recently, the presence
of the mRNA of Cx26, Cx37, Cx43, Cx45, Panx 1 and
Panx2 in the nodose ganglion was observed (Retamal et al.,
2014a). Thus, it is clear that sensory neurons and SGCs have
the building blocks for establishing paracrine communication
through the release of both neuro- and gliotransmitters.
Regardless of how suggestive their presence may be, studies
characterizing the structure, composition and functionality
of connexin and pannexin channels in these cell types are
needed, to understand their function under physiological
conditions.

CONNEXIN AND PANNEXIN -MEDIATED
GLIA-TO-NEURON COMMUNICATION IN
SENSORY GANGLIA; A POSSIBLE ROLE
FOR SATELLITE GLIAL CELLS DURING
CHRONIC PAIN

A large bulk of studies have implicated Connexin- and
pannexin-based channels in several pathologies, mostly by
an uncontrolled channel opening, which triggers increased
release of metabolites such as ATP and ionic imbalance,
with the consequent cell malfunction and eventually, cell
lysis (Retamal et al., 2015). The mechanisms that control
this enhanced open probability remain unclear. However,
present evidence suggest that Connexin- and pannexin-channels
open probability increases in response to changes in redox
potential (Retamal, 2014), inflammatory cytokines (Orellana
et al., 2013) and point mutations (Dobrowolski et al., 2007,
2008). Moreover, at the CNS aberrant hemichannel activity
has been associated to astrocyte activation and posterior
neuronal dysregulation (Orellana et al., 2012; Yi et al.,
2016), likely due to an excessive release of gliotransmitters
(Orellana et al., 2011; Torres et al., 2012). Accordingly,
aberrant Cx43 expression and/or hemichannel malfunction
in spinal cord astrocytes have been associated with pain
related pathologies. For example, Cx43 increased expression
has been associated with the maintenance of the late-phase
of neuropathic pain in mice (Chen et al., 2012, 2014).
Accordingly, the use of Gap26 -a Cx43 hemichannel blocker-
attenuated the pain hypersensitivity in a mice cancer pain
model (Li et al., 2017) and CORM-2—a CO donor and
inhibitor of Cx43 hemichannels (León-Paravic et al., 2014)
also decreased the levels of neuropathic pain in mice (Wang
and Sun, 2017). Currently, the exact mechanism by which
Cx43 hemichannels and/or GJCs present in spinal astrocytes
are involved in pain-like behavior remains unknown. However,
in a mice model of spinal cord injury, the activation of
Sigma-1 receptor in astroglial endoplasmic reticulum (ER),
induced astrocyte activation and Cx43 expression, which
in turn caused mechanical allodynia (Choi et al., 2016).
Thus, suggests that changes in the ER affect Cx43 expression
and pain development/maintenance. Additionally, nerve
injury induces TNF-α expression which in turn increases
Cx43 hemichannel activity and chemokine release (Chen et al.,
2014), suggesting that proinflammatory cytokines are involved
in Cx43 enhancement in spinal cord astrocytes. Interestingly,
Panx1 also participates in the CNS-associated pain responses,
as the intrathecal administration of a Panx1 blocker (10Panx
or probenecid) decrease the C-fiber activity and decrease
mechanical hyperalgesia in a model of neuropathic pain in rats
(Bravo et al., 2014).

Within the PNS, the notion that SGCs play an important role
in the development and maintenance of chronic pain is well
accepted (Adler et al., 2009; McMahon and Malcangio, 2009;
Ohara et al., 2009; Ji et al., 2013; Hanani, 2015). We will analyze
current evidence relating connexin and pannexin expression in
SGCs and their association to pain.
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TRIGEMINAL GANGLIA

