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Axon regeneration, fundamental to nerve repair, and functional recovery, relies on rapid

changes in gene expression attributable to microRNA (miRNA) regulation. MiR-133b

has been proved to play an important role in different organ regeneration in zebrafish,

but its role in regulating axon regeneration in vivo is still controversial. Here, combining

single-cell electroporation with a vector-based miRNA-expression system, we have

modulated the expression of miR-133b in Mauthner-cells (M-cells) at the single-cell

level in zebrafish. Through in vivo imaging, we show that overexpression of miR-133b

inhibits axon regeneration, whereas down-regulation of miR-133b, promotes axon

outgrowth. We further show that miR-133b regulates axon regeneration by directly

targeting a novel regeneration-associated gene, tppp3, which belongs to Tubulin

polymerization-promoting protein family. Gain or loss-of-function of tppp3 experiments

indicated that tppp3 was a novel gene that could promote axon regeneration. In

addition, we observed a reduction of mitochondrial motility, which have been identified

to have a positive correlation with axon regeneration, in miR-133b overexpressed

M-cells. Taken together, our work provides a novel way to study the role of miRNAs

in individual cell and establishes a critical cell autonomous role of miR-133b in

zebrafish M-cell axon regeneration. We propose that up-regulation of the newly founded

regeneration-associated gene tppp3 may enhance axonal regeneration.

Keywords: axon regeneration, miR-133b, single-cell level, single-cell electroporation, tppp3, in vivo imaging

INTRODUCTION

Axonal regeneration, critical for the maintenance of the nervous system, requires the coordinated
expression of many regeneration-associated genes in the soma (Wu et al., 2012). Growing evidence
indicates that microRNAs (miRNAs) play a crucial role during this process (Kloosterman and
Plasterk, 2006; Strickland et al., 2011; Wu and Murashov, 2013; Li S. et al., 2016; Tedeschi and
Bradke, 2017). MiRNAs are small, non-coding RNAs that function as negative regulators of gene
expression, through imperfect base-pairing with the 3′-untranslated region (UTR) of target mRNAs
thereby promoting mRNA degradation or inhibiting protein translation (Hong et al., 2014). Their
ability to simultaneously regulate the expression of several genes suggests that miRNAs are crucial
coordinators of complex gene expression programs.
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Zebrafish exhibit high regenerative capacity in many tissues
and organs, including heart muscles, spinal cord, sensory hair
cells, appendages, and blood vessels (Stoick-Cooper et al.,
2007). Moreover, many miRNAs have been implicated in these
regenerative processes. For example, miR-101a regulates adult
zebrafish heart regeneration (Beauchemin et al., 2015), and miR-
10 regulates angiogenesis by affecting the behavior of endothelial
cells (Hassel et al., 2012). MiR-133b, the miRNA of interest
in this study, has been widely reported to participate in many
regulatory processes. For example, miR-133b is considered as a
tumor repressor in various human cancers, such as colorectal
cancer (Hu et al., 2010; Akçakaya et al., 2011; Xiang and Li, 2014),
gastric cancer (Wen et al., 2013), and gastrointestinal stromal
tumor (Yamamoto et al., 2013). It also plays an important role
in enhancing differentiation among different cell types, including
muscle cells (Koutsoulidou et al., 2011) and neurons (Heyer
et al., 2012). However, miR-133b exhibits different effects on
different tissue regeneration. It has been shown to be a negative
regulator in fin regeneration by targeting mps1 (Yin et al., 2008),
while promoting spinal cord functional recovery after injury by
targeting RhoA (Yu et al., 2011; Theis et al., 2017). Although,
it also has been reported to promote neurite outgrowth at
cellular level (Lu et al., 2015), its role, if any, in single-cell axon
regeneration is not known.

In vivo imaging of single-axon regeneration in intact
vertebrate is a powerful approach to gain mechanistic insights
into this process (Kerschensteiner et al., 2005; Canty et al., 2013;
Lorenzana et al., 2015; Xu et al., 2017). Although, previous studies
have established miRNAs as crucial regulators in regenerative
processes, little is known regarding their role in a single neuron
during regeneration. Since nerve injury often associates with
damages of both the nerve and neighboring tissues, it has been
difficult to unveil autonomous vs. non-autonomous factors that
influence axon regeneration in vivo (Rieger and Sagasti, 2011).

Using two-photo axotomy, a technology that can precisely
injure a single axon (O’Brien et al., 2009; Canty et al.,
2013; Xu et al., 2017), we have demonstrated that Mauthner-
cells, a hindbrain neuronal type with large soma and long
axons projecting toward the spinal cord, have the capacity
to regenerate (Xu et al., 2017). In this study, we examined
the role of miR-133b in M-cell regeneration. By single-cell
electroporation and a vector-based expression system, we
successfully altered the expression of miR-133b specifically in
the M-cell. With a combination of gain-of-function and loss-of-
function experiments, we demonstrated that miR-133b inhibits
the regenerative process inM-cells.We further uncovered a novel
regeneration-associated gene, tppp3, as a direct target of miR-
133b in this process. Collectively, our findings identify a cell
intrinsic mechanism involving miR-133b and its direct target
tppp3 in regulating axon regeneration in vivo.

MATERIALS AND METHODS

Animal Care
Zebrafish (Danio rerio) WT/AB line was used in this study.
Zebrafish embryos were maintained in embryo medium on a
14/10 light/dark cycle at 28.5◦C. In case of the formation of

pigment, 0.2mM N-phenylthiourea (PTU, sigma) was added to
the embryo medium at 24 h post fertilization (hpf). All animal
manipulations were preformed strictly following the guidelines
and regulations presented by the University of Science and
Technology of China (USTC) Animal Resources Center and
University Animal Care and Use Committee. The protocol was
approved by the Committee on the Ethics of Animal Experiments
of the USTC (Permit Number: USTCACUC1103013).

