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Orexins, also known as hypocretins, are two neuropeptides secreted from orexin-
containing neurons, mainly in the lateral hypothalamus (LH). Orexins orchestrate
their effects by binding and activating two G-protein–coupled receptors (GPCRs),
orexin receptor type 1 (OX1R) and type 2 (OX2R). Orexin/receptor pathways play
vital regulatory roles in many physiological processes, especially feeding behavior,
sleep–wake rhythm, reward and addiction and energy balance. Furthermore several
reports showed that orexin/receptor pathways are involved in pathological processes of
neurological diseases such as narcolepsy, depression, ischemic stroke, drug addiction
and Alzheimer’s disease (AD). This review article summarizes the expression patterns,
physiological functions and potential molecular mechanisms of the orexin/receptor
system in neurological diseases, providing an overall framework for considering these
pathways from the standpoints of basic research and clinical treatment of neurological
diseases.
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INTRODUCTION

The orexins, also known as hypocretins, are a pair of neuropeptides that are mainly derived
from orexin-containing neurons in the lateral hypothalamus (LH). Orexin-A (OA; hypocretin-1)
and orexin-B (OB; hypocretin-2) are closely related small peptides that are widely distributed
throughout the central and peripheral nervous systems (de Lecea et al., 1998; Sakurai et al., 1998).
Orexins stimulate food intake upon intracerebroventricular administration, and were originally
described as regulators of feeding behavior (Yamanaka et al., 1999). Subsequent experiments
revealed many other important physiological functions of these peptides, including regulation
of the sleep–wake cycle (de Lecea and Sutcliffe, 2005; Chow and Cao, 2016), energy homeostasis
(Tsuneki et al., 2012), neuroendocrine functions (Inutsuka and Yamanaka, 2013), glucose
metabolism (Tsuneki et al., 2016), stress-adaptive responses (Xiao et al., 2013) and reward-seeking
and drug addiction (Aston-Jones et al., 2010).

Orexins bind their cognate G-protein–coupled receptors (GPCRs), orexin receptor type 1
(OX1R, also named as Hcrtr-1) and type 2 (OX2R, or Hcrtr-2), which activate different
downstream signal pathways, thereby exerting a variety of physiological functions (Sakurai
et al., 1998). Orexin and orexin receptors are ectopically expressed in many diseases (Perez
et al., 2015; Imperatore et al., 2017), especially neurological disorders (Feng et al., 2014;
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Liguori et al., 2014), suggesting that the orexin/receptor
pathway plays critical roles in the pathology and pathogenesis
of these illnesses. In this review article, we focus on the
expression levels and physiological functions of orexins
and their receptors. In addition, we discuss the potential
contributions of the orexin/receptor pathway in neurological
diseases such as narcolepsy, drug addiction, depression,
ischemic stroke, and Alzheimer’s disease (AD). Together,
these discussions summarize our current knowledge of
the orexin/receptor system and the prospects for applying
this information to the clinical treatment of neurological
diseases.

OREXIN STRUCTURE

In 1998, two experimental groups nearly simultaneously
discovered a pair of new neuropeptides in the LH and adjacent
areas of rat brain. One group (de Lecea et al., 1998) used
DNA subtractive hybridization, whereas the other used a
high-performance liquid chromatography (HPLC) approach
(de Lecea et al., 1998; Sakurai et al., 1998). de Lecea et al.
(1998) named the peptides hypocretin-1 and hypocretin-2,
respectively, because they are expressed specifically in the
posterior hypothalamus. On the other hand, Sakurai et al.
(1998) called them OA and OB after the Greek word for
‘‘appetite.’’

The structure of the orexin gene, which consists of two
exons and one intron, is conserved in all vertebrates. The
genomic DNA sequence encoding human orexin contains
1432 base pairs (bp). The first exon includes the 5’ untranslated
region (UTR) and the first seven amino acids (aa) of the
signal peptide, and the second exon contains the remainder
of the open reading frame (ORF) and the 3’ UTR. The
mRNA sequences of human orexin contain 616 bases, encoding
a precursor peptide (prepro-orexin) that contains 131 aa
residues. The first 33 aa of prepro-orexin constitute the signal
peptide, which is followed by 33 and 28 aa in OA and OB,
respectively, which share 46% (13/28) amino acid identity
(Sakurai et al., 1998; Alvarez and Sutcliffe, 2002). The molecular
structures of the orexin precursor and orexin are shown in
(Figure 1).

The molecular masses of OA and OB are 3562 Dopamine
(DA) and 2937 Da, respectively. OA contains four Cys residues
that form two intrachain disulfide bonds (Figure 1C). The OA
sequences of human, mouse, rat and cow are identical, and
the high level of conservation predicts that OA has important
physiological functions (Wong et al., 2011). The mouse and
rat OB sequences are also identical, whereas human OB differs
from the rodent peptide at two positions (Figure 2). A serine
residue at the second position in the human peptide is replaced
by a proline in cow and dog. In addition, the serine at
the 18th position is replaced by asparagine in rat, mouse
and pig.

FIGURE 1 | Molecular structures of orexin precursor and orexins. (A) Genomic DNA of human prepro-orexin containing two exons and one intron. (B) The mRNA of
human orexin, including the 5’ untranslated region (UTR), signal peptide, open reading frame (ORF) encoding orexin-A (OA) or orexin-B (OB), and 3’ UTR. (C) Amino
acid sequences of OA (33 aa) and OB (28 aa). Green labels indicate amino acids that are identical in both OA and OB.
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FIGURE 2 | Amino acid sequences of OA and OB in different species. (A) The amino acid sequences of OA are identical in human, rat, mouse, bovine and pig. (B)
The amino acid sequences of OB are highly conserved in human, rat, mouse, bovine and dog. Different colors indicate amino acids of OB that differ among species.

OREXIN RECEPTORS

OA and OB orchestrate their diverse effects by binding and
activating two GPCRs, OX1R and OX2R. The mRNAs of human
OX1R and OX2R are 1564 and 1843 bp in length, respectively,
and are translated into proteins of 425 and 444 aa. OX1R and
OX2R share 64% amino acid identity. Rat OX1R and OX2R
mRNAs are 2469 and 3114 bp in length, respectively, and encode
proteins of 413 and 460 aa. Human and rat OX1R and OX2R
share 94% and 95% identity, indicating that the orexin receptor
is highly conserved among mammals.

The original reports describing the orexin receptors revealed
that OA and OB bind the receptor subtypes with different
affinities (Voisin et al., 2003). OA preferentially binds OX1R,
with 5–100-fold greater affinity than OB, whereas both OA and
OB have similar affinities for OX2R, a less selective receptor
(Sakurai et al., 1998; Ammoun et al., 2003).

Although orexin-containing neurons project widely to
various brain regions, the two receptors are distributed
differently (Marcus et al., 2001). Both proteins are co-expressed
at least in some areas of the central nervous system (Trivedi
et al., 1998; Hervieu et al., 2001; Cluderay et al., 2002), such as
the ventral tegmental area (VTA), pedunculopontine tegmental
nucleus (PPT), and laterodorsal tegmental nucleus (LDT).
OX1R is preferentially expressed in the locus ceruleus (LC),
whereas OX2R is mainly distributed in the tuberomammillary
nucleus (TMN). The selectivity of orexins for OXRs and
the distinct distributions of the receptors may be responsible
for the differential physiological effects of the orexin/receptor
pathway.

OREXIN/RECEPTOR SIGNALING
PATHWAY

The existence of two orexins and two receptors subtypes is
bound to create diversity within cellular signaling pathways.
The orexin/receptor signaling pathway has been described
in recombinant cell lines and native systems. As in most
GPCR-mediated pathways, orexins first bind OXRs, which in
turn activate at least three subtypes of G-proteins (Gq/11,

Gi/o, and Gs) or other proteins (e.g., β-arrestin). These
effectors subsequently regulate phospholipases, ion channels,
and protein kinases, ultimately triggering the activation of
various downstream signaling pathways (Dalrymple et al., 2011;
Kukkonen and Leonard, 2014; Leonard and Kukkonen, 2014).

