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Transient receptor potential melastatin-related 2 (TRPM2) channel, a molecular sensor
for reactive oxygen species (ROS), plays an important role in cognitive dysfunction
associated with post-ischemia brain damage thought to result from ROS-induced
TRPM2-dependent neuronal death during reperfusion. Emerging evidence further
suggests that an alteration in the Zn2+ homeostasis is critical in ROS-induced TRPM2-
dependent neuronal death. Here we applied genetic and pharmacological interventions
to define the role of TRPM2 channel in ROS-induced neuronal death and explore
the mechanisms contributing in the alteration in intracellular Zn2+ homeostasis in
mouse hippocampal neurons. Exposure of neurons to 30–300 µM H2O2 for 2–24 h
caused concentration/duration-dependent neuronal death, which was significantly
suppressed, but not completely prevented, by TRPM2-knockout (TRPM2-KO) and
pharmacological inhibition of the TRPM2 channel. H2O2-induced neuronal death
was also attenuated by treatment with TPEN acting as a Zn2+ selective chelator.
Single cell imaging demonstrated that H2O2 evoked a prominent increase in the
intracellular Zn2+ concentration, which was completely prevented by TPEN as well
as TRPM2-KO and inhibition of the TRPM2 channel. Furthermore, H2O2 induced
lysosomal Zn2+ release and lysosomal dysfunction, and subsequent mitochondrial Zn2+

accumulation that provokes mitochondrial dysfunction and ROS generation. These
H2O2-induced lysosomal/mitochondrial effects were prevented by TRPM2-KO or TPEN.
Taken together, our results provide evidence to show that a dynamic alteration in the
intracellular Zn2+ homeostasis as a result of activation of the TRPM2 channel contributes
to ROS-induced hippocampal neuronal death.

Keywords: TRPM2 channel, hippocampal neuronal death, ROS, intracellular Zn2+ homeostasis, lysosomal
dysfunction, mitochondrial dysfunction

INTRODUCTION

Brain is highly demanding for metabolism and energy and thus is prone to damage by ischemia,
if it lasts long or becomes severe, and also by reperfusion after transient ischemia (McCord, 1985;
Kalyanaraman, 2013). Hippocampus is crucial for brain functions such as learning and memory,
and studies of both animal models of ischemia-reperfusion and ischemic stroke patients have
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documented that hippocampal neuronal death during
reperfusion plays an important role in progressive decline
in the cognitive function after ischemia stroke (Kitagawa et al.,
1990; Doyle et al., 2008). Reperfusion-induced brain damage
is strongly and causatively related to generation of excessive
reactive oxygen species (ROS) upon re-introduction of oxygen
molecule during reperfusion (McCord, 1985; Chan, 2001; Uttara
et al., 2009; Chen et al., 2011; Sanderson et al., 2013). To gain a
better understanding of ROS-induced neuronal death is therefore
critical in developing therapeutics targeting reperfusion-related
neuronal death, which is currently non-existent, to ameliorate
post-ischemia cognitive dysfunction.

It is known that ROS cause DNA damage and the poly(ADP-
ribose) polymerase-1 (PARP-1) activity is critical in the process
of repairing DNA damage (Dantzer et al., 2006). However,
it is also well recognized that prolonged activation or hyper-
activation of PARP-1 induces cell death, including neurotoxicity
(Cole and Perez-Polo, 2002; Lo et al., 2003; Alano et al., 2010;
Virág et al., 2013). ADP-ribose (ADPR), long known as a
biochemical by-product of the PARP-1-dependent DNA repair
process, has been relatively recently established as an intracellular
signaling molecule due to its capacity of selectively gating
the transient receptor potential melastatin-related 2 (TRPM2)
Ca2+-permeable cationic channel (Perraud et al., 2001; Sano
et al., 2001). An early study showed that activation of the
TRPM2 channel mediates ROS-induced cell death (Hara et al.,
2002) and recent studies using transgenic TRPM2-knockout
(TRPM2-KO) mice have revealed a critical role for ROS-induced
TRPM2-mediated cell death in diverse cell types that contributes
to pathologies such as diabetes (Manna et al., 2015), ischemic
kidney damage (Gao et al., 2014) and paracetamol-induced liver
injury (Kheradpezhouh et al., 2014). In the brain, it has been
shown that the TRPM2 channel is expressed in hippocampal
(Olah et al., 2009; Verma et al., 2012; Ye et al., 2014), cortical
(Kaneko et al., 2006), striatal (Fonfria et al., 2005; Kaneko
et al., 2006) and dopaminergic neurons (Sun et al., 2016) as
well as microglial cells (Kraft et al., 2004; Fonfria et al., 2006;
Mortadza et al., 2017), neurovascular endothelial cells (Park
et al., 2014) and pericytes (Jiang et al., 2017). Previous studies
support a role for the TRPM2 channel, particularly TRPM2-
mediated increase in the cytosolic Ca2+ concentration ([Ca2+]c),
in ROS-induced neuronal death (Fonfria et al., 2005; Kaneko
et al., 2006; Verma et al., 2012). Furthermore, TRPM2-dependent
neuronal death has been related to post-ischemia brain damage
(Jia et al., 2011; Nakayama et al., 2013; Shimizu et al., 2013,
2016; Ye et al., 2014) and Alzheimer’s disease (Ostapchenko et al.,
2015). The molecular mechanisms underlying ROS-induced
TRPM2-dependent neuronal death however remain less well-
defined.