Cherkas et al. (2004) reported that the axotomy of the trigeminal
nerve increases both neuronal excitability and dye transfer
between SGCs, as well as electrophysiological properties of both
neurons and SGCs. Axotomy resulted in an increase in gap
junctional communication between SGCs, which could also be
associated to an increase of hemichannel activity. However,
hemichannel activity in that model has not been tested yet. In
agreement with the above-mentioned results, Cx43 expression
in SGCs of the trigeminal ganglion was also increased in a
rat model of chronic constriction injury (CCI; Ohara et al.,
2008). Interestingly, the reduction of Cx43 expression using
interference RNA reduced pain-like behavior in the CCI rats,
but increased painlike behavior in non-CCI rats (Ohara et al.,
2008), suggesting that Cx43 in trigeminal ganglion SGCs are
involved in chronic pain (reviewed in, Ohara et al., 2009). Due
to the lack of specific tools to discriminate between Cx43 GJCs
and hemichannels, it is not possible to distinguish whether the
increment of Cx43 expression seen in chronic painmodels affects
the expression of GJCs, hemichannels or both. An increase
in Cx43 hemichannels at SGCs, may increase the release of
gliotransmitters from these cells (Figure 1), facilitating the
activation of neurons that may participate in the perception
of chronic pain. The decrease in Cx43 by double strand RNA
(dsRNA) in normal trigeminal neurons evoke the appearance of
nociceptive responses similar to those seen following nerve injury
(Jasmin et al., 2010), suggesting that, under normal conditions,
the decrease of Cx43 may induce a lower K+ buffering capacity,
which in turn increases neuronal excitability (Jasmin et al.,
2010).

Unlike nerve damage, Cx43 levels in trigeminal SGCs do
not change after acute (15 min–24 h) or chronic (3–7 days)
inflammation using an injection of complete Freund’s adjuvant
in the temporomandibular joint (Garrett and Durham, 2008).
However, in such conditions, the levels of Cx26, Cx36 and
Cx40 increased in both neurons and SGCs (Garrett and Durham,
2008). Similar results have been observed in a mouse model
of chemotherapy-induced peripheral neuropathy (Poulsen et al.,
2015), indicating that different pain models and/or different
times of experimentation could induce different connexin
expression patterns in the trigeminal ganglion.

SGCs could release some gliotransmitters that enhance the
activity of sensory neurons. This idea is supported by an
in vitro experiment, in which purinergic cross-talk signaling
between SGCs and neurons was demonstrated. In this work
they induced mechanical activation of SGCs which increased
cytosolic Ca2+ in both neighboring SGCs and neurons. This
intracellular Ca2+ rise was sensitive to P2X receptor antagonists
and GJC blockers, suggesting that mechanical stimulation of
SGCs induces hemichannel opening, allowing the ATP release,
which is necessary to activate P2X receptors at SGCs and neurons
(Suadicani et al., 2010). Additionally, the mechanic activation of
neurons induced Ca2+ signaling in SGCs which was blocked by
suramin but not by the GJC blocker carbenoxolone, suggesting
that neuronal ATP release in a connexin-independent manner
(Suadicani et al., 2010). The activity/signaling of these receptors

FIGURE 1 | (A) Under physiological conditions sensory neurons are
surrounded by satellite glial cells (SGCs), which are coupled by gap junction
channels (GJCs). Experimental data indicates that SGCs express Panx1 and
Cx43 hemichannels, and under physiological conditions, the neuro-glial
communication through these channels may be low. Under pathological
conditions (i.e., chronic pain) there is an increase in Cx43 expression in both
SGCs and sensory neurons, augmenting both Cx43 hemichannel levels in
their plasma membranes and the formation of GJCs between SGCs. (B) The
increment of hemichannels and probably pannexons, lead to an increase of
extracellular ATP. The elevated extracellular ATP concentration activates
purinergic receptors at sensory neurons, which increase sensory neuron
activity. Additionally, the increased activity of hemichannels and pannexons
may also induce the depolarization of the plasma membrane due to an
increase in the influx of Ca2+ and Na+.

can be affected by peripheral inflammation, as observed in
primary cultures of trigeminal ganglion (Kushnir et al., 2011).
In the paracrine communication between SGCs and sensory
neurons, ATP appears as the most probable candidate, but the
participation of other gliotransmitters such as glutamate cannot
be ruled out, both of which may be released via hemichannels
(Wagner et al., 2014).