Calcium is a very important second messenger of
GPCR-mediated signaling. Previous studies demonstrated
that orexin treatment significantly increases the intracellular
Ca2+ concentration ([Ca2+]i) in cells overexpressing OX1R
and OX2R, an effect that is mainly triggered by activation of
the classical phospholipase C (PLC) cascade (PLC-IP3/DAG;
Lund et al., 2000; Ammoun et al., 2006a; Johansson et al.,
2008). Subsequent work showed that OA acts on OX1R,
which in turn activates transient receptor potential channel 3
(TRPC3), thereby triggering Ca2+ responses (Peltonen et al.,
2009). These results revealed that orexin receptors activate a
novel mechanism of [Ca2+]i elevation via nonselective cation
channels (NSCCs), in contrast to the original notion that the
changes in calcium levels were mediated primarily through
GPCRs.

Other orexin/receptor signaling pathways have also been
reported, including the phospholipase D (PLD)/phosphatidic
acid (PA; Johansson et al., 2008), phospholipase A (PLA)/
arachidonic acid (AA; Turunen et al., 2012), and mitogen-
activated protein kinase (MAPK) cascades (Ramanjaneya et al.,
2009). Human OX1R potently activates PLD1 via nPKC, but not
Rho-family G-proteins, in CHO cells stably expressing human
OX1R (Jäntti et al., 2012). In HEK293 cells expressing OX1R, as
well as in Neuro-2a cells, stimulation of OX1R by OA liberates
both 2-arachidonoyl glycerol (2-AG) and AA (Turunen et al.,
2012). Orexins also activate p38-MAPK signaling pathway and
increase the level of phosphorylated ERK1/2 in a dose- and
time-dependent manner in both cell lines and tissues (Milasta
et al., 2005; Ammoun et al., 2006b). ERK1/2 activation induced
by orexins involves Gq/PLC/PKC signaling, but not the PKA
pathway (Wenzel et al., 2009). Ramanjaneya et al. also showed
that ERK1/2 and p38 are phosphorylated rapidly in response to
OA and OB, predominantly mediated by Gq and, to a lesser
extent, Gi (Ramanjaneya et al., 2009). In addition, OA affects rat
insulinoma cell proliferation via stimulation of the AKT signaling
pathway by OX1R (Chen et al., 2013). These results show
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FIGURE 3 | Schematic summary of signaling pathways mediated by the orexin/receptor system. The binding of orexins to orexin receptor type 1 (OX1R) or OX2R
stimulates Gq or Gi subtypes, which subsequently induce the activation of phospholipase C (PLC), phospholipase A (PLA), phospholipase D (PLD) or Adenylyl
cyclases (AC), ultimately resulting in an increase in cytosolic Ca2+ and a downstream cascade response. In addition, OA binds OX1R and elevates Ca2+ by activating
nonselective cation channels (NSCCs).

that the orexin/receptor system can activate potent intracellular
signaling via pathways other than the classical signaling pathways
(Figure 3).

In neuron-like cells, orexin/receptor pathways are similar to
those described above, in which activation of PLC and [Ca2+]i
elevation play central roles in signaling (Holmqvist et al., 2002).
In various types of neurons, orexins bind OXRs and subsequently
activate intracellular calcium signaling through PKC-dependent
or -independent pathways (Ozcan et al., 2010). For example, OA
elevates [Ca2+]i by activating L- and N-type Ca2+ channels, an
effect mediated by phosphatidylcholine-specific PLC and PKC in
dopaminergic neurons (Uramura et al., 2001). The combination
of OA and OX1R induces an increase of [Ca2+]i in prefrontal
cortex neurons, dependent upon extracellular Ca2+ influx via
L-type Ca2+ channels activated by the intracellular PLC–PKC
signaling pathway (Xia et al., 2009). Through OX1R–PLC–PKC,
OA upregulates the voltage-gated L-type calcium channel,
which subsequently activates the hypothalamic AMPK signaling
pathway in NPY neurons (Wu et al., 2013). Orexins also
increase postsynaptic [Ca2+]i via OX2R, and the increase in
[Ca2+]i is induced by the AC-PKA–mediated activation of

voltage-gated R- and T-type Ca2+ channels (Nakamura et al.,
2010). Orexins stimulated Akt kinase activation in rat cortical
neurons subjected to hypoxic stress, and the pro-survival action
of orexins displayed in a concentration- and time-dependent
manner (Sokoowska et al., 2014). In addition, in differentiated
neuroblastoma cells, OA–linked OX1R increases the influx
of Ca2+ through diacylglycerol-activated channels, which are
inhibited by activated PKC (Nasman et al., 2006).

Coupling between orexin/receptor and Adenylyl cyclases
(AC)/cAMP has been reported in several studies. For example,
in cultured rat cortical neurons, OA and OB stimulation causes
OX2R to couple to Gi proteins, leading to inhibition of cAMP
formation (Urbanska et al., 2012). However, OA also activates
OX1R to stimulate cAMP synthesis in cultured rat astrocytes
(Woldan-Tambor et al., 2011). Furthermore, orexin/receptor
signaling rapidly activates the mTORC1 pathway, which is
triggered by the lysosomal v-ATPase pathway, which is in turn
dependent on transient cytoplasmic calcium (Wang Z. et al.,
2014).

Generally speaking, OA/OX1R pathways have been examined
in much greater detail than orexin/OX2R pathways, although
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recent studies have begun to elucidate the latter. In general, the
responses to OX2R activation by orexins are similar to those to
OX1R. However, some of the activations are weaker, indicating
a differential coupling of the two receptors to certain cascades.
Finally, a more detailed network analysis is essential to elucidate
the molecular mechanisms underlying the intracellular effects of
the orexin/receptor system, as well as to develop new clinical
approaches to treat diseases related to this pathway.

DIMERIZATION OF OREXIN RECEPTORS

It is traditionally accepted that GPCRs exist and function as
monomers. However, a large number of studies show that
GPCRs can also form homo- and heterodimers, and that
these dimers have distinct effects on the signaling pathways
induced by the corresponding monomers (Bulenger et al.,
2005; Cottet et al., 2010). OX1R and the CB1 receptor
are present as heterodimers/oligomers in vitro (Ellis et al.,
2006). Moreover, OX1R and OX2R easily form homo- and
heteromeric complexes with each other. CB1 receptors form
homodimers, and they also form heterodimers with both
orexin receptors (Jäntti et al., 2014). Our lab studied whether

two GPCRs co-expressed in the same cerebral area can form
dimers, and if so, whether such dimerization is involved
in the pathology of neurological disorders. In HEK293 cells
co-transfected with mouse orexin receptors mOX2αR and
mOX2βR, we observed dimerization between mOX2αR and
mOX2βR using bioluminescence resonance energy transfer
(BRET) and co-immunoprecipitation (Co-IP; Wang C. et al.,
2014). Dimerization of mOX2αR and mOX2βR causes a greater
increase in p-ERK1/2 and intracellular Ca2+ elevation after
stimulation with OA or OB than occurs in cells transfected with
mOX2αR or mOX2βR alone. In addition, using fluorescence
resonance energy transfer (FRET), we showed that both OX1R
and kappa opioid receptor (KOR) can heterodimerize. The
heterodimer binds Gα proteins, leading to activation of the
PKA signaling pathway, including upregulation of cAMP levels
and the cAMP-response element (CRE; Figure 4; Chen et al.,
2015). We also observed that OX1R and CCK1R heterodimers
inhibit the activation of Gαq, Gαi2, Gα12, and Gα13 in comparison
with stimulation by OA or CCK alone. In these experiments,
endogenous OX1R and CCR1R were expressed in HT-29
cells using Duolink II in situ PLA detection kits. Moreover,
OX1R/CCK1R heterodimers affected the migration of HT-29
cells, suggesting that OX1R/CCK1R heterodimerization plays

FIGURE 4 | Schematic change in signaling pathway mediated by OX1R–kappa opioid receptor (KOR) heterodimers. OX1R mainly activates the Gq subtype, which
subsequently induces a downstream cascade response. KOR binds the Gi subtype, which inhibits the activity of cAMP and p-CREB. The dimerization of OX1R and
KOR changes the primary signaling pathway, but activates Gαs subtypes, which increase the activity of cAMP and p-CREB.
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an anti-migratory role in human colon cancer cells (Bai et al.,
2017). All of these results indicate that the heterodimers of
different GPCRs can perform specific functions distinct from
those of the constituent monomers, leading to various effects on
physiological processes.