Zn2+ is a trace metal ion that is biologically important,
serving an essential enzyme cofactor and transcription factor,
but Zn2+ is also well-known for being neurotoxic. In agreement
with the finding from a recent study that the TRPM2 channel
selectively mediates brain damage induced by reperfusion, not
by ischemia (Alim et al., 2013), our recent study has revealed
an exclusive role for the TRPM2 channel in sustaining the
cytosolic Zn2+ concentration ([Zn2+]c) during reperfusion that

is causatively associated with post-ischemia neuronal death
(Ye et al., 2014), implying TRPM2-dependent rise in the
[Zn2+]c is critical in driving ROS-induced neuronal death.
As has been well recognized, Zn2+-induced neuronal death
results in significant part from the potency of cytosolic Zn2+

in inducing lysosomal and mitochondrial dysfunction (Jiang
et al., 2001; Dineley et al., 2003, 2005; Hwang et al., 2008;
Medvedeva et al., 2009; Sensi et al., 2011; Shuttleworth and
Weiss, 2011). Therefore, in the present study, we performed
experiments using cultured hippocampal neurons to investigate
the contribution of TRPM2 channel, particularly TRPM2-
dependent alterations in the intracellular Zn2+ homeostasis,
lysosomal function and mitochondrial function, in ROS-induced
neuronal death.

MATERIALS AND METHODS

Chemicals and Reagents
General chemicals and reagents used in the study were obtained
from Sigma, except those indicated specifically. PJ34 was from
Calbiochem, and TPEN from StressMarq Biosciences.

Preparation of Primary Hippocampal
Neurons
All experiments and experimental protocols, including all those
involving mice, were approved by the University of Leeds
Ethical Review Committee and performed in accordance with the
University of Leeds guidelines and procedure and conforming
to the UK Home Office rules and regulations. The TRPM2-KO
mice were generated in our previous study (Zou et al., 2013).
Primary cultures of hippocampal neurons from postnatal 1–2 day
old C57BL/6 mice of both sex were prepared according to the
protocols previously described (Beaudoin et al., 2012). In brief,
hippocampal tissues were collected into ice-cold Hank’s balanced
salt solution (Invitrogen) and kept in <30 min before incubated
in 0.125% trypsin-EDTA solution (Life Technologies) in 37◦C for
15 min, and then in DMEM/F12 containing 10% horse serum
(Thermo Scientific). The tissues were triturated by pipetting and
filtered through a 70-µm nylon cell strainer (Fisher Scientific)
into a 50-ml Falcon tube to obtain single cell suspension.
Cells were collected by centrifugation at approximately 100 g
for 5 min, and re-suspended in fresh DMEM/F12 medium
supplemented with 10% horse serum, 5 units/ml penicillin and
50 µg/ml streptomycin. Cells were seeded at 100 cells/mm2 and
cultured in the above culture medium for 4 h before maintained
in Neurobasal medium with 2% serum-free B27 supplement
(Thermo Scientific), 0.5 mM L-glutamine, 5 units/ml penicillin
and 50 µg/ml streptomycin. After 2 days, cytosine β-D-
arabinofuranoside was added with a final concentration of
0.5 µM to inhibit microglia growth. The medium was changed
twice a week. Neurons cultured for 14–16 days in vitro were
used.

