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Glial cells are essential for every aspect of normal neuronal development, synapse
formation, and function in the central nervous system (CNS). Astrocytes secrete a
variety of factors that regulate synaptic connectivity and circuit formation. Microglia
also modulate synapse development through phagocytic activity. Most of the known
actions of CNS glial cells are limited to roles at excitatory synapses. Nevertheless,
studies have indicated that both astrocytes and microglia shape inhibitory synaptic
connections through various mechanisms, including release of regulatory molecules,
direct contact with synaptic terminals, and utilization of mediators in the extracellular
matrix. This review summarizes recent investigations into the mechanisms underlying
CNS glial cell-mediated inhibitory synapse development.
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INTRODUCTION

Synapses are the fundamental information-processing units underlying neuronal networks in
the brain. It is across synapses that neurons receive excitatory synaptic inputs from neighboring
glutamatergic neurons and inhibitory inputs from various γ-aminobutyric acid-expressing
(GABAergic) interneurons. In particular, GABAergic interneurons play important roles in
controlling the properties of pyramidal neurons, such as firing frequency, to shape the activity of
neuronal networks, and contribute to the generation of cortical rhythms (Buzsáki and Draguhn,
2004; Bartos et al., 2007; Bonifazi et al., 2009; Jensen and Mazaheri, 2010; Kullmann, 2011). An
imbalance in the ratio of excitatory to inhibitory (E/I) synaptic activity has emerged as a shared
pathophysiological mechanism in several neuropsychiatric disorders, including autism spectrum
disorder (ASD) and schizophrenia, and in neurological disorders such as epilepsy (Lee et al.,
2017). Thus, investigations of the key molecular mechanisms underlying both excitatory and
inhibitory synapse development collectively contribute to a comprehensive understanding of the
pathophysiological mechanisms of brain disorders.

Over the past 20 years, numerous studies have shown that various types of glial cells actively
and distinctively participate in the control of various neuronal processes in both the peripheral
nervous system (PNS) and central nervous system (CNS; Pfrieger and Barres, 1996; Christopherson
et al., 2005; Perea et al., 2009; Eroglu and Barres, 2010; Stipursky et al., 2011). Among these
cell types, astrocytes have received the most attention because of their crucial roles in synapse
formation, transmission and plasticity (Clarke and Barres, 2013; Baldwin and Eroglu, 2017).
Astrocytes are not uniform throughout the CNS; rather, depending on the brain region, they
exhibit differences in characteristics ranging from cell shape to protein composition (Chai et al.,
2017). Thus, astrocytes may execute their differential functions in a brain region-specific manner.
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In this context, it has been reported that astrocyte-conditioned
media (ACM) from different brain regions possess different
excitatory synaptogenic properties, reflecting distinct expression
profiles of astrocyte-derived synaptogenic molecules, such as
glypicans, SPARC (secreted protein acidic and cysteine rich) and
hevin (also known as SPARC-like 1 [SPARCL1]) in astrocytes
from different brain regions (Buosi et al., 2017). Similarly, the
inhibitory synaptogenic potential of astrocytes may also differ in
distinct brain regions owing to the unique expression profiles of
various glial genes, a potential that warrants further investigation.

Microglia also impact synaptic functions through release
of specific molecules that influence the phagocytic activities
involved in synapse elimination (Wu et al., 2015). Although the
variousmechanisms underlying glia-mediated excitatory synapse
development have been well established (Nagler et al., 2001;
Ullian et al., 2001, 2004; Risher et al., 2014), the roles of glial
cells in inhibitory synapse development have only recently been
investigated. In the present review, I focus on the actions of
glial cells in orchestrating inhibitory synapse development and
relevant neural circuits. Additionally, where possible I highlight
the implications of these mechanisms for various brain disorders.
The roles of glial cells in excitatory synapse development have
been the subject of excellent recent reviews (Perea et al.,
2009; Chung et al., 2015) and will not be addressed here in
detail.