Plasmids Construction
To overexpress miRNAs, a construct containing pri-miR-
133b/pri-miR-23a/pri-miR-21 was made by amplifying a
genomic region containing the miR-133b/miR-23a/miR-21
precursor. The resulting PCR fragments were then inserted into
the linearized pUAS-mCherry digested by NotI, locating at the
3′-UTR of mCherry.

To knock down miR-133b, we used the miRNA “sponge”
assay, which presents an efficient and permanent miRNA loss-of-
function by imperfectly binding to a miRNA of interest (Cohen,
2009). The plasmid pUAS-mcherry-8 × miR-133b sponge was
designed by ourselves and then constructed by Sangon (Shanghai,
China).

To generate overexpression of TPPP3 construct, full-length
tppp3 was initially amplified from complementary DNA (cDNA)
of the WT/AB zebrafish strain. The PCR fragment was inserted
into a plasmid backbone containing UAS. Plasmid UAS-tppp3
was co-delivered with both pUAS-mCherry and pCMV-Gal4-
VP16 while electroporation.

ShRNA design was performed using the siRNA design tool
under the following website: http://www.genscript.com/design_
center.html (Dong et al., 2013). We selected the top five shRNAs
(shRNA1-shRNA5) for further experiment. ShRNA expression
vector was constructed in the following way: The modified
mir30e backbone (Dong et al., 2013) was firstly synthesized
with PacI-NheI sites for cloning target shRNA oligos. This
modified mir30e precursor was cloned into pmini-Tol2-UAS-
tdTOM vector downstream of tdTOM ORF to generate pmT2-
UAS-tdTOM-mir30e-ShRNA (SG1180-A). We then cloned the
fragment containing miR-shRNA structures (guide sequence,
loop sequence, target sequence, and the flanking sequences) into
pUAS-mCherry plasmid, locating in mCherry 3′-UTR. Target
shRNA structures were synthesized by Sangon (Shanghai, China)
and then cloned into PacI-NheI site.

Microinjection and Quantitative Real-Time
PCR
One-cell stage zebrafish embryos were injected with a solution
consisting of 30 ng/µl CMV-Gal4-VP16 plasmid and 30
ng/µl pUAS-mCherry/pUAS-mCherry-mircoRNA/pUAS-
mCherry-miR-shRNA. To detect miRNAs level, 3 days post
fertilization (dpf) zebrafish larvae with relatively high mosaic
red fluorescence were selected for total RNAs isolation by
miRNA Isolation Kit (Tiangen), according to the manufacturer’s
protocols. Each sample was reverse-transcribed into cDNA
by miRNA First-Strand cDNA Synthesis Kit (Tiangen) and
was subjected to qRT-PCR analysis with qPCR Detection Kit
(Tiangen). To detect mRNAs levels, 10 hpf zebrafish embryos
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expressing red fluorescence were selected to isolate total RNAs
with the same kit mentioned above. Each sample was reverse-
transcribed into cDNAwith HiScriptII Q RT SuperMix (Vazyme)
and was subjected to qRT-PCR analysis with AceQ qPCR SYBR
Master Mix (Vazyme). Each experiment was carried out with
three biological and experimental replicate. Results were shown
as mean fold changes ±s.e.m. qRT–PCR primers were shown in
Table S1.

Single-Cell Electroporation
Before electroporation, 4 dpf zebrafish larvae were embedded
in 1% low-melting agarose gel on an electroporation chamber.
Using a micropipette (WPI, USA) pulled by a micropipette
puller (P-97, Sutter, USA) to electroporate plasmids into the
M-cell soma by pushing the tip against it with a series of
pulses at 14–16V. CMV-Gal4-VP16 plasmid was co-delivered
into the unilateral M-cell of zebrafish larva with pUAS-
mCherry-microRNAs (plasmids used to overexpress specific
miRNA)/pUAS-mCherry-microRNA sponge (plasmid used to
inhibit specific miRNA)/pUAS-mCherry-miR-shRNA (plasmid
used to inhibit tppp3). Each plasmid concentration is 120
ng/µl. Zebrafish electroporated with pCMV-Gal4-VP16 and
pUAS-mCherry were treated as control. For the experiment
to overexpress TPPP3, pUAS-tppp3 was delivered into cell
soma with both pCMV-Gal4-VP16 and pUAS-mCherry. After
electroporation, larvae were returned back to embryo medium
containing PTU. Then we selected morphologically healthy
zebrafish expressing red fluorescence in M-cells for later
experiment.

Two-Photon Axotomy
Before axotomy, 6 dpf zebrafish larvae expressing red
fluorescence in unilateral M-cells were anesthetized in MS222
(Sigma, USA) and fixed in 1% low-melting agarose. A Zeiss
microscope (LSM710, Germany) was used to ablate the M-cell
axons over cloacal pores. We normally set the 800 nm two-
photon laser at an intensity of 12–15% to damage axon over
∼1.5 s (Xu et al., 2017).

In Vivo Imaging and Data Analysis
Before imaging, embryos were anesthetized by MS222 and then
embedded in 1% low melting point agarose in embryo medium
containing MS222. All images and time-lapse movies were taken
from lateral views of the spinal cord, anterior to the left, and
dorsal toward the top.