Measurement of Neuronal Death
Neuronal death was determined using propidium iodide (PI)
staining as previously described with slight modifications
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FIGURE 1 | Transient receptor potential melastatin-related 2 (TRPM2) has a significant role in H2O2-induced hippocampal neuronal death. (A) Mean percentage of
propidium iodide (PI) positive WT neurons after treatment with H2O2 for indicated conditions, from 3 to 8 independent experiments with each independent
experiment examining 350–500 neurons. ∗p < 0.05 and ∗∗∗p < 0.005 indicate difference from control. (B) Representative images showing PI and Hoechst staining of
WT and TRPM2-KO neurons treated with indicated concentrations of H2O2 for 24 h. (C) Mean percentage of PI positive neurons under indicated conditions as
shown in panel (B), from 4 to 5 independent experiments with each experiment examining 350–550 neurons. ∗p < 0.05 and ∗∗∗p < 0.005 indicate difference from
respective untreated neurons. †p < 0.05 and †††p < 0.005 indicate difference between WT and TRPM2-KO neurons under the same treatments. (D) Representative
images showing PI and Hoechst staining of WT neurons treated with 1 µM PJ34, 30 min prior to and during exposure to 300 µM H2O2 for 24 h. (E–G) Mean
percentage of PI positive neurons under indicated conditions, from 4 to 5 independent experiments with each experiment examining 350–550 neurons.
∗∗∗p < 0.005 indicates difference from control. †p < 0.05 and ††p < 0.01 indicate difference from neurons exposed to H2O2 alone. Scale bar is 100 µm in (B,D).

(Xu et al., 2012). Neurons were seeded in 24-well poly-L-lysine-
coated plates (Sarstedt) and treated with H2O2 at indicated
concentrations and durations. In some experiments, culturing
medium was added with 5 mM EGTA to examine the effect of
removing extracellular Ca2+ on H2O2-induced neuronal death.
Inhibitors at indicated concentrations were added 30 min before
and during exposure to H2O2. Neurons were incubated with
1µg/ml PI and 1µMHoechst 33342 (Cell Signaling Technology)
for 30 min immediately after treatment with H2O2. Images
were captured using an EVOSr Cell Imaging System (Life
Technologies), and ImageJ was used for cell counting.

Immunocytochemistry
Neurons were seeded on a 13-mm poly-L-lysine-coated
coverslips placed in a 24-well plate. After rinsed with phosphate
buffer saline (PBS), neurons were incubated in Zamboni’s
fixative (15% (v/v) picric acid and 5.5% (v/v) formaldehyde in
PBS) for 1 h, rinsed with PBS, and incubated with blocking
serum solution (10% (v/v) goat serum and 4% (v/v) Triton X-100
in PBS) for 1 h. Neurons were incubated with primary rabbit
anti-TRPM2 (1:1000; Bethyl) or mouse anti-Cyt-c antibody
(1:100; BD Pharmingen) overnight at 4◦C and, after washing
in PBS, with secondary anti-rabbit or anti-mouse antibody

conjugated with fluorescein isothiocyanate (1:500) for 1 h.
Neurons were washed with PBS and rinsed in water before
mounted with SlowFader Gold Antifade (Invitrogen) and
kept in 4◦C. Images were captured using an inverted Zeiss
LSM880 confocal microscope with a 63× objective. ImageJ was
used for analysis of Cyt-c immunostaining.

Single Live Cell Confocal Imaging
Neurons were seeded in 35-mm poly-L-lysine-coated glass
bottom dishes (World Precision Instruments) 24 h before use.
After the medium was removed, neurons were rinsed with
standard buffer solution (SBS: 130 mM NaCl, 1.5 mM CaCl2,
5 mM KCl, 1.2 mM MgCl2, 8 mM glucose, 10 mM HEPES,
pH 7.4). For Zn2+ imaging, neurons were incubated in SBS
containing 1 µM FluoZin3-AM (Life Technologies) and 0.01%
(w/v) pluronic acid for 1 h. In some experiments, 25 nM
MitoTracker Red CMXRos or 1 µM LysoTracker Red DND-99
(Life Technologies) was also included. For characterization
of mitochondrial morphology, neurons were incubated with
100 nM MitoTracker Green FM (Life Technologies) at 37◦C
for 30 min. Neurons were rinsed with SBS and maintained
in 2 ml PBS before images were captured using an inverted
Zeiss LSM880 microscope with a 63× objective. For time-lapse
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FIGURE 2 | TRPM2 is critical in H2O2-induced increase in the [Zn2+]c in
hippocampal neurons. (A) Representative time-lapse confocal images
showing FluoZin3 (green) fluorescence in WT (top two panels) and TRPM2-KO
(bottom two panels) neurons before and after exposed to 300 µM H2O2 for
30 min. (B) Mean FluoZin3 fluorescence intensity under indicated conditions
from 9 to 11 independent experiments with a total of 40 neurons examined. All
values are normalized to the basal fluorescence level in matched experiments.
∗∗∗p < 0.005 indicates difference from the basal level and †p < 0.05 for
difference between WT and TRPM2-KO neurons treated with H2O2. NS, no
significant difference. (C) Representative confocal images showing
FluoZin3 fluorescence in WT neurons treated with 300 µM H2O2 for 30 min or
treated with 1 µM PJ34 or 10 µM 2-APB, 30 min prior to and during exposure
to H2O2. (D) Mean FluoZin3 fluorescence intensity in neurons under indicated
conditions, expressed relative to the fluorescence level in neurons exposed to
300 µM H2O2 alone, from four to five independent experiments with each
experiment examining 20–25 neurons. †p < 0.05 indicates difference from
neurons treated with H2O2 alone. Scale bar is 10 µm in (A,C).