OREXIN/RECEPTOR SIGNALING AND
NEUROLOGICAL DISEASES

Although orexin-containing neurons are distributed only in the
LH and adjacent areas, their nerve fibers project widely to
multiple brain regions (Chen et al., 1999; Nambu et al., 1999).
Furthermore, orexin receptors exhibit a diffuse distribution
corresponding to this widespread projection (Marcus et al.,
2001). The extensive projection of orexin innervation and
the characteristic expression of receptors appear to provide
the structural basis by which the orexin/receptor system
participates in regulation of multifaceted functions. Current
studies support the idea that the orexin/receptor system is
involved in controlling the activity of the nervous system. In
particular, OA can rapidly cross the blood–brain barrier by
simple diffusion (Kastin and Akerstrom, 1999). Furthermore, the
prepro-orexin gene is located on chromosome 17q21, making it
a candidate gene for neurological disorders (Wilhelmsen, 1997).
Indeed, accumulating evidence shows that the orexin/receptor
system is ectopically expressed in several neurological disorders,
suggesting that it plays an important role in the incidence and
pathogenesis of these diseases.

Orexin/Receptor Signaling and Narcolepsy
Narcolepsy is a chronic sleep disorder characterized by cataplexy,
sleep paralysis, excessive sleep, hypnagogic hallucinations and
abnormal transition from wakefulness to rapid eye movement
(REM) sleep (Mignot, 1998). It is widely believed that narcolepsy
is closely related to disorders of the hypothalamus and
abnormalities of the histamine system (John et al., 2004). The
important role of the orexin/receptor system in both of the
above strongly suggests that it is involved in the pathogenesis of
narcolepsy.

Multiple studies report that deficiencies in the orexin/receptor
system are associated with human narcolepsy. Consistent with
this, disruption of the system causes narcoleptic symptoms
in animal models. Lin et al. (1999) first cloned the mutant
OX2R gene in a canine narcolepsy model and showed that
disruption of OX2R caused canine narcolepsy, suggesting a
therapeutic target for the treatment of narcoleptic patients.
Simultaneously, mice harboring a knockout of the prepro-orexin
gene manifest a narcolepsy-like phenotype, remarkably similar
to human and canine narcolepsy, suggesting that narcolepsy
is associated with the orexin system (Chemelli et al., 1999).
Early in 1999, Nishino and co-workers found that the OA
concentration in cerebrospinal fluid (CSF) was abnormally
low in seven of nine people with narcolepsy, implying that
orexin transmission was deficient in these patients (Nishino
et al., 2000). In a later study, the same group reported a
dramatic decrease in the CSF OA levels in 32 of 38 successive

narcolepsy–cataplexy cases (Nishino et al., 2001b). On the basis
of these findings, they concluded that orexin is deficient in
most cases of human narcolepsy, suggesting possible diagnostic
applications. Furthermore, the number of orexin neurons is
reduced by 85%–95% in the LH of patients with narcolepsy
(Thannickal et al., 2000). Orexin mRNA and neuropeptide
are completely absent in hypothalamus, pons and cortex of
narcolepsy patients, and the secretory signal sequence of the
orexin gene is deficient in the most serious cases of early onset
narcolepsy (Peyron et al., 2000). These observations further
prove that narcolepsy is associated with deficiency in the orexin
system.

Although OX1R has a mild effect on sleep–wake behavior,
only OX2R- and OX1R/OX2R-knockout mice exhibit
narcoleptic symptoms, with more severe phenotypes in the
double knockout (Beuckmann et al., 2004; Scammell and
Winrow, 2011). Additionally, OX2R and dual orexin receptor
antagonists, but not OX1R antagonists, inhibit wakefulness
(Kalogiannis et al., 2011). These results showed that narcoleptic
effects are mainly mediated by OX2R or a combination of OX1R
and OX2R, but not by OX1R alone.

Orexin-containing neurons not only innervate target neurons
via efferent nerves, but also accept projections from their
target neurons, particularly monoaminergic (i.e., noradrenergic;
Sakurai, 2007), serotonergic (Brown et al., 2001), histaminergic
(Eriksson et al., 2001), dopaminergic (Korotkova et al., 2003),
and cholinergic neurons (Burlet et al., 2002). Orexin and
monoaminergic neurons form a negative feedback pathway in
the dorsal raphe nucleus (DR) and LC (Brown et al., 2002;
Muraki et al., 2004). Thus, activity of orexin neurons may
increase the activity of monoaminergic neurons. Conversely,
monoaminergic neurons may decrease the inhibitory effect
on orexin neurons, thereby stabilizing wakefulness through
this dynamic mechanism. Moreover, two efferent pathways
of orexin-containing neurons are likely to be mediated by
DR serotonergic and LC noradrenergic neurons. Restored
expression of OXR in the DR and LC of mice lacking OXR
inhibits cataplexy-like episodes, and the degree of suppression
correlates with the number of serotonergic neurons in the DR
in which OXR expression is restored, whereas maintenance
of wakefulness correlates with the number of noradrenergic
neurons restored in the LC (Hasegawa et al., 2014). In addition,
OA/receptor signaling in DR serotonergic neurons that express
both OX1R and OX2R plays a pivotal role in the prevention of
cataplexy-like episodes (Hasegawa et al., 2014). Indeed, DA levels
are high in several brain structures of narcoleptic Dobermans
and postmortem brain of humans with narcolepsy (Nishino
and Mignot, 1997; Nishino et al., 2001a), consistent with the
hypothesis that altered DA accounts for the sleep abnormalities
in hypocretin-deficient narcolepsy. Using orexin-knockout mice
as a model of human narcolepsy, DA was shown to suppress
cataplexy mediated by D2-like receptors and sleep attacks
modulated by a D1-like receptor, confirming that dopaminergic
mechanisms contribute to narcolepsy symptoms (Burgess et al.,
2010).

These results show that the orexin/receptor system probably
promotes wakefulness and inhibits sleep by regulating complex

Frontiers in Molecular Neuroscience | www.frontiersin.org 6 June 2018 | Volume 11 | Article 220

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Wang et al. The Orexin/Receptor System in Neurological Disease

FIGURE 5 | Likely relationship between orexin and narcolepsy. A negative
feedback pathway connects orexin neurons and monoaminergic neurons.
When orexin neurons are damaged, orexin levels are reduced, causing an
imbalance among these neurotransmitter systems, likely leading to narcolepsy.

circuits. Orexin-containing neurons gradually die over the course
of narcolepsy, thereby decreasing orexin levels. Ultimately, this
process contributes to imbalances among these neurotransmitter
systems, likely giving rise to the symptoms of narcolepsy
(Figure 5).

Orexin/Receptor Signaling and Insomnia
Insomnia is a chronic and pervasive sleep disorder in the
world. Insomnia is characterized by difficulty initiating asleep
and/or staying asleep that easily leads to impairment of daytime
functioning, such as daytime sleepiness, fatigue, irritability,
memory impairment and other symptoms (Roth and Roehrs,
2003; Ishak et al., 2012). Currently, treatment for insomnia
in clinical is cognitive behavioral therapy combined with
pharmacological therapy (Holbrook et al., 2001; Equihua et al.,
2013). However, pharmacological therapy has potential negative
effects, such as daytime drowsiness, tolerance, dependance and
withdrawal symptoms (Dundar et al., 2004; Lieberman, 2007),
thus new insomnia therapy with less negative effects is under
investigation.

The orexin/OXR system strongly involves in regulating the
sleep-wake cycle owing to its role in promoting and sustaining
wakefulness (Piper et al., 2000). In experiment of freely moving
cats, OA levels in day were higher during active waking
than during slow-wave sleep (SWS). Moreover, OA levels
were significantly higher during REM sleep than during SWS
(Kiyashchenko et al., 2002). In a experiment using squirrel
monkeys, OA levels in CSF were lower on awakening and
gradually increased over the course of the day, coinciding with
greater levels of activity; but its levels decreased during the
night when they were asleep (Zeitzer et al., 2003). These results
suggested that orexin levels have a significant correlation to the
time of day. On the contrary, overexpression of the orexin/OXR

system is bound to disrupt the sleep-wake cycle. In an experiment
using zebrafish, insomnia-like phenotype had been shown after
orexinergic neurons were overexpressed (Prober et al., 2006).
OA levels had significantly higher in the patients with insomnia
disorder than normal sleepers. Moverover, OA levels were
detected to have a positive relationship with the course and
severity of insomnia (Tang et al., 2017).