The main role of oligodendrocytes is to generate myelin
sheaths around axons (Barres, 2008), but a few studies have
shown that a new class of glial cells—proteoglycan NG2-positive
oligodendrocyte precursor cells (OPCs)—receive the input from
glutamatergic or GABAergic neurons (Bergles et al., 2000; Lin
and Bergles, 2004; Lin et al., 2005). However, the precise function
of these direct contacts remains to be investigated; thus, the
related topic is not covered in the current review.

ROLES OF ASTROCYTIC FACTORS IN
REGULATING INHIBITORY SYNAPSE
STRUCTURE AND FUNCTION

Astrocyte-Secreted Factors
Results from various studies have indicated that astrocytes
regulate synaptic transmission and plasticity, partly via the
release of gliotransmitters, such as glutamate, D-serine or
ATP, in response to activity-dependent calcium influx (Zhang
et al., 2003; Fellin et al., 2004; Volterra and Meldolesi,
2005; Haydon and Carmignoto, 2006; Jourdain et al., 2007;
Perea et al., 2009; Araque et al., 2014). For example, it
has been shown that astrocyte-derived DISC1 (disrupted in
schizophrenia-1) is involved in dendritic arborization and
maturation of excitatory, but not inhibitory, synapses by
modulating D-serine production in a hippocampal neuron-
astrocyte coculture system (Xia et al., 2016). Astrocyte-derived
ATP was recently shown to regulate the excitability of
cholecystokinin (CCK)-positive interneurons through activation
of P2Y1 purinergic receptors (Tan et al., 2017). In addition
to the above-mentioned gliotransmitters, astrocytes release
a number of substances including thrombospondin, hevin,

SPARC, transforming growth factor-β1 (TGF-β1), glypican
4/6, semaphorin 3A, γ-protocadherin (γ-Pcdh), ephrin-A3,
cholesterol and brain-derived neurotrophic factor (BDNF),
that are involved in directing the formation of synapses and
ultimately building specific neural circuits (Baldwin and Eroglu,
2017).

In contrast, the impact of astrocytes on inhibitory synapse
development has been largely unexplored. There are signaling
pathways that link astrocytes with the GABA system, as
suggested by earlier studies showing that astrocytes potentiate
GABA-mediated currents in hippocampal cultured neurons (Liu
et al., 1996, 1997). Moreover, astrocytes increase inhibitory
synaptic transmission in hippocampal CA1 pyramidal
neurons through astrocytic calcium signaling (Kang et al.,
1998). Because the addition of ACM to neuronal cultures
also induces GABAergic synapse-promoting effects similar
to those observed in a neuron-astrocyte coculture system
(Liu et al., 1996, 1997), it is possible that astrocytes secrete
substances that are crucial for inhibitory synaptogenesis. In
cultured hippocampal neurons, astrocyte-induced increases
in the number of GABAA receptor clusters were shown to be
compromised by scavenging BDNF, indicating that signaling
pathways involving BDNF and its receptor, tropomyosin
receptor kinase B (TrkB), are required for astrocyte-mediated
facilitation of inhibitory synapse development (Elmariah
et al., 2005; Figure 1). Strikingly, astrocytic BDNF is not
required for modulation of GABAA receptor clustering, as
evidenced by the fact that ACM from astrocytic-BDNF-
deficient mice retains the ability to potentiate GABAA
receptor clustering (Elmariah et al., 2005). This suggests that
unknown factors from astrocytes govern neuronal BDNF-TrkB
signaling to promote inhibitory synapse development. In
addition to modulating GABAA receptor clustering, soluble
astrocyte-derived factors selectively enhance axon length,
branching, synapse number and function of GABAergic
inhibitory neurons (Hughes et al., 2010). Intriguingly,
thrombospondins, which positively regulate excitatory synapses,
do not promote inhibitory synaptogenesis (Hughes et al.,
2010).