confocal imaging, neurons in petri-dishes were mounted on
the scanning stage of confocal microscope and an area was
randomly chosen for recording for 30 min with images captured
every 5 min. ImageJ was used for analysis of the fluorescence
intensity.

Measurement of Production of
Mitochondrial ROS
Production of mitochondrial ROS (MitoROS) was determined
using MitoTracker Red CM-H2Xros according to the
manufacturer’s instructions (Life Technologies). Briefly,
after indicated treatments, neurons were incubated in culture
medium containing 100 nM MitoTracker Red CM-H2Xros for
30 min at 37◦C. Medium were replaced with PBS before images
were captured using an EVOSr Cell Imaging System. ImageJ
was used for analysis of the fluorescence intensity.

Data Presentation and Statistical Analysis
Neuronal death was presented by expressing the number of PI
positive cells as percentage of all cells identified by Hoechst
staining in the same areas. Co-localization of two fluorescence
signals was quantified by Pearson’s correlation coefficient as
detailed in a previous study (Dunn et al., 2011), with its value
varying between −1 and 1 that represent total negative and total
positive correlation, respectively. The mitochondria morphology

FIGURE 3 | TRPM2 is required in H2O2-induced lysosomal dysfunction,
cytosolic Zn2+ increase in hippocampal neurons. (A) Representative confocal
images showing FluoZin3 (green) and LysoTracker (red) in WT or TRPM2-KO
neurons under control (CTL) or treatment with 300 µM H2O2 for 30 min. Scale
bar is 10 µm. (B) Mean Pearson’s correlation coefficient from three
independent experiments with each experiment analyzing 12–18 neurons.
∗∗∗p < 0.005 indicates difference from control and †††p < 0.005 indicates
difference between WT and TRPM2-KO neurons treated with H2O2.

was characterized by computer-assisted analysis of the aspect
ratio (major axis/minor axis) and form factor (reciprocal of
circularity value), as described in previous studies (De Vos
et al., 2005; Koopman et al., 2005). Data are presented, where
appropriately, as mean ± SEM. Statistical significance analysis
was conducted using one-way ANOVA with post hoc Tukey’s
test, with significance at the level of p < 0.05.

RESULTS

TRPM2 Channel and Zn2+ Are Involved in
H2O2-Induced Hippocampal Neuronal
Death
Previous studies examining cortical, striatal and hippocampal
neuronal preparations demonstrated involvement of the
TRPM2 channel in ROS-induced neuronal death (Fonfria
et al., 2005; Kaneko et al., 2006; Verma et al., 2012),
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FIGURE 4 | TRPM2 channel plays a critical role in H2O2-induced
mitochondrial Zn2+ accumulation in hippocampal neurons. (A) Representative
confocal images showing FluoZin3 (green) and MitoTracker (red) in WT or
TRPM2-KO neurons under control (CTL) or treatment with 300 µM H2O2 for
30 min. Scale bar is 10 µm. (B) Mean Pearson’s correlation coefficient from
three independent experiments with each experiment analyzing 12–18
neurons. ∗∗∗p < 0.005 indicates difference from control, and
†††p < 0.005 indicates difference between WT and TRPM2-KO neurons
treated with H2O2.

