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High-grade glioma, particularly, glioblastoma, is the most aggressive cancer of the
central nervous system (CNS) in adults. Due to its heterogeneous nature, glioblastoma
almost inevitably relapses after surgical resection and radio-/chemotherapy, and is
thus highly lethal and associated with a dismal prognosis. Identifying the cell of
origin has been considered an important aspect in understanding tumor heterogeneity,
thereby holding great promise in designing novel therapeutic strategies for glioblastoma.
Taking advantage of genetic lineage-tracing techniques, performed mainly on genetically
engineered mouse models (GEMMs), multiple cell types in the CNS have been
suggested as potential cells of origin for glioblastoma, among which adult neural stem
cells (NSCs) and oligodendrocyte precursor cells (OPCs) are the major candidates.
However, it remains highly debated whether these cell types are equally capable of
transforming in patients, given that in the human brain, some cell types divide so slowly,
therefore may never have a chance to transform. With the recent advances in studying
adult NSCs and OPCs, particularly from the perspective of comparative biology, we
now realize that notable differences exist among mammalian species. These differences
have critical impacts on shaping our understanding of the cell of origin of glioma in
humans. In this perspective, we update the current progress in this field and clarify
some misconceptions with inputs from important findings about the biology of adult
NSCs and OPCs. We propose to re-evaluate the cellular origin candidacy of these cells,
with an emphasis on comparative studies between animal models and humans.

Keywords: cell of origin, high-grade glioma, glioblastoma, adult neural stem cells (NSCs), oligodendrocyte
precursor cells (OPC), genetically engineered mouse models (GEMMs), lineage tracing

INTRODUCTION

Adult gliomas are the most common cancers of the central nervous system (CNS) (Louis, 2006;
Perry and Wesseling, 2016). Despite many years of efforts in both basic research and clinical
practice, the prognosis of malignant gliomas, particularly the most advanced one, glioblastoma
multiforme (GBM), remains dismal. This lack of progress is largely associated with high inter-
and intra-tumoral heterogeneity. Tumor tissues from not only different patients, but also from
the same ones, can be stratified into distinct morphopathological groups or molecular subtypes
(Verhaak et al., 2010; Snuderl et al., 2011; Brennan et al., 2013; Kim J. et al., 2015; Wang et al., 2016,
2017). Such heterogeneity is generally considered as the main reason for drug resistance and high
recurrence rate during treatment.
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A cell of origin is the normal progenitor from which all the
neoplastic cells of a given type of cancer develop (Visvader,
2011; Chaffer and Weinberg, 2015). Identification of the cell of
origin can give critical insights into the principles dictating tumor
heterogeneity, therefore holding great promise in understanding
the cancer etiology, and facilitating the design of effective
therapeutic strategies. In this Perspective, we review the current
progress in the research of the cell of origin of glioma. Together
with new findings in NSCs and OPCs from both rodents
and large-brained mammals including humans, we propose to
carefully re-evaluate the candidacy of several popular cell types
that have been believed as the potential cells of origin of glioma
in humans.

CNS CELL TYPES RELEVANT TO
GLIOMA ETIOLOGY: THEIR LINEAGE
RELATIONSHIP AND SOME IMPORTANT
UPDATES

Knowing the properties of neural cell types and their lineage
relationship will help understanding their potential contributions
to the etiology of human glioma. Neural cells in the adult
CNS are grossly classified as neurons, astrocytes, oligodendrocyte
precursor cells (OPCs), and oligodendrocytes. In addition to
these lineage-committed progenitor and mature cells, specialized
stem cells, termed adult neural stem cells (NSCs) exist within
restricted regions such as the subventricular zone (SVZ) next
to the lateral ventricle, and the subgranular zone (SGZ) of the
hippocampus (Ming and Song, 2011), in the adult brain. Both
SVZ adult NSCs and OPCs have been implicated as the major
candidates for glioma cell of origin, therefore, deserving a little
more discussion.