Because the orexin/OXR system promotes wakefulness,
antagonists that block orexin receptors would promote sleep
and inhibit wakefulness. This must offer an important and
effective therapeutic alternative for insomnia. Some orexin
receptor antagonists have been designed and researched for the
treatment of insomnia in rats, dogs and humans (Brisbare-Roch
et al., 2007), including two categories: single orexin receptor
antagonists (SORAs) and dual orexin receptor antagonists
(DORAs).

SB-334867, one of SORAs, was the first drug designed
to selectively antagonize OX1R (Smart et al., 2001). It may
counteract the suppression of REM sleep in rats, but it may not
decrease wakefulness, or increase the amount of time spent in
sleep (Smith et al., 2003). OX2R antagonists, such as EMPA,
TCS-OX2–29 and JNJ-10397049, have been more effective on
diminishing wakefulness than OX1R antagonists.

DORAs that are currently widely discussed are
SB-649868, almorexant and suvorexant. In preclinical studies,
administration of SB-649868 attenuated grooming activity
induced by OA in rats. Moreover, SB-649868 (3–30 mg/kg)
significantly reduced latency and increased the duration of
non-REM and REM sleep (Di Fabio et al., 2011). Furthermore,
phase I polysomnography data indicated that SB-649868
significantly shortened time to persistent sleep and obviously
improved total sleep time (Bettica et al., 2012). Almorexant
has been proved to increase REM and non-REM sleep in a
dose-dependent manner, and decrease locomotion induced by
OA in mice and rats (Mang et al., 2012). Suvorexant significantly
reduced wakefulness and increased REM and NREM sleep in
rats, dogs and rhesus monkeys in a dose-dependent manner
(Whitman et al., 2009; Winrow et al., 2011). A crossover trial
of suvorexant showed that it significantly improved the sleep
efficiency of insomnia patients (Herring et al., 2012). Because
of the efficacy and tolerability in Phase II and III trials of
suvorexant, the FDA in the 2014 approved suvorexant as a
first-in-class DORAs for the treatment of insomnia (Winrow
and Renger, 2014).

In fact, insomnia treatments are usually complex and difficult
in clinical becuase insomnia is a multifactorial etiology. The
design and availability of orexin receptor antagonists as an
effective alternative would be an important development in
insomnia management. However, the efficacy of antagonists on
the quality and quantity of sleep is not fully understood.

Orexin/Receptor Signaling and Depression
Depression is a mental illness whose incidence is increasing
around the world. The characteristics of depression include
low mood, misery, apathy, low self-esteem, anhedonia, loss
of motivation, loss of appetite, sleep disorders, retardation of
thought and action (Mathers and Loncar, 2006; Ionescu and
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Papakostas, 2017); consequently, this disease seriously endangers
human physical and mental health. Orexin-containing neurons
project neurofibers to the dopaminergic ventral tegmental
nucleus and substantia nigra, which are important regulators of
emotional activity, suggesting that the orexin/receptor system is
involved in the pathophysiology of depression.

Dysregulation of the orexin/receptor system has been
reported in patients with depression, as well as in animal
models of the disease. In 2003, Ronald M. Salomon measured
the OA concentration in CSF of patients with depression
(Salomon et al., 2003), and showed that the OA level was
higher in patients than controls. In addition, the OA level
tended to decrease after administration of the antidepressant
sertraline for 5 weeks, confirming the correlation between
depression and OA. Feng et al. (2008) reported a significant
decrease in the level of orexins in a rat model of depression
at younger ages, but significantly higher levels of orexins in
adult rats, possibly due to disinhibition from defective aminergic
neurons. In a rat model of depression, the reduced number
and size of orexin neurons are associated with depressive
symptoms (Allard et al., 2004). Consistent with this, OA mRNA
can be detected in peripheral blood cells of patients with
depression on the 1st, 14th and 28th day after admission (Rotter
et al., 2011). Together, these results show that OA mRNA
levels are negatively correlated with the severity of depression.
Additionally, Ito et al. (2008) examined in mice effects of OA
given i.c.v. on the forced swim test, an accepted behavioral
screen of antidepressant activity. The result suggested that OA
induced an antidepressive-like effect, at least partly by the
enhancement of cell proliferation in the dentate gyrus (Ito et al.,
2008).

However, experiments performed in various animal models of
depression yielded contradictory results, as described below. The
abundance of orexin-containing neurons in the LH increases by
about 20% in depressed mice subjected to high and prolonged
external stress, in comparison with age-matched controls (Jalewa
et al., 2014). Orexin-containing neurons are also activated in a
rodent model of depression, and the increase in the number of
neurons is reversed by the antidepressant fluoxetine (Nollet et al.,
2011). Expression of orexin in depressive mice varies among
brain regions (Arendt et al., 2013). In the hippocampus, lower
expression of orexin is negatively correlated with depressive
behavior, whereas in the amygdala, higher expression of orexin
and OX1R mRNA is positively correlated with depressive
behavior. These results provide further confirmation that the
orexin/receptor pathway plays distinct roles in different brain
regions.

OX2R has antidepressive properties, whereas OX1R is pro-
depressive. Treatment of a rat model of seasonal affective
disorder (SAD) with SB334867, a selective antagonist of OX1R,
leads to depressive behaviors characterized by a decrease in sweet
solution preference and increased immobility in the forced swim
test (Deats et al., 2014). On the other hand, both OX1R-knockout
and normal mice treated with SB334867 exhibit similar
reductions in behavioral despair, whereas OX2R-knockout mice
exhibit an increase in behavioral despair. The authors inferred
that the orexin/receptor system induced an antidepressant or

FIGURE 6 | Likely relationship between orexin and depression. Low
concentrations of orexins have a direct excitatory effect on 5-HT neurons,
whereas higher concentrations of orexins indirectly inhibit 5-HT neurons.

pro-depressant effect depending on whether OX1R or OX2R
was activated (Scott et al., 2011). OX1R expression differs very
little between a mouse model of depression and control mice. By
contrast, in the depressed mice, the OX2R level is reduced in the
hypothalamus, ventral thalamus and hippocampus (Nollet et al.,
2011).

In our lab, we observed that OX1R and KOR are co-expressed
in primary rat hippocampal neurons. Notably, both OX1R
and KOR are expressed at lower levels in hippocampus and
hypothalamus in a mouse depression model than in control mice
(Figure 6). However, in comparison with the slight decrease in
KOR expression, we observed a far greater decrease in OX1R
expression in the depression model. These results suggested that
depression may cause an imbalance between OX1R and KOR in
brain tissue, consistent with the view that dysregulation of OX1R
and KOR promotes the development of depression (Chen et al.,
2015). In addition, dynorphin is highly co-localized with orexin
in the hypothalamus. In an animal model of depression, the
dynorphin level is elevated, whereas the orexin level is reduced,
causing symptoms lacking pleasure. Dynorphin and orexin
perform reciprocal, antagonistic roles in the regulation of the
brain reward system, and are jointly involved in modulating the
physiological and pathological processes of depression (Miczek
et al., 2011).

The studies showed that orexins may directly excite serotonin
(5-HT) neurons by activating K+ leak currents or Na+-
dependent NSCCs (Brown et al., 2001). Unexpectedly, at
higher concentrations, orexins indirectly inhibit 5-HT neurons
by exciting GABAergic interneurons (Liu et al., 2002). The
speculation from current study is that there may be certain
relationship between them in the process of depression.

Taken together, this evidence clarifies the important role
of the orexin/receptor system in regulating the pathology of
depression. These findings not only improve our understanding
of the function of the orexin/receptor system, but also provide
new insights into the molecular mechanisms of depression.

Orexin/Receptor Signaling and Ischemic
Stroke
Ischemic stroke, a nervous system disease associated with a
high mortality and disability rate around the world, results in
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apoptosis and necrosis of brain tissue due to ischemia and
anoxia (Kang et al., 2003). The pathophysiologic mechanism of
ischemic stroke is rather complex, involving excitatory amino
acid toxicity, disorders of energy generation, oxidative stress
injury, inflammatory reaction and other factors (Abas et al.,
2010).