but the exact contribution of TRPM2 channel in such
neuronal death was not well-defined. We therefore started
with examining neuronal death in hippocampal neurons
prepared from WT and TRPM2-KO mice, using PI staining.
Exposing neurons to H2O2 at 30–300 µM for 2–24 h
induced concentration- and duration-dependent neuronal
death in WT neurons (Figure 1A and Supplementary
Figure S1). H2O2-induced neuronal death was significantly
attenuated but not completely prevented by TRPM2-KO
(Figures 1B,C). Consistently with critical involvement of
PARP-1 in ROS-induced TRPM2 channel activation (Jiang
et al., 2010), treatment with PJ34, a PARP-1 inhibitor,
before and during exposure to H2O2 significantly attenuated
H2O2-induced neuronal death in WT neurons, but not in
TRPM2-KO neurons (Figures 1D,E and Supplementary
Figure S2). Taken together, these genetic and pharmacological
results provide unambiguous evidence to show that the
TRPM2 channel plays a significant but not exclusive role

in ROS-induced neuronal death. Removal of extracellular
Ca2+ reduced H2O2-induced neuronal death (Figure 1F),
suggesting TRPM2-mediated Ca2+ influx is involved in
neuronal death, as previously reported for H2O2-induced
cortical neuronal death (Kaneko et al., 2006). Furthermore,
H2O2-induced neuronal death was also markedly inhibited by
treatment with TPEN at 1 µM, which acts as a selective Zn2+

chelator, prior to and during exposure to H2O2 (Figure 1G),
indicating a critical role for Zn2+ in H2O2-induced neuronal
death.

TRPM2 Channel in H2O2-Induced Increase
in the [Zn2+]c and Lysosomal Dysfunction
To better understand the role of Zn2+ in H2O2-induced
neuronal death, particularly its relationships to the TRPM2
channel activation, we performed single live cell confocal
imaging using FluoZin3, a fluorescent Zn2+ indicator (Gee
et al., 2002) to examine the [Zn2+]c. There was a very low but
discernible level of free Zn2+ that was predominantly present
in puncta in untreated hippocampal neurons (Figures 2A,
3A), and exposure to H2O2 for 30 min induced a salient
increase in the [Zn2+]c in WT neurons, which was almost
completely absent in TRPM2-KO neurons (Figures 2A,B), as
reported in our recent study (Ye et al., 2014). Furthermore,
treatment with PJ34, or 2-APB, a TRPM2 channel blocker,
significantly reduced H2O2-induced increase in the [Zn2+]c
in WT neurons (Figures 2C,D). Treatments with these
agents did not significantly alter the Zn2+ puncta and
[Zn2+]c in TRPM2-KO neurons (Supplementary Figure S3).
These results strongly support that the TRPM2 channel
activation is required for H2O2-induced increase in the
[Zn2+]c.

To provide insights into TRPM2-dependent alteration in
the intracellular Zn2+ homeostasis, we carried out further
experiments using FluoZin3 in combination with intracellular
organelle specific fluorescence markers. In untreated neurons,
a majority of the Zn2+ puncta exhibited strong correlation
with LysoTracker, which was similar in WT and TRPM2-KO
neurons (Figures 3A,B), suggesting that they are primarily
located in lysosomes and not altered by TRPM2-KO. Exposure
of WT neurons to H2O2 induced substantial loss of LysoTracker
fluorescence in addition to an increase in the [Zn2+]c
(Figure 3A), suggesting lysosomal dysfunction. These effects
were largely ablated in TRPM2-KO neurons (Figures 3A,B),
indicating strong dependence of H2O2-induced lysosomal
dysfunction on the TRPM2 channel.