To observe M-cells regrowth after ablation at 6 dpf,
anesthetized zebrafish were imaged at 1–2 days post-axotomy
(dpa) using Olympus FV1000 confocal microscope (Olympus,
Tokyo, Japan) equipped with a 40x, 0.8N.A. water-immersion
objective at 2-µm intervals. All images well spliced using with
Photoshop CS4 (Adobe, USA). We defined the starting point of
regrowth as the ablated site of axons just above cloacal pores,
and the axonal terminal of regeneration was stipulated as the
end point of regrowth axons. In this article, regeneration length
refers to the maximum regenerated axon length of one branch,
while total regeneration length refers to all the regenerated axon
branches length combined. All regenerative length was calibrated

to convert pixels into distance using FV10-ASW 4.2 viewer
software.

For investigating mitochondrial transport in single M-cell
in vivo, zebrafish larva electroplated with pUAS-mito-eGFP
(plasmid used to label mitochondria) were imaged at 6 dpf using
a confocal microscope with a 60x, 0.9N.A. water-immersion
objective. 2.5-min movies of the axonal area, locating within
200 nm proximal to the site above the cloacal pores, were taken
with an imaging frequency about 1.5 s, and the imaging length
of axons was ∼43mm at the site of the axon. All images were
processed with Fiji/ImageJ (National Institutes of Health, USA).
The quantification of mitochondrial dynamics were measured as
previously described (Misgeld et al., 2007; Plucinska et al., 2012;
Takihara et al., 2015; Xu et al., 2017). Mitochondrial motility was
defined as the percentage of moving mitochondria, which were
identified to move more than 2µm, during the 2.5-min time-lase
movies. The velocity of a moving mitochondrion referred to the
total moving distance of a mitochondrion divided by its observed
moving time.

EGFP Sensor Assay
In vitro transcription of EGFP-tppp3 3′-UTR, EGFP-tppp3 mut-
3′-UTR andmCherry mRNAs were performed withmMESSAGE
mMACHINE T7 Ultra Kit (Invitrogen) and these synthesized
mRNAs were purified with MEGAclearTM Kit (Invitrogen).
Zebrafish embryos at one-cell stage were injected with a combing
solution of sensormRNA andmCherrymRNA.When applicable,
10µM miR-133b duplex was added as an experimental group,
while 10µM non-sense duplex was added as a control. EGFP
fluorescence was quantified at 24–28 h post-fertilization (hpf)
using software Fiji-imageJ.

Statistical Analysis
The distribution of data points was expressed asmean± standard
error of the mean (S.E.M.), or as relative proportion of 100% as
mentioned in the appropriate legends. Depending on the number
of the groups and independent factors, student’s t-tests, one-way
analyses of variance (ANOVA) and non-parametric tests were
used as indicated in the figures. Results were classed as significant
as follows: ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.

RESULTS

Overexpression of miR-133b in Single
M-Cell Inhibits Axon Regeneration
We have identified in our previous study that M-cells have strong
regenerative capacity (Xu et al., 2017). More than 90% of two-
photo ablated M-cells could regenerate a certain length in our
experiments. To explore the role of miR-133b in M-cell axon
regeneration, we performed cell type-specific overexpression. A
vector-based miRNA expression was used to achieve enduring
expression of the miRNA during our experimental time window.
We constructed a vector containing dre-pri-miR-133b sequence
(miRBase Accession: MI0001994) in the 3′-UTR of mCherry,
which conveniently marked the cells that expressed the miR-
133b (Figure 1A). The plasmid UAS-mCherry-miR-133b was co-
injected with pCMV-Gal4-VP16 into one-cell zebrafish embryos.
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FIGURE 1 | Vector-based overexpression of miR-133b by single-cell electroporation inhibits M-cell regeneration. (A) Construction of the vector-based microRNA

expression system. Plasmids express only mCherry served as control vector. (B) Validation of the vector-based expression system. Choose the larvae at 3 dpf with

relatively high mosaic expression to detect the expression of microRNA. (C) Quantitative RT-PCR analysis exhibited an increase of different miRNA levels by

vector-based expression in vivo. The control vector-injected embryos served as controls. (D) Design for microRNA-expression vector electroporation studies. Axons of

Mauthner-cell labored with red fluorescent was ablated at 6 dpf right above the cloacal pores (black arrow), and confocal image at 8 dpf (2 dpa). Black asterisk:

ablation point. (E) Confocal imaging of M-cells expressing different miRNAs at 2 dpa. White asterisk: ablation point. Scale bar: 50µm. (F) Regeneration length at 2

dpa. One-way ANOVA, P < 0.0001: Student’s two-tailed t-test, control vs. miR-133b OE, P < 0.0001; control vs. miR-21 OE, P < 0.0001; control vs. miR-23a OE,

P = 0.8312. *P < 0.05, ***P < 0.001. Error bars represent S.E.M.

As a control, embryos were injected with pUAS-mCherry
and pCMV-Gal4-VP16. We then selected zebrafish larvae with
relatively high mosaic red fluorescence at 3 dpf to isolate the total
RNA (Figure 1B). Our qRT-PCR data showed that miR-133b in
experimental group (EG) was more than three times of that in
control, indicating that our constructed plasmid UAS-mCherry-
miR-133b could successfully drive overexpression of miR-133b
(Figure 1C).