Several astrocyte-secreted factors have recently been
identified as inhibitory synapse regulators. For example,
astrocyte-derived endozepines, endogenous ligands with
benzodiazepine-like effects, potentiate synaptic inhibition in
the thalamic reticular nucleus (Christian and Huguenard,
2013). In addition, TGF-β secreted by human and murine
astrocytes induces inhibitory synapse formation in cortical
cultured neurons (Diniz et al., 2014). In this latter study,
disruption of calcium/calmodulin-dependent protein kinase
II (CaMKII) function by either pharmacological inhibition
or RNA interference (RNAi)-based knockdown abrogated
ACM-triggered inhibitory synapse development, as assessed by
clustering of inhibitory synaptic marker proteins (Diniz et al.,
2014). Collectively, these results suggest that the TGF-β/CaMKII
signaling pathway constitutes a key mechanism underlying
astrocyte-mediated inhibitory synapse development (Figure 1),
and that astrocytes regulate the synaptic E/I balance through a
variety of molecular pathways.
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FIGURE 1 | Astrocytes and microglia mediate both GABAergic synapse formation and elimination through a variety of molecular mechanisms. Transforming growth
factor-β1 (TGF-β1) secreted from astrocytes induces inhibitory synapse formation through activation of neuronal calcium/calmodulin-dependent protein kinase II
(CaMKII). In addition, GABAergic inhibitory synapse formation is regulated by astrocytic γ-Pcdh-mediated adhesion events, astrocytic GABA transporters (GATs),
and/or unidentified factors that control neuronal brain-derived neurotrophic factor (BDNF)-TrkB signaling. Synapse elimination is mediated by astrocytic recognition of
the so-called “eat-me” signal on neuronal membranes through pathways involving MEGF10 and MERTK, or by microglial recognition of complement C3 expression
through complement receptor 3 (CR3), followed by phagocytosis.

Extracellular Matrix Molecules
Astrocyte-derived ECM molecules are additional important
factors that regulate key synaptic processes (Dityatev and
Schachner, 2003; Christopherson et al., 2005; Faissner et al.,
2010). Several studies have demonstrated that chondroitin
sulfate proteoglycans (CSPGs) are involved in the regulation of
synaptic plasticity (Pizzorusso et al., 2002; Frischknecht et al.,
2009; Gogolla et al., 2009). Treatment with chondroitinase
ABC (ChABC), an enzyme that eliminates CS chains, was
shown to massively impair excitatory synaptic transmission in
cultured hippocampal neurons (Pyka et al., 2011). However,
inhibitory synaptic transmission was not affected (Pyka et al.,
2011), indicating that the effects of CSPGs are restricted to
excitatory synapses. Whether other ECMs are involved in
specifically regulating inhibitory synapse development remains
to be determined.

Perineuronal nets (PNNs)—specialized ECM structures
surrounding neuronal soma and dendrites, particularly
fast-spiking parvalbumin-positive (PV+) interneurons—inhibit
synapse formation and reorganization (Sorg et al., 2016).
Various proteoglycans, including neurocan, aggrecan,
tenascins and hyaluronan, are concentrated in PNNs, and
induction of their degradation by enzymatic treatment or
genetic ablation leads to increased excitability of PV+ cells
(Dityatev et al., 2007; Kim et al., 2016). PV+-interneurons are
involved in the generation of synchronous γ-oscillations,
which coordinate the activation of principal pyramidal
neurons to maintain appropriate information processing
and E/I balance, suggesting that components of PNNs
involving PV+-interneurons may play an important role

in fine-tuning the connectivity and/or activity of neural
circuits. Disruption of this circuit formation manifest as
pathophysiological correlates of discrete brain disorders,
including epilepsy.