H2O2 Induces TRPM2-Dependent
Mitochondrial Zn2+ Accumulation,
Dysfunction and ROS Generation
By contrast with LysoTracker, there was little correlation
between the Zn2+ puncta and MitoTracker in WT and
TRPM2-KO neurons under control conditions (Figures 4A,B).
Exposure to H2O2 induced a noticeable increase in the
co-localization of FluoZin3 and MitoTracker fluorescence
(Figures 4A,B), suggesting mitochondrial Zn2+ accumulation.
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FIGURE 5 | TRPM2 channel has a critical role in H2O2-induced mitochondrial loss, mitochondrial fragmentation and cytochrome-c release in hippocampal neurons.
(A) Representative confocal images showing MitoTracker Green fluorescence in WT (top two panels) or TRPM2-KO (bottom two panels) neurons under control (CTL)
or treatment with 300 µM H2O2 for 30 min. (B) Mean MitoTracker Green fluorescent intensity in WT and TRPM2-KO neurons under indicated condition from
3 independent experiments with 10–12 neurons examined in each experiment. All values were normalized to control neurons in matched experiments.
∗∗∗p < 0.005 indicates difference from control. (C) Computer-assisted analyses of mitochondria morphology. Left, distribution of the factor and aspect ratio values of
mitochondria in neurons from 3 independent experiments with 10–12 neurons examined in each experiment. Blue triangles and red circles represent control neurons
and neurons treated with 300 µM H2O2 for 30 min, respectively. Right, mean values of the form factor (top) and aspect ratio (bottom). ∗∗∗p < 0.005 indicates
difference from control. (D) Immunofluorescent images showing cytochrome-c (Cyt-c) staining in WT (top panels) and TRPM2-KO (bottom panels) neurons under
indicated conditions. (E) Mean Cyt-c staining fluorescence intensity from three to four independent experiments with 15–25 neurons examined in each experiment.
The values were presented relative to control neurons in matched experiments. ∗p < 0.05 and ∗∗∗p < 0.005 indicate difference from control. Scale bar is 10 µm
in (A,D).

However, such mitochondrial Zn2+ accumulation was not
observed in TRPM2-KO neurons (Figures 4A,B). Exposure to
H2O2 resulted in a significant reduction in the MitoTracker
fluorescence intensity in WT neurons (Figures 5A,B), indicative
of mitochondrial dysfunction. In addition, mitochondria
exhibited the typical tubular morphology in untreated WT
neurons and became noticeably fragmented in neurons after
being exposed to H2O2 (Figure 5A). Such changes were more
clearly shown by quantitative analysis of the form factor and
aspect ratio (Figure 5C), two geometric parameters widely used
to characterize mitochondrial morphology (see ‘‘Materials and
Methods’’ section). Furthermore, H2O2 induced mitochondrial
release of cytochrome c (Cyt-c) that became accessible to
antibody labeling (Figures 5D,E). H2O2-induced reduction
in the MitoTracker fluorescence intensity, mitochondrial
fragmentation and Cyt-c release were almost completely
abrogated by TRPM2-KO (Figures 5A–E), demonstrating
critical dependence of H2O2-induced mitochondrial dysfunction
on the TRPM2 channel.

We finally examined whether mitochondrial Zn2+

accumulation stimulated production of mitochondrial
ROS in hippocampal neurons, using MitoTracker Red

CM-H2Xros (MitoROS), a fluorescent indicator of
mitochondrial ROS. Exposure to H2O2 resulted in a strong
increase in MitoROS fluorescence in WT neurons, indicating
production of mitochondrial ROS. Such production of
mitochondrial ROS was not observed in TRPM2-KO neurons
(Figures 6A,B) or in WT neurons after treatment with PJ34 or
2-APB (Figures 6C,D), supporting a critical role for the
TRPM2 channel activation in production of mitochondrial
ROS. Furthermore, H2O2-induced production of mitochondrial
ROS was also inhibited by treatment with TPEN, indicating a
causative relationship with mitochondrial Zn2+ accumulation
with production of mitochondrial ROS (Figures 6C,D). Taken
together, these results provide compelling evidence to show a
key role for the TRPM2 channel in H2O2-induced mitochondrial
Zn2+ accumulation that induces production of mitochondrial
ROS.

DISCUSSION

Here we provide evidence to show that a significant but not
exclusive role of the TRPM2 channel in ROS-induced neuronal
death and reveal TRPM2-dependent dynamic alterations in the

Frontiers in Molecular Neuroscience | www.frontiersin.org 6 December 2017 | Volume 10 | Article 414

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Li et al. Zn2+ in TRPM2-Dependent Neuronal Death

FIGURE 6 | TRPM2 channel is crucial for H2O2-induced production of mitochondrial reactive oxygen species (ROS) in hippocampal neurons. (A,C) Representative
fluorescence images showing MitoTracker Red CM-H2Xros (MitoROS) fluorescence in WT (left column) or TRPM2-KO (right column) neurons under control (CTL) and
treatment with 100 µM or 300 µM H2O2 for 2 h (A), or in WT neurons treated with 1 µM PJ34 or 1 µM TPEN, 30 min before and during exposure to 300 µM H2O2

(C). Scale bar is 100 µm. (B,D) Mean MitoROS fluorescence intensity from 3 to 5 independent experiments with 35–70 neurons examined in each experiment,
presented relative to the fluorescence level in control neurons in matched experiments. 2-APB was used at 100 µM. ∗p < 0.05 and ∗∗∗p < 0.005 indicate significant
difference from control. †††p < 0.005 indicates significant difference from neurons exposed to 300 µM H2O2 alone.

intracellular Zn2+ homeostasis, lysosomal and mitochondrial
functions that are important in ROS-induced neuronal death.