Next, we used this vector system to overexpress miR-133b
in individual M-cells at 4 dpf via single-cell electroporation.
We selected the zebrafish with red fluorescence in unilateral
M-cell at 6 dpf for two-photon laser axotomy and visualized
axon regeneration at 2 dpa (Figure 1D). Our imaging data
showed that most M-cells in control could regenerate a certain
length, while M-cell overexpressing miR-133b could hardly
regenerate [control: 243.7 ± 32.9µm, n = 33 fish vs. miR-
133b overexpression (OE): −14.8 ± 20.7µm, n = 16 fish]
(Figures 1E,F). To further verify the specific role of miR-133b

in regulating axon regeneration, we overexpressed another two
miRNAs, miR-23a andmiR-21, with the same assay as mentioned
above. Together with qRT-PCR results confirming that miR-23a
and miR-21 were indeed overexpressed in zebrafish via vector-
based miRNA expression assay (Figure 1C), we found out that
miR-23a, a miRNA that has not been reported to be associated
with axon regeneration, had no obvious effect on M-cell axon
regeneration; while miR-21, which has been shown to promote
regeneration in different organs (Strickland et al., 2011; Han et al.,
2014; Hoppe et al., 2015), remarkably promoted M-cell axon
regeneration (control: 243.7 ± 32.9µm, n = 33 fish vs. miR-
23a OE: 229.0 ± 62.4µm, n = 10 fish vs. miR-21 OE: 778.4 ±

60.8µm, n= 12 fish; Figures 1E,F).
Since researches on dre-miRNAs often explore their roles

in different processes using miRNA duplex, to further verify
miR-133b’s role on axon regeneration, we also expressed
the miR-133b duplex in M-cell by single-cell electroporation.
M-cells expressing only rhodamine-dextran (3,000 molecular
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weight, Invitrogen) (named None) seemed to have similar
outgrowths to those expressing non-sense duplex (named
Negative Control), while both explicated a slight increase,
even though without significant discrepancy, compared to M-
cells in experimental group (expressing miR-133b duplex),
not matter at 1 dpa or 2 dpa (1 dpa: None: 142.3 ±

19.0µm, n = 26 fish; Negative control: 140.0 ± 15.8µm,
n = 24 fish; miR-133b duplex: 102.7 ± 17.6µm, n = 23
fish; 2 dpa: None: 464.8 ± 40.5µm, n = 20 fish; Negative
control: 396.7 ± 32.5µm, n = 22 fish; miR-133b duplex:
373.4 ± 33.9µm, n = 23 fish; Figure S1). This result was
consistent with the results obtained by vector-based system,
indicating that miR-133b has negatively effects on M-cell axon
regeneration. Together, these results indicate that the reduction
of M-cell regenerative capability by miR-133b is specific and cell
intrinsic.

Impairment of miR-133b Function in M-Cell
Promotes Axon Outgrowth
To determine whether loss of miR-133b in single M-cells could
also regulate its axon regeneration, we needed an assay that could
achieve long-term miRNA loss-of-function. MiRNA sponges
have been shown to efficiently bind to endogenous miRNAs and
block their silencing activity with bulged miRNA binding sites
(Ebert et al., 2007; Cohen, 2009; Otaegi et al., 2011). Moreover,
the bulged sites can protect against cleavage and degradation of
sponge RNA by the Ago2 component of the RISC (Ebert et al.,
2007; Ebert and Sharp, 2010), which can satisfy our experimental
requirement.

We constructed a plasmid containing 8 bulged target sites
complementary to miR-133b in 3′-UTR of mCherry reporter
gene driven by the UAS promoter (Figure 2A). To testify the
ability of this plasmid in blocking miR-133b activity in zebrafish,
we examined the expression of a known miR-133b target gene,
mps1 (Yin et al., 2008), in 10 hpf zebrafish embryos injected
with a combination of pUAS-mCherry-8 × miR-133b sponge
and pCMV-GAL4-VP16 at one-cell stage. Themps1mRNA level
increased in zebrafish larvae expressing the miR-133b sponge,
suggesting that it could reduce miR-133b activity in zebrafish
(Figure 2B).

Next, we examined the consequence of knocking down miR-
133b activity in axon regeneration. Remarkably, most axons
regenerated with supernumerary branches (Figure 2C). The
longest regeneration length of a single axon had no significant
difference between control and experimental group (control:
253.7 ± 34.9µm, n = 30 fish vs. miR-133b sponges: 296.7
± 40.5µm, n = 20 fish; Figure 2D). However, the total
regeneration length, all branches combined, was significantly
different (control: 486.7 ± 78.8µm, n = 30 fish vs. miR-
133b sponges: 835.2 ± 131.4µm, n = 20 fish; Figure 2E). The
experimental group had significantly more axonal branches than
the control (control: 2.13 ± 0.28, n = 30 fish vs. miR-133b
sponges: 4.50 ± 0.83µm, n = 20 fish; Figure 2F). Collectively,
these results demonstrate that blocking the function of miR-133b
promotes M-cell axon outgrowth, which is a phenotype that is
complementary to overexpressing miR-133b in M-cells.

Tppp3 Is an in Vivo Target of miR-133b
Typically, one miRNA can suppress the expression of many
genes by interacting with the 3′-UTR or the coding regions of
the targets mRNAs (Lewis et al., 2005; Duursma et al., 2008;
Forman et al., 2008). We searched several databases, including
TargetScan Fish, miRBase and microcosm Targets, and identified
potential targets containing complementary regions to miR-
133b seed sequences in their 3′-UTR. We focused on one gene,
tppp3, which has a single binding site for miR-133b at its 3′-
UTR. In addition, tppp3 corresponds perfectly to nucleotides 2–
7 of the mature miR-133b in zebrafish (Figure 3A). TPPP3 is
a member of tubulin polymerization promoting protein family.
Previous studies identified TPPP3 as a potent inducer of tubulin
polymerization (Vincze et al., 2006) and human TPPP3 binds
and stabilizes microtubules (MTs; Oláh et al., 2017). Since
regulation of axonal microtubule (MT) dynamics influence axon
regeneration (Sengottuvel and Fischer, 2011; Bradke et al., 2012;
Hur et al., 2012), and pharmacological stabilization of MTs
by paclitaxel or related molecules promotes axon regeneration
in vitro and in vivo (Hellal et al., 2011; Sengottuvel et al., 2011;
Ruschel et al., 2015), we hypothesized that miR-133b might
regulate axon regeneration through directly modulating tppp3
mRNA in vivo.