Cell-Surface Proteins
Direct adhesion between neurons and astrocytes is also
critical for synapse development. One factor that mediates
astrocyte-neuron adhesion is γ-Pcdh, which promotes
synaptogenesis through homophilic interactions (Frank and
Kemler, 2002). Astrocytic γ-Pcdh promotes both excitatory
and inhibitory synapse development, as revealed by genetic
ablation of γ-Pcdh in either neurons or astrocytes (Garrett and
Weiner, 2009; Figure 1). More than 20 adhesion proteins
identified to date in pre- and postsynaptic membranes
have been shown to organize various aspects of neuronal
development processes (Um and Ko, 2013). However, whether
these proteins are exclusively expressed in either neurons or
glial cells, or both, has not been systematically investigated.
Thus, it is conceivable that additional, as yet undiscovered,
membrane proteins are involved in astrocyte-neuron adhesion
processes.

Synapse elimination is crucial for normal synapse
development across the CNS and PNS (Eroglu and Barres,
2010; Neniskyte and Gross, 2017). Excess synapses that
form initially are removed during brain development to
enable functional neural circuit formation. Recent studies
have shown that astrocytes are involved in eliminating both
excess excitatory and inhibitory synapse structures, likely
through interactions of astrocytic multiple epidermal growth
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factor-like domains 10 (MEGF10) and MER proto-oncogene,
tyrosine kinase (MERK) with unidentified neuronal membrane
proteins (Chung et al., 2013, 2015). Phosphatidylserine, acting
as an ‘‘eat-me’’ signal, drives remodeling of the synaptic
architecture during brain development by binding to astrocytic
MEGF10 and MERTK, which leads to phagocytosis (Chung
et al., 2013; Figure 1). A recent study showed that astrocytes
regulate synapse elimination through the release of ATP
via a mechanism that is dependent on the type II inositol
1,4,5-triphosphate receptor (Yang et al., 2016). However,
further studies are required to uncover the precise mechanisms
underlying astrocyte-mediated synapse elimination. It further
remains to be determined whether astrocytes are involved
in eliminating both synapse types, and whether shared or
distinct signaling pathways are involved in these processes.
More importantly, how interactions of astrocytes, microglia,
and neurons coordinate synapse elimination remains to be
elucidated.

Miscellaneous Factors
In addition to the mechanisms highlighted above, the
modulation of GABAergic synapse development depends
on a series of astrocytic metabolic pathways of the Krebs cycle
(Kaczor et al., 2015; Kaczor and Mozrzymas, 2017). For example,
inhibitory synapse number and transmission are increased and
plasticity is enhanced in neurons cocultured with astrocytes
compared to those cultured alone (Kaczor et al., 2015; Kaczor
and Mozrzymas, 2017). These effects of astrocyte coculture
disappear following treatment with a subset of selective Krebs
cycle inhibitors, such as fluoroacetate, indicating the involvement
of key astrocyte-expressed metabolic enzymes in GABAergic
plasticity.

Because GABA in the extrasynaptic space shapes inhibitory
synaptic transmission, it is conceivable that inhibitory
synaptic transmission is regulated by the activity and/or
level of GABA transporters (GATs). Four types of GATs
(GAT1–4) have been identified in humans and rats. GAT1 and
GAT3, in particular, are strongly expressed in astrocytes
(Vitellaro-Zuccarello et al., 2003). Indeed, changes in astrocytic
GAT1 or -3 expression level or activity alter inhibitory synaptic
transmission in hippocampal interneurons (Beenhakker
and Huguenard, 2010; Shigetomi et al., 2012; Kersanté
et al., 2013; Muthukumar et al., 2014), suggesting that
astrocytic GATs control the excitability of neurons in a
neural network through regulation of extracellular GABA
levels (Figure 1). Thus, astrocytic GATs may be considered
potential therapeutic targets for neurological and psychiatric
disorders.