Adult Neural Stem Cells (NSCs)
Adult NSCs (also termed B1 cells), which were best studied in
rodents, have been generally believed to be able to persistently
self-renew, and give rise to multiple neuronal and glial cell
types (Alvarez-Buylla et al., 2001). Recent progresses in NSC
biology, however, may suggest a quite different scenario.
By using a temporal Histone 2B-EGFP marking system or
barcoded retroviral labeling-based clonal analysis, two groups
independently reported that postnatal B1 cells are derived from
embryonic NSCs that divide during mid-fetal development and
then remain quiescent until they reactivate, thus generating
progeny in the postnatal brain (Fuentealba et al., 2015;
Furutachi et al., 2015). Surprisingly, clonal analysis unraveled
that postnatally, a single B1 cell neither divides repeatedly to
produce generations of olfactory bulb (OB) neurons, nor gives
rise to cortical glial cells and OB neurons simultaneously, raising
an interesting possibility that adult NSCs may not systematically
self-renew (Fuentealba et al., 2015) (see also Figure 1A).
Therefore, although adult NSCs exhibit remarkable self-renewal
potential and differentiation plasticity in culture (Doetsch et al.,
1999; Codega et al., 2014), it remains highly debated whether, in
the brain, they conform to the hardwired definition of tissue stem

cells, as seen in the case of hematopoietic or intestinal stem cells
(Batlle and Clevers, 2017).

Oligodendrocyte Precursor Cells (OPCs)
Oligodendrocyte precursor cells were initially thought to
function solely as transient forms of glial progenitors, to generate
mature oligodendrocytes. Nevertheless, recent studies show that
even though some OPCs indeed differentiate, many of them
retain the ability to self-renew (Nishiyama et al., 2009; Vigano
and Dimou, 2016) (see also Figure 1A). By using a sensitive
DNA-labeling approach to mark cells undergoing proliferation,
Yeung et al. (2014) showed that all OPCs in the adult mouse brain
were dividing. Strikingly, Garcia-Marques et al. (2014 observed
that at the clonal level, a single OPC could give rise to up
to 400 cells in the adult mouse brain, therefore unequivocally
demonstrating that OPCs are a bona fide self-renewable cell
population in vivo. Given that OPCs make up 5–10% of all
cells in the brain (Dawson et al., 2003), using the absolute
number as the criteria, OPCs should be viewed as the largest
proliferation pool in the mammalian brain. In addition to self-
renewal, OPCs have been reported to exhibit some lineage
plasticity. Despite being a matter of intensive debate, OPCs were
shown to be able to differentiate into astrocytes and/or neurons
in vivo (Rivers et al., 2008; Zhu et al., 2008, 2011; Richardson
et al., 2011), and can be reprogrammed into the NSC-like status
in vitro (Kondo and Raff, 2000), thus resembling NSCs in ways
stronger than those previously considered (Richardson et al.,
2011).

THE RESEARCH PROGRESS OF
GLIOMA CELLULAR ORIGINS

NSCs as the Cell of Origin: Evidence and
Concerns
Adult NSCs have been widely viewed as the most possible cell
of origin for high-grade glioma, given their prominent property
to self-renew, and the remarkable plasticity to differentiate into
multiple neural cell types (Doetsch et al., 1999; Alvarez-Buylla
et al., 2001; Stiles and Rowitch, 2008). In addition, cancer stem
cells (CSCs) isolated from human GBMs share many markers
normally expressed by NSCs (such as Nestin, GFAP, CD133,
and Sox2), and are able to form renewable NSC-like spheres in
culture (Singh et al., 2004; Bao et al., 2006). Furthermore, mouse
and human NSCs can be transformed in vitro; they gain the
capacity to develop into gliomas after implantation into host mice
(Bachoo et al., 2002; Duan et al., 2015). Importantly, delivery
of DNA or viral vehicles into the embryonic, neonatal, or adult
SVZ (the brain structure where NSCs reside) to introduce over-
expression of oncogenes and/or knockout/knockdown of tumor
suppressor genes could efficiently generate high-grade glioma
in mice (Alcantara Llaguno et al., 2009; Marumoto et al., 2009;
Breunig et al., 2015; Zuckermann et al., 2015). Intriguingly,
human glioblastomas were frequently diagnosed next to the SVZ,
further supporting the possibility that they originated from NSCs
(Barami et al., 2009). More direct evidence was obtained from
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FIGURE 1 | Recent progress in the biology of neural stem cells (NSCs) and oligodendrocyte precursor cells (OPCs) provides new insights into their candidacy as the
cell of origin for human glioblastoma. (A) Classical (left) and the updated (right) view of the NSC behavior in the brain. In the classical view, it was believed that a
single NSC can repeatedly self-renew for many generations and give rise to new NSCs; at the same time, it possesses the potential to differentiate into neurons,
astrocyte and OPCs. OPCs can further differentiate into mature oligodendrocytes. Recent studies using mouse models suggest that adult B1 cells (adult form of
NSCs) are derived from eNSCs that actively proliferate at ∼E14.5. These embryonic NSCs remain quiescent until they are reactivated at the adult stage. Though as a
whole population, adult NSCs continuously proliferate and give rise to olfactory bulb (OB) neurons and glial cells, they are extremely heterogeneous at the single cell
level. Clonal analysis revealed that a single adult NSC can either give rise to OB neurons or glial cells (such as astrocytes and oligodendrocytes), but rarely to both cell
types. Furthermore, many, if not all, adult NSCs cannot bud off OB neurons and simultaneously self-renew, raising the question of whether adult NSCs conform to
the hardwired definition of self-renewable tissue stem cells (Fuentealba et al., 2015; Furutachi et al., 2015). On the other hand, despite OPCs originally being derived
from NSCs during early development, and adult NSCs contributing to the OPC pool to some extent, in the normal brain, most adult OPCs are generated from the
locally resident OPCs. Clonal analysis further revealed that adult OPCs can self-renew continuously (Garcia-Marques et al., 2014; Yeung et al., 2014). (B) Neurogenic
and proliferative activities of SVZ NSCs in rodent, dog, human, and dolphin. Please note that neurogenic activity disappears in human at ∼18 months, and is
completely absent in dolphin postnatally; however, both species can suffer from GBM at adulthood. Kindly refer to the main text for further details.