We firstly detected the mRNA level of tppp3 in miR-
133b overexpressed or miR-133b sponge expression zebrafish
embryos. Our qRT-PCR results showed that the mRNA level
of tppp3 in 10 hpf zebrafish embryos overexpressing miR-
133b was lower than that in control (Figure 3B), while tppp3
mRNA level was increased in embryos expressing miR-133b
sponge compared with that in control (Figure 3C). We then
used zebrafish embryo sensor assays (Giraldez et al., 2005).
Two mRNAs were synthesized, one encoding enhanced green
fluorescent protein (EGFP) with 3′- UTR of tppp3 and the other
composed of mCherry fluorescent protein with a poly(A) alone.
These mRNAs were co-injected into one-cell zebrafish embryos,
in the presence of miR-133b RNA duplex or non-sense duplex
(GenePharma). Injections of these two mRNAs along with a
non-sense RNA duplex (negative control) resulted in both high
EGFP expression and mCherry expression. However, when a
synthesized duplex of miR-133b was co-injected, EGFP signals
were dampened by almost 50% with no detective changes in
mCherry signals (negative control: 100.0 ± 7.0%, n = 10 fish vs.
miR-133b duplex: 43.5± 3.7%, n= 10 fish; Figures 3D,E). When
the seed sequence in the 3′-UTR of tppp3 was mutated, we found
no difference in EFGP signals between non-sense RNA duplex
and miR-133b RNA duplex (negative control: 100.0 ± 11.9%,
n = 10 fish vs. miR-133b duplex: 117.1 ± 12.0%, n = 10 fish;
Figures 3F,G).

In conclusion, our results indicate that tppp3 is a downstream
gene of miR-133b in vivo.

TPPP3 Is Critical to Enhance Axonal
Outgrowth
Given the effects of miR-133b on tppp3 expression and the
role of miR-133b in neurite outgrowth, we next planned to
investigate the effects of gain or loss-of-function of tppp3 on
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FIGURE 2 | Knockdown of miR-133b by expressing miR-133b sponge facilitates M-cell regeneration. (A) Design of miRNA sponges. The construction of miRNA

sponges was manipulated by inserting multiple microRNA binding sites in the 3′-UTR of the mcherry reporter gene. Plasmids express only mCherry served as control

vector. (B) Quantitative RT-PCR analysis exhibited an increase in mps1 mRNA expression in 10 hpf zebrafish embryos by miR-133b sponge expression in vivo. (C)

Confocal imaging of M-cell at 2 dpa. White asterisk: ablation point. Scale bar: 50µm. (D) Regeneration length at 2 dpa. Student’s two-tailed t-test, P = 0.4300. (E)

Total regeneration length at 2 dpa. Student’s two-tailed t-test, P = 0.0194. (F) The number of branches at 2 dpa. Non-parametric tests, P = 0.0047. *P < 0.05, **P <

0.001. Error bars represent S.E.M.
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FIGURE 3 | Sequence alignment and the EGFP sensor assay show that miR-133b targets tppp3. (A) Sequence alignment of zebrafish miR-133b, tppp3 3′UTR and

its mutation version (within the 2–7 nt mutated) was shown, with the seed sequences highlighted in yellow box and the mutational nucleotides in blue. mps1 3′UTR

was shown as a control. (B) Quantitative RT-PCR analysis exhibited a decrease in tppp3 mRNA expression in 10 hpf zebrafish embryos by the vector-based

miR-133b overexpression in vivo. (C) Quantitative RT-PCR analysis exhibited an increase in tppp3 mRNA expression in 10 hpf zebrafish embryos by miR-133b

sponge expression in vivo. (D) EGFP-tppp3 3′UTR shown strong fluorescent signals when co-injected with non-sense duplex (as negative control), but failed to give

fluorescent signals when co-injected with miR-133b duplex. mCherry mRNA was injected as a control. (E) The EGFP-tppp3 3′UTR fluorescence was expressed as a

percentage of fluorescent signal observed from the negative control. Student’s two-tailed t-test, P < 0.0001. n = 10 for each group. (F) Both groups shown strong

fluorescent signals whenever the EGFP-tppp3 mut-3′UTR coinjected with the miR-133b duplex or non-sense duplex. (G) The EGFP-tppp3 mut-3′UTR fluorescence

was expressed as a percentage of fluorescent signal observed from the negative control. Student’s two-tailed t-test, P = 0.3219. n = 10 for each group. ***P <

0.001. Error bars represent S.E.M.

regenerative axon growth. We firstly overexpressed tppp3 by
electroplating into M-cell at 4 dpf a plasmid containing the
zebrafish tppp3 cDNA. As a control, pUAS-mcherry and pCMV-
GAL4 was delivered. Consistent with the effects of miR-133b
sponge on axonal regeneration (Figure 4A), overexpression of
tppp3 in M-cell significantly increased the total regeneration
length (Regenerative length: control: 255.6± 37.2µm, n= 27 fish

vs. TPPP3 OE: 382.9 ± 66.6µm, n = 15 fish; total regeneration
length: control: 476.2± 83.2µm, n= 27 fish vs. TPPP3 OE: 855.2
± 177.4µm, n = 15 fish; Figures 4B,C), although there is no
significant difference in branching number (control: 2.11± 0.29,
n= 27 fish vs. TPPP3 OE: 3.60± 0.73, n= 15 fish; Figure 4D).