ROLES OF ASTROCYTES IN REGULATING
THE FORMATION OF INHIBITORY INPUTS
IN NEURAL CIRCUITS DURING
EMBRYONIC DEVELOPMENT

Although the roles of glial cells in shaping neural circuits,
particularly those that modulate GABAergic synaptic

properties, remain largely unexplored, a few studies have
implicated astrocytes in dictating the properties of discrete
neural circuits. For example, in the auditory brainstem,
inhibitory projections from the superior olivary nucleus
(SON) to the nucleus laminaris (NL) are established during
embryonic development (Burger et al., 2005). Treatment
of organotypic slices from the avian auditory brainstem
with ACM enhances the number of inhibitory synaptic
inputs onto NL neurons, suggesting that soluble factors
secreted by astrocytes promote inhibitory synaptogenesis
during embryonic development (Korn et al., 2012; Cramer
and Rubel, 2016). In the cerebellar cortex, Bergmann
glial cells, a type of highly polarized astrocyte, guide
stellate axons to form inhibitory synapses onto Purkinje
neuronal dendrites during postnatal development (Ango
et al., 2008), underscoring the importance of glial cells in
shaping the cerebellar circuitry. Genetic deletion of specific
developmental populations of astrocytes in the spinal cord
was shown to increase inhibitory synapse numbers, but
decrease excitatory synapse numbers (Tsai et al., 2012). These
results indicate that astrocytes are crucial for maintaining
the appropriate E/I ratio at synapses and neural circuits in
the spinal cord. In the microcircuit connecting the thalamic
reticular nucleus and ventrobasal nucleus, astrocytes regulate
synaptic inhibition through endozepines and GATs (Khakh
and Sofroniew, 2015). In addition, in the visual cortex,
activation of astrocytes enhances the spontaneous firing
rate of PV+ interneurons, contributing to shaping diverse
sensory information-processing events in the primary visual
cortical network (Perea et al., 2014; Ben Haim and Rowitch,
2017).

ROLES OF MICROGLIA IN INHIBITORY
SYNAPSE FORMATION AND ELIMINATION

Microglia are the resident macrophages in the CNS. In line with
their immune cell identity, microglia have been traditionally
investigated as mediators of inflammatory responses and
phagocytosis of pathogens and cell debris under pathological
conditions (Shemer et al., 2015). However, roles of microglia
under normal conditions have recently begun to emerge.
During postnatal development, microglia contribute to the
reconstruction of neuronal circuits through phagocytosis of
excess neuronal synapses and newborn neurons (Stevens et al.,
2007; Paolicelli et al., 2011; Tremblay et al., 2011). A variety
of molecules are responsible for phagocytosis-mediated synaptic
pruning. These include CX3C chemokine receptor 1 (CX3XR1),
a receptor of the neuronal chemokine fractalkine, CX3XL1, that
is expressed exclusively in microglia (Paolicelli et al., 2011),
and complement receptor 3 (CR3), a receptor for complement
component C3 located at neuronal synapses (Schafer et al.,
2012; Figure 1). In addition to their phagocytic activity,
microglia also influence synapse development through the
release of various factors, such as BDNF (Parkhurst et al.,
2013), interleukin (IL)-10 (Lim et al., 2013), ATP (Pascual
et al., 2012) and tumor necrosis factor α (TNFα; Lewitus
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et al., 2016). In terms of microglial regulation of inhibitory
synapses, microglial IL-10 was found to promote both excitatory
and inhibitory synapse development in cultured hippocampal
neurons (Lim et al., 2013; Figure 1). In addition, a recent
study demonstrated that activated microglia displace inhibitory
GABAergic presynaptic terminals in adult mice, resulting in
increased synchronized neuronal activity (Chen et al., 2014).
Increased neuronal activity causes an elevation in intracellular
calcium levels, leading to activation of CaMKII and increased
expression of anti-apoptotic proteins (Chen et al., 2014). These
data suggest a novel role of activated microglia in protecting
the adult brain in addition to their phagocytic role (Chen et al.,
2014). Further studies are required to establish the molecular
factors involved in evoking protective microglia in brain disease
states. In addition to GABAergic synapses, glycinergic inhibitory
synapses are also regulated by microglia (Cantaut-Belarif et al.,
2017). Stimulated microglia acutely regulate glycinergic synapse
development in the spinal cord by modulating the activity of
microglial prostaglandin E2 (PGE2; Cantaut-Belarif et al., 2017;
Figure 1).