the lineage-tracing experiment by using genetically engineered
mouse models (GEMMs). Taking advantage of NSC-specific
genetic tools such as hGFAP-Cre, Nestin-Cre, or Nestin-CreER,
Parada and his colleagues showed that mouse NSCs are capable
of transforming into high-grade gliomas after the loss of Trp53,
NF1 and/or PTEN (Zhu et al., 2005; Chen et al., 2012; Alcantara
Llaguno et al., 2015).

While these multiple lines of evidence demonstrate that NSCs
are capable of transforming into malignancy, several important
issues should be understood. Firstly, as already mentioned,
recent findings about NSC biology challenges the concept that
a single SVZ aNSC can repeatedly self-renew, therefore greatly
decreasing the possibility for an aNSC to accumulate mutations,
as previously assumed. Secondly, the stem cell feature of CSCs
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need not necessarily be inherited from tissue stem cells; it can also
be regained through the de-differentiation of lineage-committed
progenitors or mature cells (Batlle and Clevers, 2017). Thirdly,
many claimed that NSC cellular markers are not specific to
NSCs. For example, the most widely used NSC marker Nestin, an
intermediate filament protein expressed in radial glia and adult
B1 cells, is prominently expressed in reactive astrocytes (Ernst
and Christie, 2006). Although partial overlaps between brain
tumor locations and the NSC niche is a good argument to support
the fact that gliomas originate from adult NSCs in patients, a
recent work revealed that the SVZ may merely function as a
niche toward which glioma cells prefer to migrate (Qin et al.,
2017).

An additional dimension of complexity comes from the nature
of NSCs per se. As NSCs can readily differentiate into fate-
committed precursors such as OPCs or mature astrocytes, it is
unclear whether NSCs, after acquiring initial mutations, directly
transform, or they must proceed through the status of lineage-
committed cell types prior to the final transformation. In fact,
by using a single-cell resolution genetic mouse model termed
mosaic analysis with double markers (MADM), we have shown
that introducing p53 and NF1 mutations into NSCs did not
evidently change the proliferation rate of pre-cancerous adult
NSCs, but drastically promoted the over-expansion of descendant
OPCs, arguing against a direct transformation of NSCs, at
least in the context of this mutation combination (Liu et al.,
2011).