To test whether knockdown of tppp3might cause regenerative
defects similar to miR-133b overexpression, we used designed

Frontiers in Molecular Neuroscience | www.frontiersin.org 7 November 2017 | Volume 10 | Article 375

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Huang et al. miR-133b Inhibits Single-Cell Axon Regeneration

FIGURE 4 | Overexpression of tppp3 by single-cell electroporation promotes M-cell regeneration. (A) Confocal imaging of M-cell at 2 dpa. White asterisk: ablation

point. Scale bar: 50µm. (B) Regeneration length at 2 dpa. Student’s two-tailed t-test, P = 0.0775. (C) Total regeneration length at 2 dpa. Student’s two-tailed t-test,

P = 0.0338. (D) The number of branches at 2 dpa. Non-parametric tests, P = 0.0516. *P < 0.05. Error bars represent S.E.M.

shRNAs to silence tppp3 based on the miR-ShRNAs system. MiR-
shRNAs have now been widely used in mammals and zebrafish
(De Rienzo et al., 2012; Dong et al., 2013; Shinya et al., 2013), in
vitro and in vivo (Giraldez et al., 2005; Zuber et al., 2011), due
to its higher efficiency than simple hairpin designs. We designed
shRNAs employing the primary miR-30 backbone. Based on
the Web-based shRNA design tool (https://www.genscript.com),
five shRNAs (shRNA1-shRNA5) targeting the tppp3 gene were
selected (Figure S2). mCherry was used as a fluorescent reporter
to mark the zebrafish embryos that expressed the miR-shRNA
(Figure 5A). To valid the function of these shRNAs, we injected
the miR-shRNA expressing plasmids combing with pCMV-
GAL4 into one-cell stage embryos and isolated mRNA of these
embryos exhibiting red fluorescence at 10 hpf to examine the
tppp3 mRNA level. We found that, among these five shRNAs,

shRNA-5 exhibited the significant reduction of tppp3mRNA level
(Figure 5B). We then investigated the effects of shRNA-5 on
axonal regeneration by delivering it into M-cells via single-cell
electroporation at 4 dpf. To avoid the effects of other miR-shRNA
structures (guide sequence, loop sequence, and the flanking
sequences) on the capability of regeneration, cells expressing
shRNA-1, which had little effects on reducing tppp3 mRNA
(Figure 5B), were used as an additional control. Both imaging
and quantitative results indicated that shRNA-5 diminished the
regenerative length of damaged axons, while shRNA-1did not
(control: 278.2 ± 33.1µm, n = 26 fish vs. miR-shRNA-1: 314.2
± 42.7µm, n = 8 fish vs. miR-shRNA-5: 97.6 ± 47.7µm, n = 20
fish; Figures 5C,D).

Taken together, these results indicate that tppp3 is critical to
promote axon outgrowth.
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FIGURE 5 | miR-shRNA based gene silence of tppp3 diminishes regenerative length of M-cell (A) Diagram of miR-shRNA system. Sequence of ShRNA-5 was

presented here, with the guide strand (bottom) highlighted in dark blue. (B) Quantitative RT-PCR analysis exhibited a deduction of tppp3 mRNA in shRNA-5

expressing embryos. (C) Confocal imaging of M-cell at 2 dpa. White asterisk: ablation point. Scale bar: 50µm. (D) Regeneration length at 2 dpa. Student’s two-tailed

t-test, control vs. shRNA-1, P = 0.5807; control vs. shRNA-5, P = 0.0025. **P < 0.01. Error bars represent S.E.M.

Mir-133b Attenuates Mitochondrial Motility
in M-Cell
Mitochondria plays a critical role in axon regeneration, a
highly energy-demanding process. Our previous study has
indicated that mitochondrial trafficking is associated with axon
regenerative capacity, suggesting that axons having more motile
mitochondria regenerate better than those having less ones (Xu
et al., 2017). Moreover, another research group finds out that
mature injured axons in mice can regenerate by enhancing
mitochondrial motility via genetic manipulation, which helps
remove damage mitochondria and recruit new ones to meet the
energy demands at injury sites during regenerative process (Zhou
et al., 2016).

To examine whether miR-133b overexpression had any effects
on mitochondrial dynamics, we co-transfected pUAS-mito-
EGFP and pUAS-mcherry-miR-133b driven by the expression
of pCMV-GAL4 via single-cell electroporation at 4 dpf and
visualized the movement of mitochondria at 6 dpf via in vivo
time-lapse confocal imaging, through which stable vs. mobile
mitochondria could be discerned (Figure 6A, Video S1). By
counting and analyzing mitochondria in M-cells, we identified
that the percentage of motile mitochondria was much lower in
miR-133b overexpressing conditions than in control (Figure 6B,

Video S2), and this reduction was more significant in retrograde
than in anterograde directions (Total: control: 20.31 ± 2.34%, n
= 11 fishes vs. miR-133bOE: 10.70± 2.14%, n= 13 fishes; antero:
control: 13.21 ± 1.89%, n = 11 fishes vs. miR-133b OE: 7.91 ±

1.92%, n= 13 fishes; retro: control: 7.10± 1.11%, n= 11 fishes vs.
miR-133bOE: 2.79± 0.77%, n= 13 fishes; Figure 6C).Moreover,
mitochondrial velocity in the miR-133b overexpression group
was slower in both transport directions compared with that in
control, though in retrogradely moving mitochondria it did not
reach significance (Total: control: 0.501 ± 0.018 µm/s, n = 54
mitos from 11 fishes vs. miR-133b OE: 0.404 ± 0.015 µm/s, n =

55 mitos from 13 fishes; antero: control: 0.488± 0.015 µm/s, n=
39 mitos from 11 fishes vs. miR-133b OE: 0.396 ± 0.017 µm/s, n
= 41 mitos from 13 fishes; retro: control: 0.535 ± 0.052 µm/s, n
= 15 mitos from 11 fishes vs. miR-133b OE: 0.4294± 0.034µm/s,
n = 14 mitos from 13 fishes; Figure 6D). Together, our results
suggest that miR-133b is an important cell intrinsic regulator of
mitochondrial dynamics during M-cell axon regeneration.