A number of published studies show that orexins, especially
OA, play a neuroprotective role in cerebral ischemic injury
and ischemia–reperfusion injury (IRI). CSF OA levels undergo
persistent declines in patients with cerebral infarction (Nishino
and Kanbayashi, 2005). In subarachnoid hemorrhage (SAH)
patients, CSF OA levels are low during the 10 days after
the precipitating event. In regard to complications of delayed
ischemic neuronal deficit (DIND) resulting from symptomatic
vasospasm in SAH patients, CSF OA levels are higher in patients
who do not develop DIND (Dohi et al., 2005). Consistent with
these results, the number of OA-containing neurons is obviously
higher on the ischemic than the non-ischemic side (Kitamura
et al., 2010). Moreover, administration of OA significantly
decreases brain infarct area.

A few studies suggested that OX1R is associated with cerebral
ischemic injury. OX1R is highly induced not only in neurons,
but also in astrocytes and oligodendrocytes, in rat and mouse
models of cerebral ischemia, suggesting that OA and OX1R play
important roles in ischemic insult (Nakamachi et al., 2005). In
addition, animal models of cerebral ischemia have shown that the
expression of OX1R increases in the brain, which was relevant
to decreases of OA concentration in cerebrospinal. In particular,
Irving et al. (2002) reported that mRNA and protein levels of
OX1R, but not OX2R, were elevated in rat ischemic cortex after
permanent middle cerebral artery occlusion (MCAO). In that
study, CSF OA levels were transiently elevated in comparison
with the baseline 24 h after ischemia, gradually decreased on
the 2nd and 4th days after ischemia, and finally returned to the
baseline level on the 7th day. These changes were correlated
with elevated expression of OX1R in the CA1 on the 1st and
2nd days following ischemia. These changes suggest that the
dynamics of orexin and OX1R may play functional roles in
neuronal damage associated with transient ischemia (Dohi et al.,
2006).

Intracerebroventricular injection of OA inhibited nerve injury
induced by the MCAO of mice on the 3rd day after ischemia
(Harada et al., 2011). In another report, OA significantly
ameliorated neurologic deficits and decreased the area of
the infarct area in subjects suffering from cerebral IRI. The
mechanism underlying the neuroprotective effect of OA is
likely related to a reduction in the number of apoptotic cells
and activation of HIF-1α. Moreover, treatment with a HIF-1α
inhibitor suppresses the stroke-related increase in HIF-1α and
reverses the neuroprotective effect of OA (Yuan et al., 2011).

In rat cerebral cortex, orexins markedly increase the
survival of neurons in a concentration-dependent manner. This
pro-survival ability of orexins is related to a reduction in
caspase-3 activity (Sokoowska et al., 2012). Harada et al. (2013)
found that OA prevents cerebral ischemic neuronal damage
by promoting the expression of brain-derived neurotrophic
factor (BDNF). In a MCAO model using orexin/ataxin-3

transgenic mice, OA treatment obviously altered the expression
of TNFα and IL-6 at the mRNA level, implying that a chronic
inflammatory response is involved in this process (Xiong et al.,
2013).

In light of these findings, the orexin/receptor system
protects neurons against cerebral ischemia and IRI by
regulation of anti-apoptotic and inflammatory responses. A
deeper understanding of the signaling pathways underlying
orexin/receptor-promoted neuroprotection might facilitate the
design of new therapies for cerebral ischemia and IRI.

Orexin/Receptor Signaling and Addiction
Drug addiction is a chronic and relapsing disorder distinguished
by compulsive drug-seeking behavior at the expense of other
activities. Early in 1954, Olds and Milner identified the LH
as an important brain region in the reward system (Olds and
Milner, 1954). Velley et al. (1983) answered the long-standing
question of whether the intrinsic neurons in LH are involved
in self-stimulation. The orexin/receptor system, especially via
OX1R, was reported to be strongly related to addiction to drugs,
especially alcohol, nicotine and cocaine (Smith et al., 2009;
Dehkordi et al., 2017; Moorman et al., 2017). Although OX2R
is generally agreed to be closely associated with arousal and
sleep regulation (Willie et al., 2003), orexin/OX2R signaling has
also been reported to be an important mediator of drug-seeking
behavior in several reports (Smith et al., 2009; Cason et al., 2010;
Shoblock et al., 2011).

Orexin/Receptor Signaling and Ethanol
Seeking
Accumulating reports reveal that orexins and their receptors
are abnormally expressed in some models of alcohol
consumption. For example, a high dose of ethanol can
increase the concentration of orexin in the LH (Morganstern
et al., 2010). Hypothalamic orexin–containing neurons are
significantly more abundant when animals are exposed to
ethanol availability (Dayas et al., 2008). Administration of
OA into the paraventricular nucleus (PVN) and LH induces
ethanol intake in ethanol-drinking rats (Schneider et al.,
2007). In accordance with those observations, intraperitoneal
administration of the OX1R antagonist SB334867 decreases
the ethanol intake and preference of high ethanol–preferring
rats (Moorman and Aston-Jones, 2009). In addition, various
concentrations of SB334867 (10, 15 and 20 mg/kg) decrease
operant self-administration of 10% ethanol (Richards et al.,
2008). Another experiment provided proof that SB334867 also
significantly decreases the responding and break points for
ethanol (Jupp et al., 2011).

Additionally, both voluntary ethanol drinking and
intragastrically administered ethanol increase gene expression
of OB in the aPVT, suggesting an important role for OB in
regulation of ethanol intake (Barson et al., 2015). Furthermore,
injection of the OX2R antagonist TCSOX229 into the aPVT
may significantly decrease ethanol consumption. Moreover,
peripheral injection of JNJ-10397049, another selective OX2R
antagonist, decreases ethanol self-administration, behavior
related to acquisition, expression, and reinstatement of ethanol
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FIGURE 7 | Schematic diagram illustrating the roles of orexin/receptor in
ethanol seeking. Administration of OA or OB into the PVN, LH and aPVT
induces ethanol seeking. In accordance with these findings, intraperitoneal
administration of OX1R or OX2R antagonist decreases ethanol intake and
ethanol self-administration. Abbreviation: PVN, paraventricular nucleus;
LH, lateral hypothalamus; aPVT, anterior paraventricular thalamus; NAc,
nucleus accumbens; VTA, ventral tegmental area.

conditioned place preference (CPP), and ethanol-induced
hyperactivity in mice (Shoblock et al., 2011). Similarly, injection
of TCSOX229 into the nucleus accumbens (NAc) decreases
self-administration of ethanol. However, TCSOX229 does not
alter cue-induced reinstatement of ethanol seeking. Unlike
OX1R, OX2R probably plays a more prominent role in ethanol
self-administration than in cue-conditioned ethanol seeking
(Brown et al., 2013).

Anderson et al. (2014) used the OX1R antagonist SB334867,
the OX2R antagonist LSN2424100, and the mixed OX1/2R
antagonist almorexant (ACT-078573) to evaluate the effect of
OX1R and OX2R on ethanol self-administration. The results
from different operant experiments indicated that OX1R and
OX2R decrease ethanol self-administration, although they have
non-specific effects on consummatory behavior (Anderson
et al., 2014). Almorexant decreases ethanol self-administration
when injected directly into the VTA (Srinivasan et al., 2012;
Figure 7).

Orexin/Receptor Signaling and Nicotine
Seeking
The orexin/receptor system is associated with the coordination
of physiological and behavioral responses to nicotine treatment.
OX1R is activated in rat models of nicotine reinforcement.
Furthermore, the OX1R antagonist and the OX2R antagonist
both decrease nicotine self-administration in a dose-dependent
manner (LeSage et al., 2010). Intracerebroventricular OA
reinstates the behavior induced by nicotine seeking, but
SB334867 effectively blocks the nicotine motivational response
(Plaza-Zabala et al., 2010). Hollander et al. (2008) showed
that low doses of SB334867 in the insula effectively decrease
nicotine intake in rats, as well as the motivation to obtain
the drug. Importantly, SB334867 selectively decreases
nicotine intake without altering the response to food. In

addition, SB334867 decreases nicotine self-administration
(Hollander et al., 2008). In C57BL/6J nicotine-dependent
mice, the syndrome of nicotine withdrawal is diminished in
SB334867-pretreated and preprohypocretin-knockout mice,
but the syndrome was not observed at all in mice pretreated
with the OX2R antagonist TCSOX229 (Plaza-Zabala et al.,
2012).