Previous studies using cortical, striatal and hippocampal
neurons (Fonfria et al., 2005; Kaneko et al., 2006; Verma
et al., 2012) support a role for the TRPM2 channel in H2O2-
induced neuronal death, but the exact contribution and the
underlying molecular mechanisms remained not well-defined.
Here we presented genetic and pharmacological results to
confirm the previous findings (Figure 1A and Supplementary
Figures S1, S2). More specifically, our results indicate that
the TRPM2 channel has a significant but not exclusive role
in mediating ROS-induced neuronal death. Furthermore, we
provide several lines of evidence to support that TRPM2-
dependent alteration in the intracellular Zn2+ homeostasis is
critical in ROS-induced hippocampal neuronal death. First
of all, H2O2-induced neuronal death was strongly inhibited
by TPEN at a concentration that specifically acts as a Zn2+

chelator (Figure 1F). Second, single live cell imaging showed
that exposure to H2O2 for 30 min evoked a prominent increase
in the [Zn2+]c (Figure 2) or alteration in the intracellular Zn2+

homeostasis in neurons (Figures 3, 4). Immunostaining showed
that such exposure to H2O2 resulted in no discernible effect
on the overall expression of TRPM2 protein, but appeared to
slightly change its subcellular location (Supplementary Figure
S4), and further study may help to clarify the implication of
such a change. It is well recognized that an increase in the
[Zn2+]c, as a result from extracellular Zn2+ influx or internal
Zn2+ release through Zn2+-specific transporters as well as
diverse Ca2+-transporting mechanisms, can induce neuronal
death (Colvin et al., 2003; Medvedeva et al., 2009; Sensi et al.,
2011; Shuttleworth and Weiss, 2011; Li et al., 2015). In the

present study, we demonstrated a critical role for the TRPM2
channel in ROS-induced increase in the [Zn2+]c (Figure 2 and
Supplementary Figure S3) or alteration in the intracellular Zn2+

homeostasis (Figures 3, 4). Finally, inhibition of such Zn2+

signaling significantly attenuated ROS-induced neuronal death
(Figure 1F). Considered that reperfusion stimulates generation
of excessive ROS (McCord, 1985; Kalyanaraman, 2013), the
findings from the present in vitro study, together with those
from our recent in vivo study (Ye et al., 2014), consistently
supports the notion that an alteration in the intracellular
Zn2+ homeostasis via activation of the TRPM2 channel
contributes to ROS-induced and reperfusion-related neuronal
death.

We showed in the present study that H2O2-induced
hippocampal neuronal death was also attenuated by removing
extracellular Ca2+ (Figure 1E), as reported in a previous
study for H2O2-induced cortical neuronal death (Kaneko et al.,
2006). These findings suggests TRPM2-mediated Ca2+ influx
is critical in determining H2O2-induced neuronal death. It
is well recognized that intracellular Ca2+ is important for
full activation of the TRPM2 channel by ADPR (Du et al.,
2009; Tóth and Csanády, 2010). Our recent study shows
functional expression of the TRPM2 channel on the cell
surface, particularly requirement of extracellular Ca2+ influx
for H2O2-induced increase in the [Zn2+]c in hippocampal
neurons (Ye et al., 2014). Thus, one explanation, which can
readily reconcile the role of the [Ca2+]c and [Zn2+]c in
ROS-induced neuronal death, is that TRPM2-mediated Ca2+

influx promotes further activation of the TRPM2 channel that
leads to TRPM2-dependent alteration in the intracellular Zn2+

homeostasis, as recently proposed by studies examining the role
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of TRPM2 channel in H2O2-induced pancreatic β-cell death
(Manna et al., 2015).