DISCUSSION

Through modulating miRNA in single neuron and in vivo
imaging, we have made several new findings in this study. First,

Frontiers in Molecular Neuroscience | www.frontiersin.org 9 November 2017 | Volume 10 | Article 375

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Huang et al. miR-133b Inhibits Single-Cell Axon Regeneration

FIGURE 6 | miR-133b attenuates mitochondrial transport in M-cell. (A) In vivo time-lapse sequences showing a moving mitochondrion (white arrowhead). Scale bar:

5µm. (B) Kymographs depict mitochondrial movement in control (left) and miR-133b OE group (right) at 6 dpf. Scale bar: 5µm. (C) Comparison of mitochondrial

motility in control and miR-133b OE group, including total, anterograde and retrograde. Student’s two-tailed t-test, total: control vs. miR-133b OE, P = 0.0063;

antero: control vs. miR-133b OE, P = 0.0640; retro: control vs. miR-133b OE, P = 0.0038. (D) Comparison of mitochondrial moving speed in control and miR-133b

OE group, including total, anterograde, and retrograde. Student’s two-tailed t-test, total: control vs. miR-133b OE, P = 0.0001; antero: control vs. miR-133b OE,

P = 0002; retro: control vs. miR-133b OE, P = 0.1081, **P < 0.01, ***P < 0.001. Error bars represent S.E.M.

usingMauthner cells as themodel, we demonstrate, through both
loss and gain-of-function experiments, a critical cell-intrinsic role
of miR-133b in inhibiting axon regeneration. Second, we uncover
a previously unknown molecular target of miR-133b, tppp3, and
show that it is a critical cell-intrinsic factor in promoting axon
outgrowth. Finally, we reveal that miR-133b negatively regulates
mitochondrial dynamics, which further supports the negative
effects of miR-133b on axon regeneration.

Maunther cells, a pair of myelinated neurons with large soma
and a long axon extending from hindbrain to tail in zebrafish,
have been proved to have regenerative capacity in our previous
study (Xu et al., 2017). Distinct from conventional miRNA over-
expression system in zebrafish with the RNA duplex, our study
used a vector-based system that enabled long-term expression
of miRNAs. With another two miRNAs (miR-23a and miR-21)
having different effects on axon regeneration, we reported that

overexpression of miR-133b specifically reduced the regenerative
length in M-cell (Figure 7). To further verify the validity of our
vector-based system, we also delivered the miR-133b duplex into
M-cell via single-cell electroporation. MiR-133b duplex delivered
group exhibits a reduction tendency in axon regeneration length,
although without a significant change, which might be due to
the application of low dose of RNA duplex during single-cell
electroporation compared with that in microinjection. What’s
more, we found that this tendency seems shrunk at 2 dpa,
which might be due to a degradation of miR-133b duplex.
Combining with the results of axon outgrowth in miR-133b
sponge group, we identified the negative role of miR-133b during
M-cell regenerative process.

We have further identified tppp3 as the target of miR-133b
in regulating axonal regeneration in zebrafish M-cell (Figure 7).
The direct interaction between miR-133b and tppp3 mRNA was
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FIGURE 7 | Working model of how miR-133b involved in regulating axonal regeneration of M-cell. Different miRNAs play different roles on axonal regeneration.

MiR-133b modulates M-cell regenerative capacity via diminishing tppp3 mRNA level, a novel gene that regulates axon outgrowth. Black asterisk: ablation point.

confirmed by EGFP sensor assay. Tppp3 expression was down-
regulated by miR-133b at the mRNA level. Although we did
not detect the change at protein level of tppp3 because of the
limitation of antibody performing in zebrafish, it did not cast
much doubts on the credibility that tppp3 is a downstream
gene of miR-133b in vivo. At the same time, our data do not
exclude possibility that there is another gene that is regulated by
miR-133b in this process too.

Tppp3 was originally discovered as a member of the
tubulin polymerization-promoting family that induces tubulin
polymerization and has been extensively studied recently (Vincze
et al., 2006; Staverosky et al., 2009; Juneja, 2013; Orosz,
2015). Researches has identified its critical role on promoting
proliferation and preventing apoptosis in vitro (Zhou et al.,
2010; Li Y. et al., 2016). Moreover, there is a study confirms
its expression in motor neuron and suggests it may play a
role in regulating sensory neuron regeneration in zebrafish
(Aoki et al., 2014). Although, there has been no direct evidence
demonstrating that tppp3 can promote regeneration, a mount
of studies confirms that microtubule stability, which has been
identified to be one role of tppp3 in human, is crucial to
improve regenerative capability. Thus, concerning with the
highly evolutional conservation of tppp3 between human and
zebrafish (Orosz, 2012; Oláh et al., 2017), which indicates that
there may be a functional similarity between them, we speculate
tppp3 may involve in promoting axon regeneration in zebrafish
M-cells. In our study, tppp3 gain or loss-of-function produced a
regulation on axon outgrowth mimicking the effect of miR-133b
loss or gain-of-function. Thus, tppp3 can be defined as a new
regulator of axon regeneration, at least in zebrafish M-cells.