Nicotine increases the percentage of Fos-expressing cells
in orexin-secreting neurons, and this effect is diminished by
nicotinic antagonist (Pasumarthi et al., 2006). Pretreatment with
the OX1R antagonist SB334867, but not the OX2R antagonist
TCSOX229, decreases reinstatement of nicotine seeking.
Moreover, PKC signaling modulates relapses to nicotine-
seeking behavior (Plaza-Zabala et al., 2013). GSK1059865,
another highly selective OX1R antagonist, significantly decreases
voluntary ethanol intake in ethanol-dependent mice, but not in
non-dependent mice (Lopez et al., 2016).

Taken together, these data indicate that nicotine-
enhanced OA/OX1R transmission plays an important role
in regulating the stimulatory properties of nicotine. Therefore,
receptor antagonists may be key neurobiological substrates
necessary for maintenance of nicotine addiction in human
smokers.

Orexin/Receptor and Cocaine Seeking
The orexin/receptor system was shown to stimulate cocaine
intake. OA leads to a dose-dependent reinstatement of cocaine
seeking and obviously increases self-stimulation thresholds,
indicating that it negatively modulates the activity of the brain
reward circuit (Boutrel et al., 2005). Intraperitoneal SB334867
dose-dependently reverses conditioned reinstatement induced by
cocaine (Martin-Fardon and Weiss, 2014), and OX1R-knockout
mice self-administer far less cocaine than wild-type mice
(Hollander et al., 2012). Co-injection of SB334867 with OA
cannot block cocaine seeking, whereas another OX2R antagonist,
TCSOX229, fully prevents the cocaine seeking induced by OA,
indicating that the priming effects of OA injection into the
pPVT are mediated by OX2R (Matzeu et al., 2016). Pretreatment
with SB334867 significantly attenuates conditioned cocaine
seeking elicited by a drug-associated context (Smith et al.,
2010). Likewise, SB334867 decreases cocaine self-administration,
likely by modulating the mesolimbic DA system (Espana et al.,
2010).

Microinjection of SB334867 into central amygdala (CeA)
dose-dependently decreases cocaine intake in model rats.
Moreover, SB334867 blocks GABAergic neurotransmission
within the medial CeA, indicating that GABAergic
neurotransmission is involved in the orexin-mediated regulation
of cocaine intake (Schmeichel et al., 2017). Microinjection
of SB334867 into bilateral VTA, or the AMPA receptor
antagonist CNQX, diminishes reinstatement of cocaine seeking,
whereas PEPA, a positive modulator of AMPA receptors,
completely reinstates the attenuation caused by SB334867.
This implies that reinstatement of cocaine-seeking behavior
is dependent on interactions between OX1R and AMPA
receptors in the VTA (Mahler et al., 2013). Borgland et al.
(2006) reported that OA potentiates NMDAR EPSCs in
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VTA DA neurons via activation of PLC/PKC-dependent
signaling pathways. OX1R antagonists block sensitization
to cocaine and occlude cocaine-induced potentiation of
excitatory currents. Thus, orexin/OX1R signaling in VTA is
critical for behavioral sensitization to cocaine (Borgland et al.,
2006). In mice harboring a knockout of the orexin prepro-
peptide, CPP for cocaine fails to develop, and DA release
and uptake are diminished. Further, reduced DA signaling in
knockout mice persists following administration of cocaine,
suggesting that orexin-mediated regulation of reinforcement
might be associated with DA neurotransmission (Shaw et al.,
2017). SB334867 decreases the motivation to self-administer
cocaine and attenuates cocaine-induced enhancement of
DA signaling. Combined with the observation that orexin
knockout decreases the DA response to cocaine, these findings
suggest that orexin/OX1R modulates cocaine reinforcement,
likely through the mesolimbic DA system (Espana et al.,
2010).

Blockade of OX1R or simultaneous blockade of OX1R and
OX2R diminishes the effects of cocaine on DA signaling and the
motivation to take cocaine. By contrast, blockade of OX2R alone
has no significant effect on DA signaling or self-administration.
These findings suggest differential involvement of the two
receptors, with OX1R playing a more important role than OX2R
in the regulation of DA signaling and cocaine self-administration
(Prince et al., 2015). However, repeated cocaine stimulation may
increase OX2R protein expression in the NAc, with no effect on
OX1R, OA, or OB in this region. In comparison with NA, OX2R
is not altered by cocaine in the frontal cortex, hippocampus,
VTA, or dorsal striatum. Remarkably, upregulation of OX2R can
persist up to 60 days after discontinuation of cocaine (Zhang
et al., 2007).

Together, these findings suggest that orexin/OX1R is
necessary for cocaine self-administration, whereas orexin/OX2R
is less important. Future studies on the role of the orexin/receptor
system in the regulation of cocaine seeking will facilitate the
development of interventions against cocaine seeking using
antagonists.

OREXIN/RECEPTOR SIGNALING AND
ALZHEIMER’S DISEASE

AD is a degenerative disease of the central nervous system
characterized by progressive cognitive dysfunction and
behavioral impairment. The pathogenesis of AD is summarized
as follows: extracellular β-amyloid deposition leads to neuronal
degeneration; hyperphosphorylation of tau protein results
in formation of neurofibrillary tangles, undermining the
normal functions of neurons and synapses. Some documents
have reported that AD is associated with the loss of orexin-
containing neurons and a certain degree of impairment in orexin
neurotransmission, indicating that the orexin/receptor system
plays an important role in AD pathogenesis. In a study, the
number of OA neurons was reduced by 40% in AD patients, and
the concentration of OA in CSF was 14% lower (Fronczek et al.,
2012). On the contrary, CSF orexin levels are reported to elevate

in AD patients (Liguori et al., 2016, 2017). Futhermore, the
upregulation of CSF OA in AD is correlated with amyloid-β42
levels (Gabelle et al., 2017). These contradictory conclusions
indicate that the relationship between orexin/OXR system and
AD is complexity. The more extensive and deeper studies on
orexin/OXR system in AD are needed.

In amyloid precursor protein (APP)/presenilin 1 (PS1)
transgenic mice, knockout of the orexin gene significantly
diminishes the degree of Aβ pathology. Inversely, rescue of
orexinergic neurons in APP/PS1 increases the amount of Aβ

pathology, indicating that orexin modulates Aβ pathology in
the brain (Roh et al., 2014). Urrestarazu and Iriarte (2016)
speculated that AD patients suffer from some disturbances in
the secretion of orexins which brought about sleep disorders,
subsequently enhanced amyloid-β level, ultimately contribute to
the pathogenesis of the AD.

OA/B treatment impacts the formation of actin filaments
around Aβ fibrils and downregulates phagocytosis-regulating
molecules such as PI3K, Akt and p38-MAPK, demonstrating that
orexin can impair Aβ degradation through the suppression of
phagocytosis and autophagic flux (An et al., 2017). Moreover,
expression of OXRs and GPR103 is reduced in AD due to Aβ-
plaque formation and tau hyperphosphorylation. Furthermore,
in an in vitro AD model, OXRs and GPR103 form functional
heterodimers, exerting a neuroprotective effect by activating
ERK1/2 signaling pathway.

Considering that orexin overexpression causes Aβ

accumulation and tau-mediated neurodegeneration, orexin
receptor antagonists represent potential preventive/therapeutic
strategies against AD. However, more studies are urgent to
clarify the role and mechanism of the orexin/OXR system in the
pathophysiology of AD.