DISEASE RELEVANCE

Synaptic dysfunction has been considered a hallmark of various
neurological diseases, including Alzheimer disease (AD), ASD
and schizophrenia (Penzes et al., 2011; Zoghbi and Bear,
2012; Li et al., 2017). Both astrocytes and microglia influence
synapse formation and elimination; thus, it is likely that
impaired glial function contributes to the onset and progression
of neurological disorders. Specifically, dysregulation of glial
functions that disrupts the E/I balance at synapses and circuits
may lead to disease states. Recently, a rare variant of a
microglial gene encoding triggering receptor expressed on
myeloid cell 2 (TREM2) has been identified as a risk factor for
AD (Jonsson et al., 2013). In addition, microglial activation has
been demonstrated in the brains of individuals with ASD or
schizophrenia (van Berckel et al., 2008; Voineagu et al., 2011).
However, it is not clear how microglial activation is related to
synaptic deficits in these diseases. Also, because most published
reports have focused on the roles of various glial cells in
regulating excitatory synapse formation, function or elimination,
the issue of whether glial cells also play critical roles in controlling
inhibitory synapse development and function remains to be
investigated.

Reactive astrocytes have been associated with many
neurological diseases, including epilepsy, AD and stroke
(Seifert et al., 2006). Mounting evidence has demonstrated
multifaceted functions of reactive astrocytes in disease states,
but little is known about the roles of these astrocytes from an
inhibitory synapse or circuit perspective. One study showed that,
in the astrocytotic region, neurons exhibit reduced inhibitory,
but not excitatory, synaptic transmission through actions
of the astrocytic glutamate-glutamine cycle, which triggered
hyperexcitability in hippocampal circuits (Ortinski et al., 2010).
Given the significance of GABAergic inhibition in neuronal
circuits, these studies underscore the functional consequences

of astrocytosis for neurological diseases as well as alterations of
neuronal circuits, with attendant effects on cognition, learning
and memory and epileptic seizures.

Extensive evidence has linked microglia to
neuroinflammation, which in turn is associated with a variety of
neurodegenerative diseases. However, impacts of microglia on
the sculpting of synaptic connectivity have only recently been
reported. Microglia in the healthy brain have been shown to
function in the refinement of synapses in brain development,
as described above. Disruption of microglial complement
proteins or receptor proteins results in abnormal synaptic
wiring (Paolicelli et al., 2011; Schafer et al., 2012), which may
contribute to the synaptic abnormalities observed in several
neurodevelopmental disorders.

CONCLUDING REMARKS

In this review, I have highlighted recent literature reports that
collectively reveal the various roles of astrocytes and microglia in
regulating inhibitory synapse development and neural circuits.
Considered in light of the essential role of GABAergic synapses
in shaping network activity through filtering of incoming neural
information and dictating the activity of principal neurons,
the cellular and molecular mechanisms underlying inhibitory
synapse structure, transmission, and plasticity mediated by
various glial cell types should be comprehensible. Although
recent technological developments have accelerated advances in
our understanding of the roles of glial cells in various aspects
of synapse development, only a few studies have provided
mechanistic insights into the contributions of various glial cell
types to the development of GABAergic synapses and relevant
neural circuits. Investigations of unidentified astrocyte- and
microglia-based mechanisms that direct the development of
GABAergic synapses and neural circuits will not only enhance
our understanding of synapse development in health, but also
guide the development of novel therapeutic strategies against
various brain disorders.
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