OPCs as the Cell of Origin: Evidence and
Some Updates
Oligodendrocyte precursor cells have been proposed as an
important cell of origin for glioma since they were first
identified. As already mentioned, OPCs represent the largest
proliferation pool in the brain, and exhibit remarkable self-
renewal capacity both in vitro and in vivo, and are therefore
suitable, as cells of origin, to accumulate genetic mutations.
In fact, NG2, one of the most commonly used OPC cell
marker, was initially isolated from a rat glioma model (Stallcup,
1981). In addition to NG2, we and others showed that many
cellular markers typically expressed in OPCs, such as Olig2,
PDGFRa, and O4, were also expressed in most, if not all,
human malignant gliomas (Shoshan et al., 1999; Ligon et al.,
2004, 2007; Rebetz et al., 2008; Ledur et al., 2016; Shao et al.,
2017). Furthermore, over-expression of the oncogenic form of
EGFR (EGFRvIII) under the promoter S100b, a non-stem cell
marker (Raponi et al., 2007), induced gliomas recapitulating
the pathological features of human oligodendroglioma (Weiss
et al., 2003; Persson et al., 2010). Moreover, overexpression
of PDGF-BB alone, or when combined with p53 and Pten
deactivation, was shown to be able to effectively transform
rat and mouse OPCs into lower-grade oligodendrogliomas or
high-grade gliomas (Assanah et al., 2006; Lindberg et al., 2009;
Lei et al., 2011; Lu et al., 2016). More direct evidence to
support the OPC-origin of high-grade gliomas comes from fate-
mapping experiments. By using OPC-specific NG2-Cre or NG2-
CreERT transgenic mouse lines, we and others have provided
convincing evidence that OPCs, after acquiring Trp53 and

NF1 mutations, can be directly transformed into malignant
gliomas resembling the proneural subtype of GBM, whenever
the mutations were introduced in early or adult stage (Liu
et al., 2011; Galvao et al., 2014; Alcantara Llaguno et al.,
2015).

The data from our group show that OPC-like tumor
cells are universally present in all human malignant gliomas,
and share remarkable similarities in many aspects with their
counterparts found in mouse genetic models, in which OPCs
are the defined cells of origin (Ledur et al., 2016; Shao et al.,
2017). These lines of evidence collectively lead to a reasonable
assumption that OPCs are important glioma cells of origin in
patients.

Mature Astrocytes and Neurons as the
Cells of Origin: An Unsettled Issue
Whether mature astrocytes and/or neurons are able to directly
transform remains highly debated. Chow et al. (2011) utilized
GFAP-CreER to introduce Trp53, Pten and/or Rb1 mutations
into astrocytes and induced high-grade astrocytomas in
adult mice. Also using GFAP-CreER, Vitucci et al. (2017)
observed that murine astrocytes could transform into high-
grade glioma mimicking human mesenchymal, proneural,
and neural GBMs. By using Cre-activatable lentiviral vehicles
that encoded shRNA against Trp53 and NF1, Friedmann-
Morvinski et al. (2012) reported high incidence of GBMs when
they transfected such lentiviral particles into the brains of
hGFAP-Cre, Synapsin I-Cre or CamK2a-Cre transgenic mice.
Therefore, the authors claimed that both mature astrocytes and
neurons can function as the cells of origin for GBMs through
dedifferentiation. Nevertheless, as most claimed astrocyte-
specific markers such as GFAP are also expressed in NSCs
(Chaker et al., 2016), and those for neurons like Synapsin-1
are also expressed in OPCs [(Cahoy et al., 2008; Zhang et al.,
2014) and personal observations], further validation is necessary
to exclude the possibility of targeting NSCs and/or OPCs
when attempting to manipulate mature astrocytes or neurons.
Highly specific genetic tools are warranted to clarify this
fundamental issue.

HUMAN RELEVANCE: NEW DATA AND
THE INSIGHT FROM COMPARATIVE
STUDIES

Most of our current knowledge on glioma cell of origin was
derived from the observations on animal models, mostly GEMM-
based cancer models. One fundamental question we must
confront is that how much of the landscape depicted thus far
can be directly extrapolated to human cases. Despite the overall
anatomical structures and developmental principles of the CNS
being highly conserved among mammals, notable differences,
particularly in the properties of adult NSCs, do exist among
species. Recognizing these differences has important impacts
on shaping our understandings of the glioma cell of origin in
humans.
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Adult NSCs May Not Be a Major Player in
the Pathogenesis of Glioblastoma in
Human or Other Large-Brained Animals
Unlike in rodents, where NSCs and neural progenitors proliferate
continuously to form new neurons, in large-brained mammals,
such as humans, SVZ neurogenesis declines drastically during
postnatal life (Lipp and Bonfanti, 2016; Paredes et al., 2016), and
fully disappears at around 18 months (Sanai et al., 2011), long
before high-grade gliomas are diagnosed. Consistent with this
observation, by measuring the turnover rate of nuclear bomb
test-derived 14C in genomic DNA, Bergmann et al. (2012, 2015)
showed that there is virtually no postnatal neurogenesis in the
human OB.