CONCLUSION AND PERSPECTIVES

Via the wide projections of orexin-containing neurons, their
complicated circuits with other types of neurons and the
diffuse distribution of orexin receptors, the orexin/receptor
system is involved in the regulation of multiple CNS functions.
When the orexin-containing neurons are damaged or lost, they
cause imbalances between orexin-containing neurons and the
associated neurons. Once these neurotransmitter systems are
broken or disrupted, symptoms of neurological disease appear.
At present, an effective strategy for neurological disorders
related to the orexin/receptor system is to selectively promote
the activity of orexin-containing neurons, or instead to block
the function of the orexin receptor using a receptor antagonist.
In particular, pharmacological interventions targeting orexin
receptors have been shown to be effective measures against
neurological diseases. However, definitive assignment of
physiological roles of the orexin/receptor system in neurological
diseases requires in-depth pharmacological and molecular
investigations. Given our increasing understanding of the
orexin/receptor system, this knowledge will certainly be applied
to clinical treatment of neurological disorders in the near
future.
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(2012). Orexins promote survival of rat cortical neurons. Neurosci. Lett. 506,
303–306. doi: 10.1016/j.neulet.2011.11.028

Srinivasan, S., Simms, J. A., Nielsen, C. K., Lieske, S. P., Bito-Onon, J. J., Yi, H.,
et al. (2012). The dual orexin/hypocretin receptor antagonist, almorexant, in
the ventral tegmental area attenuates ethanol self-administration. PLoS One
7:e44726. doi: 10.1371/journal.pone.0044726

Tang, S., Huang, W., Lu, S., Lu, L., Li, G., Chen, X., et al. (2017). Increased
plasma orexin-A levels in patients with insomnia disorder are not associated

Frontiers in Molecular Neuroscience | www.frontiersin.org 15 June 2018 | Volume 11 | Article 220

https://doi.org/10.1016/s0304-3940(01)02270-4
https://doi.org/10.1016/s0304-3940(01)02270-4
https://doi.org/10.1002/ana.1130
https://doi.org/10.1002/ana.1130
https://doi.org/10.1016/j.smrv.2005.03.004
https://doi.org/10.1016/s0301-0082(96)00070-6
https://doi.org/10.1016/S0140-6736(99)05582-8
https://doi.org/10.1016/j.neuropharm.2011.04.022
https://doi.org/10.1037/h0058775
https://doi.org/10.1016/j.ejphar.2006.02.021
https://doi.org/10.1016/j.ejphar.2006.02.021
https://doi.org/10.1016/j.bbrc.2009.05.077
https://doi.org/10.1016/j.jacc.2015.09.061
https://doi.org/10.1016/j.jacc.2015.09.061
https://doi.org/10.1038/79690
https://doi.org/10.1016/s1389-9457(00)00038-1
https://doi.org/10.1016/j.biopsych.2011.06.025
https://doi.org/10.1038/npp.2013.72
https://doi.org/10.1523/JNEUROSCI.5724-09.2010
https://doi.org/10.1021/cn500246j
https://doi.org/10.1523/JNEUROSCI.4332-06.2006
https://doi.org/10.1523/JNEUROSCI.4332-06.2006
https://doi.org/10.1677/joe-08-0536
https://doi.org/10.1677/joe-08-0536
https://doi.org/10.1007/s00213-008-1136-5
https://doi.org/10.1084/jem.20141788
https://doi.org/10.1016/s1098-3597(03)90031-7
https://doi.org/10.1016/j.jad.2010.12.004
https://doi.org/10.1038/nrn2092
https://doi.org/10.1016/s0092-8674(00)80949-6
https://doi.org/10.1016/s0006-3223(02)01740-7
https://doi.org/10.1146/annurev-pharmtox-010510-100528
https://doi.org/10.1016/j.biopsych.2016.06.010
https://doi.org/10.1111/j.1530-0277.2007.00510.x
https://doi.org/10.1111/j.1530-0277.2007.00510.x
https://doi.org/10.1016/j.bbr.2011.02.044
https://doi.org/10.1016/j.bbr.2011.02.044
https://doi.org/10.1111/adb.12432
https://doi.org/10.1111/adb.12432
https://doi.org/10.1007/s00213-010-2127-x
https://doi.org/10.1038/sj.bjp.0703953
https://doi.org/10.1016/s0304-3940(03)00066-1
https://doi.org/10.1111/j.1460-9568.2009.06844.x
https://doi.org/10.1016/j.neuropharm.2009.06.042
https://doi.org/10.1007/s12031-013-0165-7
https://doi.org/10.1016/j.neulet.2011.11.028
https://doi.org/10.1371/journal.pone.0044726
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Wang et al. The Orexin/Receptor System in Neurological Disease

with prepro-orexin or orexin receptor gene polymorphisms. Peptides 88, 55–61.
doi: 10.1016/j.peptides.2016.12.008

Thannickal, T. C., Moore, R. Y., Nienhuis, R., Ramanathan, L., Gulyani, S.,
Aldrich, M., et al. (2000). Reduced number of hypocretin neurons in human
narcolepsy. Neuron 27, 469–474. doi: 10.1016/s0896-6273(00)00058-1

Trivedi, P., Yu, H., MacNeil, D. J., Van der Ploeg, L. H., and Guan, X. M. (1998).
Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 438, 71–75.
doi: 10.1016/s0014-5793(98)01266-6

Tsuneki, H., Kon, K., Ito, H., Yamazaki, M., Takahara, S., Toyooka, N., et al.
(2016). Timed inhibition of orexin system by suvorexant improved sleep
and glucose metabolism in type 2 diabetic db/db mice. Endocrinology 157,
4146–4157. doi: 10.1210/en.2016-1404

Tsuneki, H., Wada, T., and Sasaoka, T. (2012). Role of orexin in the central
regulation of glucose and energy homeostasis. Endocr. J. 59, 365–374.
doi: 10.1507/endocrj.ej12-0030

Turunen, P. M., Jantti, M. H., and Kukkonen, J. P. (2012). OX1 orexin/hypocretin
receptor signaling through arachidonic acid and endocannabinoid release.Mol.
Pharmacol. 82, 156–167. doi: 10.1124/mol.112.078063

Uramura, K., Funahashi, H., Muroya, S., Shioda, S., Takigawa, M., and Yada, T.
(2001). Orexin-a activates phospholipase C- and protein kinase C-mediated
Ca2+ signaling in dopamine neurons of the ventral tegmental area.Neuroreport
12, 1885–1889. doi: 10.1097/00001756-200107030-00024

Urbanska, A., Sokolowska, P., Woldan-Tambor, A., Biegánska, K., Brix, B.,
Jæhren, O., et al. (2012). Orexins/hypocretins acting at Gi protein-coupled
OX 2 receptors inhibit cyclic AMP synthesis in the primary neuronal cultures.
J. Mol. Neurosci. 46, 10–17. doi: 10.1007/s12031-011-9526-2

Urrestarazu, E., and Iriarte, J. (2016). Clinical management of sleep disturbances
in Alzheimer’s disease: current and emerging strategies.Nat. Sci. Sleep 8, 21–33.
doi: 10.2147/NSS.S76706

Velley, L., Chaminade, C., Roy, M. T., Kempf, E., and Cardo, B. (1983). Intrinsic
neurons are involved in lateral hypothalamic self-stimulation. Brain Res. 268,
79–86. doi: 10.1016/0006-8993(83)90391-8

Voisin, T., Rouet-Benzineb, P., Reuter, N., and Laburthe, M. (2003). Orexins and
their receptors: structural aspects and role in peripheral tissues. Cell. Mol. Life
Sci. 60, 72–87. doi: 10.1007/s000180300005

Wang, Z., Liu, S., Kakizaki, M., Hirose, Y., Ishikawa, Y., Funato, H., et al. (2014).
Orexin/hypocretin activates mTOR complex 1 (mTORC1) via an Erk/Akt-
independent and calcium-stimulated lysosome v-ATPase pathway. J. Biol.
Chem. 289, 31950–31959. doi: 10.1074/jbc.M114.600015

Wang, C., Pan, Y., Zhang, R., Bai, B., Chen, J., and Randeva, H. S. (2014).
Heterodimerization of mouse orexin type 2 receptor variants and the effects
on signal transduction. Biochim. Biophys. Acta 1843, 652–663. doi: 10.1016/j.
bbamcr.2013.12.010

Wenzel, J., Grabinski, N., Knopp, C. A., Dendorfer, A., Ramanjaneya, M.,
Randeva, H. S., et al. (2009). Hypocretin/orexin increases the expression
of steroidogenic enzymes in human adrenocortical NCI H295R cells. Am.
J. Physiol. Regul. Integr. Comp. Physiol. 297, R1601–R1609. doi: 10.1152/
ajpregu.91034.2008