NODOSE GANGLIA

In the nodose ganglion, the intraperitoneal injection of LPS
induced a 2-fold increase in the SGCs’ dye transfer, suggesting
an increase in connexin expression and/or an increase in GJC
activity. Interestingly, the authors found that Cx43 expression
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was decreased after 7 days of LPS, but there was an increase
of Panx1 in both neurons and SCGs (Feldman-Goriachnik
et al., 2015). In the nodose ganglion, Cx43 is expressed only
in SGCs while Panx1 is expressed in SGCs as well as in
neurons (Retamal et al., 2014a). The opening of hemichannels
induced by incubation with extracellular fluid without Ca2+

and Mg2+ or with an agonist peptide called TATCx43CT
(Ponsaerts et al., 2012) both increase the frequency of discharge
of nodose neurons. The increased neuronal activity induced
by the Ca2+-free culture media was partially inhibited by
β-glycyrrhetinic acid (βGA) and a connexin 43 mimetic peptide
(Gap27; Retamal et al., 2014a). Gap27 is a specific inhibitor of
Cx43 hemichannels, suggesting that some gliotransmitters may
have been released from SGCs via Cx43 hemichannels under
these conditions.

PETROSAL GANGLIA

To date, there is no available information about the presence
and role of connexin and pannexin based channels in SGCs or
neurons from the petrosal ganglion. However, a potential role has
recently been proposed (Retamal et al., 2014b).

DORSAL ROOT GANGLIA (DRG)

Hanani et al. (2002) reported the first evidence showing SCGs
in DRG responding to nerve injury. In this study, a section
of a peripheral nerve (sciatic and saphenous) increased the
number of GJCs between SGC surrounding a single neuron
and between SGCs surrounding different neurons in response
to nerve injury. Later, it was shown that nerve injury also
increases the dye transfer between SGCs (Pannese et al.,
2003). The techniques used in these studies are incapable of
distinguishing which type of connexins was responsible for
this increase in GJC size and gap junctional communication.
However, in another study using a model in which the spinal
cord was dissected or compressed at the T3, the levels of
Cx43 in SGCs located in DRG at C6 to C8 were increased
and the administration of mimetic peptides Gap19 or Gap27,
specific blockers for Cx43 hemichannels reduced significantly
tactile allodynia for 30 min after administration (Lee-Kubli
et al., 2016), duration probably set by the short half-life of the
peptides. This suggests that Cx43 hemichannels are potential
candidates for pharmacological treatment of neuropathic pain. In
another mouse pain model, partial colonic obstruction induced
an increase of DRG neuronal activity due to a decrease of
its resting membrane potential. Additionally, an increase of
dye coupling between SGCs that are surrounding neurons
was observed (Huang and Hanani, 2005). Furthermore, it was
determined that neurons were not dye coupled neither to
other neurons nor to SGCs (Huang and Hanani, 2005). These
results suggest that in this pain model, there is not functional
gap junctional communication between SGC and neurons.
Later, the effect of colonic inflammation induced by local
application of dinitrosulfonate benzoate upon gap junctional
communication in DRG cells was studied (Huang et al., 2010).

After the experimental procedure, increased neuronal activity
and dye transfer between SGCs was observed. The higher
increment in neuronal activity triggered by the procedure was
suppressed by three different GJC blockers; carbenoxolone
(50 µM), meclofenamic acid (100 µM) and palmitoleic acid
(30 µM), suggesting that gap junctional communication is
associated to the hyperactivity of sensory neurons (Huang
et al., 2010). However, none of these blockers are specific
for GJCs. Therefore, the possibility that hemichannels may
participate in the release of gliotransmitters which enhance
neuronal activity cannot be ruled out. Similar results have
been observed in mouse models of experimental neuropathic
autoimmune encephalomyelitis (Warwick et al., 2014), diabetes
mellitus (Hanani et al., 2014), sepsis (Blum et al., 2017)
and chemotherapy-induced peripheral neuropathy (Warwick
and Hanani, 2013). In all these studies an increase in gap
junctional communication between SGCs was observed, but
the molecular mechanism behind this phenomenon remains
unknown. However, a study performed in the sciatic nerve
revealed that nerve transection induced an increase of dye
coupling between SGCs, mostly by an increase in the number
of GJCs (Ledda et al., 2009). On the other hand, the gap
junctional communication between SGCs is affected by changes
in K+, Ca2+ and pH (Huang et al., 2005), suggesting that
GJCs between SGCs are modulated not only after neuronal
injury, but they can also be modulated under physiological
conditions.