Direct evidence to support a lack of marked levels of
neurogenesis or self-renewal of NSCs in the adult human SVZ
comes from immunohistological studies, where proliferative cells
were rarely found in the SVZ in adults (Wang et al., 2011;
Dennis et al., 2016). Furthermore, the density of dividing cells
in the SVZ is comparable to or even lower than that in other
regions such as the corpus callosum (Shao et al. personal
observations). Despite the suggestion that certain pathological
conditions such as ischemic stroke may activate NSCs in the adult
human brain (Jin et al., 2006; Marti-Fabregas et al., 2010), this
conclusion was disproved by the 14C turnover assay (Huttner
et al., 2014). Regardless the potential of adult NSCs to be
activated in vivo after injury, no definitive evidence yet shows an
association of human glioma pathogenesis with any pathological
lesions.

Comparative studies between species provide deeper insights
into questioning the relevance of adult NSCs in glioma
pathogenesis (as summarized in Figure 1B). Unlike humans,
but quite similar to rodents, dogs possess SVZ neurogenesis
that persists into adulthood (Malik et al., 2012). Therefore, one
may expect a much higher incidence of gliomagenesis in dogs,
if adult NSCs indeed play critical roles in initiating glioma.
Contrary to this speculation, epidemiological studies suggest
that the incidence of spontaneous brain tumors in dogs is
remarkably similar to that in humans, i.e., approximately 20 in
100,000 per year (Dobson et al., 2002; Hicks et al., 2017). On
the other hand, aquatic mammals such as dolphins, which lack
a functional periventricular germinal layer postnatally and any
detectable dividing cells within the SVZ (Parolisi et al., 2017),
can surely suffer from glioblastoma (Diaz-Delgado et al., 2015).
These findings, together with those in rodent NSCs, contradict
the argument that adult NSCs play major roles in initiating
gliomagenesis.

Adult OPCs May Function as an
Important Cell of Origin with Strong
Human Relevance
Unlike the great variations of cellular behaviors of adult NSCs,
the renewal capacity of OPCs are largely conserved across
species. For instance, immunohistological studies show that,
although sparse, OPCs are the major cycling cells in the adult
human brain (Geha et al., 2010). In line with this observation,
14C data revealed that gray matter oligodendrocytes do not

reach a plateau until the fourth decade of life, even after
which the annual turnover remains as high as 2.5% (Yeung
et al., 2014). These results in collection clearly demonstrate
that OPCs undergo substantial renewal in the adult human
brain.

Interestingly, the proliferation rate of OPCs are significantly
elevated in epileptic patients (Geha et al., 2010). As epilepsies
are frequently associated with glioma patients (Iuchi et al., 2015;
Englot et al., 2016), these observations raise an intriguing
possibility that aberrant neuronal activity may directly
contribute to OPC self-renewals and, most likely, to oncogenic
transformation. This hypothesis has been recently substantiated
by showing that artificially enhancing the neuronal activity in
GEMMs through optogenetic approaches can stimulate the
proliferation of normal resident OPCs and engrafted human
GBM cells (Gibson et al., 2014; Venkatesh et al., 2015).

Therefore, although comprehensive studies are warranted to
systematically characterize the relative proliferating capacities of
OPCs and NSCs/NPCs in the adult human brain in situ, given
that OPCs retain a relatively decent level of self-renewal activity,
and significantly outnumber NSCs in the adult human brain,
they remain a highly probable candidate for the cell of origin of
human GBMs.