In the present study, we have provided new insights
into TRPM2-dependent alteration in the intracellular Zn2+

homeostasis leading to ROS-induced neuronal death. As
previously reported in cortical (Colvin et al., 2003) and
hippocampal neurons (Ye et al., 2014), the present study
revealed that hippocampal neurons under control conditions
contained a very low level of Zn2+ that was largely present
in puncta (Figure 2), and further demonstrated that a
majority of such Zn2+ puncta were strongly co-localized with
LysoTracker (Figures 3A,B), suggesting lysosomal localization.
Similar findings were described in insulin-secreting cells
(Manna et al., 2015). Moreover, H2O2-induced increase in
the [Zn2+]c in hippocampal neurons was accompanied with
lysosome dysfunction as evidenced by the massive reduction in
LysoTracker fluorescence intensity (Figure 3A). Genetic deletion
of the TRPM2 channel not only prevented H2O2-induced
increase in the [Zn2+]c (Figures 2A,B) but also H2O2-induced
lysosomal dysfunction (Figure 3A), leading us to propose that
lysosomal dysfunction is at least in part responsible for lysosomal
Zn2+ release to increase the [Zn2+]c. However, other Zn2+

release mechanisms and sources remain possible. For example,
the TRPM2 channel was shown to function as a lysosomal
Ca2+ release channel in insulin-secreting cells (Togashi et al.,
2006; Lange et al., 2009) and has been recently suggested
to mediate lysosomal Zn2+ release that is responsible for
ROS-induced increase in the [Zn2+]c and subsequent pancreatic-
β cell death (Manna et al., 2015). Further studies are required to
examine whether a similar mechanism operates in hippocampal
neurons. It is noteworthy to mention that increasing indirect
evidence supports a role for the TRPM2 channel in modulating
intracellular Zn2+ homeostasis (Ye et al., 2014; Manna et al.,
2015; Abuarab et al., 2017; Li et al., 2017). However, unlike
the Ca2+-permeability (Xia et al., 2008), it remains difficult
to demonstrate whether the TRPM2 channel is permeable to
Zn2+ because of the potent inhibition of TRPM2 channel by
micromolar concentrations of Zn2+ (Yang et al., 2011). There
is evidence that ROS induces Zn2+ release from cytosolic
Zn2+-binding proteins such as metallothioneins in hippocampal
neurons (Lee et al., 2003), which cannot be ruled out as a possible
source for H2O2-induced increase in the [Zn2+]c observed in the
present study.

In this study, we also provide evidence to suggest
that mitochondrial Zn2+ accumulation and ensuring
mitochondrial ROS generation are important in ROS-induced
hippocampal neuronal death. The Zn2+ puncta in untreated
neurons were poorly co-localized with MitoTracker, but
there was a considerable increase in the col-localization
between Zn2+ and MitoTracker in H2O2-treated neurons,
suggesting mitochondrial Zn2+ accumulation (Figure 4).
H2O2-induced Zn2+ translocation into mitochondria was
however not observed in TRPM2-KO neurons (Figure 4).
Furthermore, H2O2 induced mitochondrial dysfunction
(Figures 5A,B), mitochondrial fragmentation (Figures 5A,C)
and release of Cyt-c (Figures 5D,E). Similar Zn2+-induced
mitochondrial effects were previously reported in cortical

neurons (Jiang et al., 2001; Dineley et al., 2003; Sensi
et al., 2003, 2011; Medvedeva et al., 2009; Shuttleworth
and Weiss, 2011). Here we provide the first evidence to
show that these H2O2-induced mitochondrial effects in
hippocampal neurons were strongly dependent of the
TRPM2 channel (Figure 5). Of notice, a recent study
reports that genetic depletion of the TRPM2 expression
in human neuroblastoma SH-SY5Y cells led to an
increased mitochondrial ROS level as well as reduced cell
proliferation (Bao et al., 2016), although it was unclear
regarding the implication to ROS-induced cell death.
Nonetheless, another recent study shows that activation
of the TRPM2 channel mediates SH-SY5Y cell death
induced by H2O2 as well as 1-methyl-4-phenylpyridinium
ion (Sun et al., 2016). We found negligible production
of mitochondrial ROS in both WT and TRPM2-KO
neurons under control conditions (Figures 6A,B). However,
H2O2 induced substantial production of mitochondrial
ROS in hippocampal neurons that was prevented by
genetic deletion or pharmacological inhibition of the
TRPM2 channel (Figures 6A–C) as well as TPEN
(Figures 6C,D). These results strongly support mitochondrial
ROS generation as a sequela of mitochondrial Zn2+

accumulation.
In summary, this study shows that TRPM2-dependent

dynamic alteration in the intracellular Zn2+ homeostasis and
lysosomal and mitochondrial dysfunctions are important in
contributing to ROS-induced hippocampal neuronal death.
These novel insights should be useful in facilitating better
understanding ROS-induced neuronal death implicated in
ischemia-reperfusion brain damage.
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