In the case of pannexins the data available on their role is
very limited. Only a handful of studies have investigated the
role of pannexons in physiological conditions. One of these
revealed that sensory neurons from DRG express Panx1 (Bele
and Fabbretti, 2016). One of the most interesting findings in
this work was that the activation of P2X3 receptor induced
the activation of pannexons formed by Panx1, through a
calcium/calmodulin-dependent serine protein kinase 3 (CASK)-
dependent pathway. Once neuronal pannexons opened, massive
ATP release and depolarization were detected (Bele and
Fabbretti, 2016). Consistent with this finding, spinal nerve
ligation increased Panx1 mRNA in DRG neurons, and the
use of a siRNA against Panx1 decreased the hypersensitivity
induced by nerve injury (Zhang et al., 2015). Moreover, in a
mouse model of chronic orofacial pain, the selective deletion
of Panx1 in GFAP-positive SGCs in the trigeminal ganglion
eliminated the hypersensitivity andwhen Panx1was deleted from
sensory neurons, a reduction in baseline sensitivity was observed
(Hanstein et al., 2016). The above studies suggest that Panx1 may
participate in the modulation of neuronal sensory activity and
therefore emerge as a possible novel target for the therapeutic
treatment of chronic pain.

CONCLUSION

As a general model of what is known so far, under control
conditions, sensory neurons express mainly Panx1 and P2X
receptors (i.e., P2X7) while SGCs express Cx43 and Panx1. After
an insult, SGCs over-express Cx43, which in turn form additional
GJCs and increase the number of functional hemichannels at
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their plasma membrane. Additionally, the insult also triggers
the expression in sensory neurons of Cx43 hemichannels,
but not GJCs, as they do not appear to form electrical
synapses between them (for a scheme see Figure 1A). The
increased expression of hemichannels and pannexons in sensory
neurons and SGCs enhance extracellular ATP concentration,
activating ATP-receptors such as P2X7. The activation of
hemichannels, pannexons and P2X7 receptors finally induce
the depolarization of the sensory neurons, which in turn,
enhance their action potential firing rate (for a scheme, see
Figure 1B).

Sensory neurons and SGCs express different connexin types,
among them, Cx43 has been the most studied, being responsible
for the formation of GJCs between SGCs. However, current
evidence for functional hemichannels and pannexons is limited.
It is however becoming clear that when hemichannels and/or
pannexons open, there is an evident increase in extracellular ATP
levels. The extracellular ATP generates Ca2+ oscillations in both
SGCs and neurons, through P2X and P2Y receptors. Connexin-
based hemichannels have been involved in a plethora of diseases
(Retamal et al., 2015) and the sensory ganglia do not appear
to be an exception. Thus, connexin-based channel blockers
consistently decrease neuronal hyperactivity and pain-related

behaviors in murine and rat models of pain/inflammation.
Perhaps one of the most serious concerns about these results is
that in most of the studies non-specific tools affecting or studying
connexin-based channels were used. Therefore, it is not possible
to dissect the role of hemichannels and GJCs. So far, it is clear
that new tools are needed, such as specific and long half-life small
molecules, antibodies or peptides that can dissect specifically the
role of hemichannels and GJC (Riquelme et al., 2013). Until
now, the use of connexin mimetic peptides has been the main
tool for studying the acute role of hemichannels in the nervous
system.
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