THE RELATIONSHIP BETWEEN CELL(s)
OF ORIGIN AND CANCER STEM CELLS
(CSCs)

It should be noted that the “CSC” is a functional definition
that can only be assessed by the capacity of a cancer cell to
initiate new tumors. Some studies identified CSCs from the
NSC-derived GBM mouse models and showed that these NSC-
derived CSCs resemble normal NSCs in certain ways such
as the expression of Nestin (Zheng et al., 2008; Alcantara
Llaguno et al., 2009; Chen et al., 2012). However, the cells
functioning as CSCs may not have to be derived and/or
resemble normal NSCs. By using S100b- promoter-driven
EGFRViii transgene, Persson et al. (2010) clearly showed that
oligodendroglioma can be initiated from non NSCs, and the
CSCs in this model can be identified and isolated based on
their expression of NG2 (CSPG4), an OPC marker. We showed
that CSCs derived from OPC-originated HGGs expressed NG2
as well as other OPC markers (such as PDGFRa and Olig2)
and that the OPC feature is essential for the maintenance of
the stemness of these CSCs (Liu et al., 2011; Ledur et al.,
2016). Interestingly, OPC-originated CSCs gained the capacity
to form spheres and to express Nestin. This latter observation
implicates that Nestin is a marker for the stemness but not
the cell identity in this particular case. In the human cases,
NG2 have been used to enrich CSCs from oligodendrogliomas
(Persson et al., 2010) and at least some GBMs (Persson et al.,
2010; Al-Mayhani et al., 2011). Our own study showed that
human primary GBM cell lines maintained under culture
conditions that favor the enrichment of OPC-like tumor cells
have enhanced malignancy (Ledur et al., 2016). In addition
to OPCs, Schmid et al. (2016) provided the evidence that
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TABLE 1 | Pathological features and molecular signatures of currently reported GEMMs for gliomas.

Putative cell
of origin

Mutations Approach Molecular subtype Pathology Reference

NSC Ras, Akt RCAS/tv-a system NA GBM Holland et al., 2000

Ink4a, Arf, EGFR Retrovirus NA High-grade gliomas Bachoo et al., 2002

H-Ras, AKT Lentivirus + GFAP-Cre
mice

NA GBM Marumoto et al., 2009

Trp53, Nf1, and/or Pten Adenovirus +
Nestin-CreER

NA A Alcantara Llaguno
et al., 2009

PTEN, Trp53 Adenovirus-Cre NA High-grade gliomas Jacques et al., 2010

Ras; Erbb2; Pdgfra Plasmid DNA +
Electroporation

Proneural, Neural,
Mesenchymal

AA, AO, AOA, GBM Breunig et al., 2015

Trp53, Pten, Nf1 CRISPR/Cas9 +
Electroporation

NA GBM Zuckermann et al.,
2015

Trp53, NF1 hGFAP-Cre NA A, AA, GBM Zhu et al., 2005

Trp53, Pten hGFAP-Cre NA Malignant gliomas Zheng et al., 2008

Nf1, Trp53, Pten hGFAP-Cre NA Malignant gliomas Chen et al., 2012

K-Ras BLBP-Cre NA Gliomatosis Munoz et al., 2013

Trp53, Nf1, and/or Pten Nestin-CreER NA GBM Alcantara Llaguno
et al., 2015

OPC PDGF Retrovirus NA GBM Assanah et al., 2006

PDGF-B RCAS/tv-a system NA O Lindberg et al., 2009

Pten, Trp53 Retrovirus +
PDGF-IRES-Cre

Proneural GBM Lei et al., 2011

TAZ, PDGFB RCAS/N-tva system Mesenchymal Gliomas Bhat et al., 2011

NF1, PDGFA RCAS/tv-a system Mesenchymal GBM Ozawa et al., 2014

PDGFB RCAS/tv-a system Mesenchymal GBM Ozawa et al., 2014

Arf RCAS/tv-a system NA A Lindberg et al., 2014

Ink4a, Arf RCAS/tv-a system NA A Lindberg et al., 2014

Arf, PDGF-B RCAS/tv-a system NA O Lindberg et al., 2014

Ink4a, Arf, PDGF-B RCAS/tv-a system NA O Lindberg et al., 2014

Pten, Trp53 Retrovirus +
PDGFB-IRES-Cre

Proneural GBM Lu et al., 2016

Pten, Trp53, Olig2 Retrovirus +
PDGFB-IRES-Cre

Classical GBM Lu et al., 2016

Trp53 S100β-v-erbB NA O Weiss et al., 2003

ink/arf S100β-v-erbB NA AO Weiss et al., 2003

Trp53 S100β-v-erbB OPC like O, GBM Persson et al., 2010

Trp53, NF1 NG2-Cre Proneural Malignant gliomas Liu et al., 2011

Trp53, NF1 NG2-CreER Proneural Malignant gliomas Galvao et al., 2014

Trp53, Nf1, and/or Pten NG2-CreER NA Malignant gliomas Alcantara Llaguno
et al., 2015