Whitman, D. B., Cox, C. D., Breslin, M. J., Brashear, K. M., Schreier, J. D.,
Bogusky, M. J., et al. (2009). Discovery of a potent, CNS-penetrant orexin
receptor antagonist based on an n,n-disubstituted-1,4-diazepane scaffold that
promotes sleep in rats. ChemMedChem 4, 1069–1074. doi: 10.1002/cmdc.
200900069

Wilhelmsen, K. C. (1997). Disinhibition-dementia-parkinsonism-amyotrophy
complex (DDPAC) is a non-Alzheimer’s frontotemporal dementia. J. Neural
Transm. Suppl. 49, 269–275. doi: 10.1007/978-3-7091-6844-8_26

Willie, J. T., Chemelli, R. M., Sinton, C. M., Tokita, S., Williams, S. C.,
Kisanuki, Y. Y., et al. (2003). Distinct narcolepsy syndromes in Orexin
receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM

and REM sleep regulatory processes. Neuron 38, 715–730. doi: 10.1016/S0896-
6273(03)00330-1

Winrow, C. J., Gotter, A. L., Cox, C. D., Doran, S. M., Tannenbaum, P. L.,
Breslin, M. J., et al. (2011). Promotion of sleep by suvorexant-a novel dual
orexin receptor antagonist. J. Neurogenet. 25, 52–61. doi: 10.3109/01677063.
2011.566953

Winrow, C. J., and Renger, J. J. (2014). Discovery and development of orexin
receptor antagonists as therapeutics for insomnia. Br. J. Pharmacol. 171,
283–293. doi: 10.1111/bph.12261

Woldan-Tambor, A., Bieganska, K., Wiktorowska-Owczarek, A., and
Zawilska, J. B. (2011). Activation of orexin/hypocretin type 1 receptors
stimulates cAMP synthesis in primary cultures of rat astrocytes. Pharmacol.
Rep. 63, 717–723. doi: 10.1016/s1734-1140(11)70583-7

Wong, K. K., Ng, S. Y., Lee, L. T., Ng, H. K., and Chow, B. K. (2011). Orexins and
their receptors from fish to mammals: a comparative approach. Gen. Comp.
Endocrinol. 171, 124–130. doi: 10.1016/j.ygcen.2011.01.001

Wu, W. N., Wu, P. F., Zhou, J., Guan, X. L., Zhang, Z., Yang, Y. J., et al. (2013).
Orexin-A activates hypothalamic AMP-activated protein kinase signaling
through a Ca2+-dependent mechanism involving voltage-gated L-type calcium
channel.Mol. Pharmacol. 84, 876–887. doi: 10.1124/mol.113.086744

Xia, J. X., Fan, S. Y., Yan, J., Chen, F., Li, Y., Yu, Z. P., et al.
(2009). Orexin A-induced extracellular calcium influx in prefrontal cortex
neurons involves L-type calcium channels. J. Physiol. Biochem. 65, 125–136.
doi: 10.1007/bf03179063

Xiao, F., Jiang, M., Du, D., Xia, C., Wang, J., Cao, Y., et al. (2013). Orexin
A regulates cardiovascular responses in stress-induced hypertensive rats.
Neuropharmacology 67, 16–24. doi: 10.1016/j.neuropharm.2012.10.021

Xiong, X., White, R. E., Xu, L., Yang, L., Sun, X., Zou, B., et al. (2013). Mitigation
of murine focal cerebral ischemia by the hypocretin/orexin system is associated
with reduced inflammation. Stroke 44, 764–770. doi: 10.1161/STROKEAHA.
112.681700

Yamanaka, A., Sakurai, T., Katsumoto, T., Yanagisawa, M., and Goto, K. (1999).
Chronic intracerebroventricular administration of orexin-A to rats increases
food intake in daytime, but has no effect on body weight. Brain Res. 849,
248–252. doi: 10.1016/s0006-8993(99)01905-8

Yuan, L. B., Dong, H. L., Zhang, H. P., Zhao, R. N., Gong, G., Chen, X. M.,
et al. (2011). Neuroprotective effect of orexin-A is mediated by an increase
of hypoxia-inducible factor-1 activity in rat. Anesthesiology 114, 340–354.
doi: 10.1097/ALN.0b013e318206ff6f

Zeitzer, J. M., Buckmaster, C. L., Parker, K. J., Hauck, C. M., Lyons, D. M., and
Mignot, E. (2003). Circadian and homeostatic regulation of hypocretin in a
primate model: implications for the consolidation of wakefulness. J. Neurosci.
23, 3555–3560. doi: 10.1523/JNEUROSCI.23-08-03555.2003

Zhang, G. C., Mao, L. M., Liu, X. Y., and Wang, J. Q. (2007). Long-lasting
up-regulation of orexin receptor type 2 protein levels in the rat nucleus
accumbens after chronic cocaine administration. J. Neurochem. 103, 400–407.
doi: 10.1111/j.1471-4159.2007.04748.x

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Wang, Wang, Ji, Pan, Xu, Cheng, Bai and Chen. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Molecular Neuroscience | www.frontiersin.org 16 June 2018 | Volume 11 | Article 220

https://doi.org/10.1016/j.peptides.2016.12.008
https://doi.org/10.1016/s0896-6273(00)00058-1
https://doi.org/10.1016/s0014-5793(98)01266-6
https://doi.org/10.1210/en.2016-1404
https://doi.org/10.1507/endocrj.ej12-0030
https://doi.org/10.1124/mol.112.078063
https://doi.org/10.1097/00001756-200107030-00024
https://doi.org/10.1007/s12031-011-9526-2
https://doi.org/10.2147/NSS.S76706
https://doi.org/10.1016/0006-8993(83)90391-8
https://doi.org/10.1007/s000180300005
https://doi.org/10.1074/jbc.M114.600015
https://doi.org/10.1016/j.bbamcr.2013.12.010
https://doi.org/10.1016/j.bbamcr.2013.12.010
https://doi.org/10.1152/ajpregu.91034.2008
https://doi.org/10.1152/ajpregu.91034.2008
https://doi.org/10.1002/cmdc.200900069
https://doi.org/10.1002/cmdc.200900069
https://doi.org/10.1007/978-3-7091-6844-8_26
https://doi.org/10.1016/S0896-6273(03)00330-1
https://doi.org/10.1016/S0896-6273(03)00330-1
https://doi.org/10.3109/01677063.2011.566953
https://doi.org/10.3109/01677063.2011.566953
https://doi.org/10.1111/bph.12261
https://doi.org/10.1016/s1734-1140(11)70583-7
https://doi.org/10.1016/j.ygcen.2011.01.001
https://doi.org/10.1124/mol.113.086744
https://doi.org/10.1007/bf03179063
https://doi.org/10.1016/j.neuropharm.2012.10.021
https://doi.org/10.1161/STROKEAHA.112.681700
https://doi.org/10.1161/STROKEAHA.112.681700
https://doi.org/10.1016/s0006-8993(99)01905-8
https://doi.org/10.1097/ALN.0b013e318206ff6f
https://doi.org/10.1523/JNEUROSCI.23-08-03555.2003
https://doi.org/10.1111/j.1471-4159.2007.04748.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles

	The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases
	INTRODUCTION
	OREXIN STRUCTURE
	OREXIN RECEPTORS
	OREXIN/RECEPTOR SIGNALING PATHWAY
	DIMERIZATION OF OREXIN RECEPTORS
	OREXIN/RECEPTOR SIGNALING AND NEUROLOGICAL DISEASES
	Orexin/Receptor Signaling and Narcolepsy
	Orexin/Receptor Signaling and Insomnia
	Orexin/Receptor Signaling and Depression
	Orexin/Receptor Signaling and Ischemic Stroke
	Orexin/Receptor Signaling and Addiction
	Orexin/Receptor Signaling and Ethanol Seeking
	Orexin/Receptor Signaling and Nicotine Seeking
	Orexin/Receptor and Cocaine Seeking

	OREXIN/RECEPTOR SIGNALING AND ALZHEIMER'S DISEASE
	CONCLUSION AND PERSPECTIVES
	AUTHOR CONTRIBUTIONS
	FUNDING
	REFERENCES