To figure out whether miR-133b has an effects on
mitochondrial motility or not, we performed an experiment to
visualizing mitochondrial motility in miR-133b overexpression
group, as mitochondrial dynamics has shown to have a positive
correlation with regenerative capability (Zhou et al., 2016; Xu
et al., 2017). Consistent with our axonal regeneration data,
motile mitochondria rate and mitochondrial velocity were both
decreased accompanying worsening regenerative capability

upon miR-133b overexpressing. While the mechanism on this
finding needs to be further explored, this result that miR-133b
reduces mitochondrial dynamics, at least, further reinforces our
conclusion that miR-133b diminishes regenerative capacity in
M-cells.

The role of dre-miR-133b in regeneration appears context-
dependent in different organs (Yin et al., 2008, 2012; Yu et al.,
2011; Xin et al., 2013). Similar to the adverse function of
miR-133b during M-cell regeneration process, it inhibits fin
regeneration in adult zebrafish by targeting Mps1 (Yin et al.,
2008) and negatively regulates zebrafish heart regeneration via
restricting injury-induced cardiomyocyte proliferation (Yin et al.,
2012). Also, miR-133b can enhance axon regeneration and
promote functional recovery after SCI in zebrafish and mice by
targeting RhoA (Yu et al., 2011; Theis et al., 2017). As for the
divergence between our results and the results showing miR-
133b can promote regeneration after SCI by targeting RhoA, one
plausible explanation might be related to the different modes of
injury. We regulated the expression of miR-133b at single-cell
level and severed axons by two-photon laser axotomy, which only
damaged axon at a minuscule area, separating the intracellular
and intercellular factors influencing axon regeneration in vivo
and reflecting the intrinsic role of miR-133b during axon
regeneration process. For SCI, a complete transection of the
spinal cord was carried out, which inevitably damaged a large
number of neurons and extracellular milieu. Since miR-133b
has been proved to reduce the activated microglias/microphoges
at injury site (Theis et al., 2017), it is possible that miR-133b
enables the neurons a higher regenerative capacity after SCI by,
to some degree, playing a significant role in diminishing the
inhibitory extracellular milieu. In addition, it has been proved
that miR-133b enhance neurite outgrowth in cultured neurons
(Lu et al., 2015; Theis et al., 2017). Cultured neurons are, however,
developing cells, which normally stemmed from embryos or
newborn animals, and axon growth occurs from the cell body
rather than from the tip of a damaged axon. As axons only
contain a subset of molecules that are found in the cell body,
outgrowth from the soma may have different underlying biology
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to that of regeneration from the end of a cut axon (Bradke et al.,
2012). Moreover, we cannot totally deny that miR-133b might
play a role in differentiation in cultured neurons and miR-133b
has been reported to promote differentiation process via ERK 1/2
pathway (Sanchez-Simon et al., 2010; Feng et al., 2013). Thus,
as we focus on miR-133b’s role during regeneration process of
M-cells in our experiments, which has been mature during our
experimental time window, we believe our conclusion of miR-
133b inhibiting M-cell axon regeneration does not conflict with
the conclusions mentioned above.

A large number of studies have demonstrated the critical
role of miRNAs in regeneration process, however, many reports
explore the function of miRNA in cell populations, masking
the important information connecting single cell fate and
miRNA function in it (Verdú et al., 2000). Studying miRNA
role in one single cell is important because it allows deep
understanding of the correlations between the miRNAs and
cell function (Meacham and Morrison, 2013; Wills et al.,
2013). In order to have a comprehensive understanding of
miRNA function, we built a model to identify the miRNA
function in zebrafish Mauthner cell regeneration by single-
cell electroporation, presenting a new method to understand
intrinsic miRNA function in regenerative process, without
concerning with effects from intercellular context. Through
combining effectively with other gene interference technology
and subcellular organization mitochondria labeled by single-cell
electroporation, we provided a new tool to explore functions of
different genes in single cell in vivo.

In summary, our study identifies miR-133b as cell-intrinsic
inhibitor of axon regeneration, which performs its function,
at least partly, via regulating tppp3 (Figure 7). These results,
together with our single cell analysis approach, not only
contribute significantly to the fundamental understanding of
miRNA regulation in regeneration, but also have implications in
developing therapeutic strategies for nerve injury.
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Figure S1 | miR-133b duplex inhibits M-cell regeneration (A) Confocal imaging

of M-cell at 1 dpa (top) and 2 dpa (bottom). White asterisk: ablation point.

Scale bar: 50µm. (B) Regeneration length at 1 and 2 dpa. One days

post-axotomy: One-way ANOVA, P = 0.2195. Two days post-axotomy:

One-way ANOVA, P = 0.1847.

Figure S2 | The design of miR-shRNAs targeting tppp3. (A) The sequences of five

shRNAs targeting tppp3. The guide strands (bottom) are highlighted in dark blue.

(B) The location of shRNA target sites in the tppp3 mRNA.

Video S1 | In vivo imaging of mitochondrial movement in control Axonal

mitochondrial motility along M-cell axon labeled with mito-EGFP and mCherry.

2.5-min time-lapse images were acquired with a 60 × lens and recorded for a

total of 100 frames at 1.5-s intervals.

Video S2 | In vivo imaging of mitochondrial movement in miR-133b

overexpressed group Axonal mitochondrial motility along M-cell axon

overexpressing miR-133b. M-cell was labeled with mito-EGFP and

mCherry-miR-133b. 2.5-min time-lapse images were acquired with a 60 × lens

and recorded for a total of 100 frames at 1.5-s intervals.
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