Astrocyte Ink4a, Arf, EGFR Retrovirus NA High-grade gliomas Bachoo et al., 2002

Trp53, NF1 Lentivirus + GFAP-Cre
mice

Mesenchymal GBM Friedmann-Morvinski
et al., 2012

Trp53, Pten GFAP-CreER Proneural, Neural,
Mesenchymal

AA, GBM Chow et al., 2011

Trp53, Pten, Rb1 GFAP-CreER Proneural, Neural,
Mesenchymal

AA, AOA, GBM Chow et al., 2011

TgGZT121, KrasG12D, Pten GFAP-CreER Mesenchymal, Proneural,
Neural

GBM Vitucci et al., 2017

Neuron Trp53, NF1 Lentivirus + Synapsin I-Cre
or CamK2a-Cre mice

Mesenchymal Malignant gliomas Friedmann-Morvinski
et al., 2012

A, astrocytoma; O, oligodendroglioma; AA, anaplastic astrocytoma; AO, anaplastic oligodendroglioma; AOA, anaplastic oligoastrocytoma; GBM, glioblastoma multiforme.

mature astrocytes could dedifferentiate into glioma CSCs upon
transformation. Therefore, CSCs in gliomas can definitely be
developed from the non-CSC cell types. The detailed lineage

relationship between NSCs, lineage-committed progenitors,
mature cells and CSCs remains to be fully elucidated in the future
studies.

Frontiers in Molecular Neuroscience | www.frontiersin.org 6 February 2018 | Volume 11 | Article 48

https://www.frontiersin.org/journals/molecular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-11-00048 February 19, 2018 Time: 14:51 # 7

Shao and Liu Glioma Cell of Origin Revisited

THE RELATIONSHIP BETWEEN CELLS
OF ORIGIN, TUMOR SUBTYPES AND
HETEROGENEITY

Cumulative evidence suggests that the same cell of origin can
give rise to the GBMs manifesting different molecular features
and that distinct types of cells of origin can evolve in parallel to
give rise to tumors resembling similar molecular features (see also
Table 1).

For instance, OPCs have been previously considered to mainly
give rise to oligodendrogliomas and proneural subtype of GBMs
(Weiss et al., 2003; Lei et al., 2011; Liu et al., 2011; Galvao
et al., 2014). However, recent studies demonstrate that they can
also serve as the cell of origin for astrocytoma (Lindberg et al.,
2014) and other subtypes of GBMs, depending on the mutations
initially introduced (Carro et al., 2009; Bhat et al., 2011, 2013;
Lu et al., 2016). In particular, removal of Olig2 switches OPC-
derived proneural subtype of GBMs into the classical subtype.
Over-expression of TAZ or suppression of NF1, instead, readily
induces OPC-derived GBMs into the mesenchymal subtype (Bhat
et al., 2011; Ozawa et al., 2014). Similar observations were also
obtained in astrocyte-originated GBMs, where the same GEMM
can give rise to tumors with highly heterogeneous profiles (Chow
et al., 2011; Schmid et al., 2016).

Importantly, the evolution routes of a defined cell of origin
may also affect the molecular features of brain tumors. The
recurrent GBMs from the same patients frequently switched
their molecular features when compared to their primary tumor
counterparts (Kim H. et al., 2015; Kim J. et al., 2015; Wang
et al., 2016). Therefore, the molecular signature of a particular
transformed tumor may not always reliably predict its cell of
origin.

FUTURE PERSPECTIVES

Owing to genetic lineage tracing techniques and other advanced
biological methods, tremendous progress has been made in

understanding the glioma cell of origin during the past decade.
Now, a consensus has been made that several important cell
types, particularly NSCs and OPCs, are capable of transforming
at least in GEMMs. However, many fundamental questions
remain unanswered. For instance, is there a universal cell type
functioning as the cell of origin for all gliomas in humans? Or
alternatively, do different cell types give rise to gliomas with
distinct pathological identities? Can different mutations drive the
same cell of origin to follow the same or distinct routes toward
the final transformation? When exactly do human gliomas form?
GEMMs will surely continue to serve as the most important tools
to address these fundamental questions. Nevertheless, we should
be aware of the difference between GEMMs and patients. Newer
methods and the concept of comparative pathology could help
us identify what really initiates this devastating form of cancer in
humans.
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