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Lithium has long been used for the treatment of psychiatric disorders, due to
its robust beneficial effect as a mood stabilizing drug. Lithium’s effectiveness for
improving neurological function is therefore well-described, stimulating the investigation
of its potential use in several neurodegenerative conditions including Alzheimer’s (AD),
Parkinson’s (PD) and Huntington’s (HD) diseases. A narrow therapeutic window for
these effects, however, has led to concerted efforts to understand the molecular
mechanisms of lithium action in the brain, in order to develop more selective treatments
that harness its neuroprotective potential whilst limiting contraindications. Animal
models have proven pivotal in these studies, with lithium displaying advantageous
effects on behavior across species, including worms (C. elegans), zebrafish (Danio
rerio), fruit flies (Drosophila melanogaster) and rodents. Due to their susceptibility to
genetic manipulation, functional genomic analyses in these model organisms have
provided evidence for the main molecular determinants of lithium action, including
inhibition of inositol monophosphatase (IMPA) and glycogen synthase kinase-3 (GSK-3).
Accumulating pre-clinical evidence has indeed provided a basis for research into the
therapeutic use of lithium for the treatment of dementia, an area of medical priority
due to its increasing global impact and lack of disease-modifying drugs. Although
lithium has been extensively described to prevent AD-associated amyloid and tau
pathologies, this review article will focus on generic mechanisms by which lithium
preserves neuronal function and improves memory in animal models of dementia. Of
these, evidence from worms, flies and mice points to GSK-3 as the most robust
mediator of lithium’s neuro-protective effect, but it’s interaction with downstream
pathways, including Wnt/β-catenin, CREB/brain-derived neurotrophic factor (BDNF),
nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and toll-like receptor 4 (TLR4)/nuclear
factor-κB (NFκB), have identified multiple targets for development of drugs which
harness lithium’s neurogenic, cytoprotective, synaptic maintenance, anti-oxidant, anti-
inflammatory and protein homeostasis properties, in addition to more potent and
selective GSK-3 inhibitors. Lithium, therefore, has advantages as a multi-functional
therapy to combat the complex molecular pathology of dementia. Animal studies
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will be vital, however, for comparative analyses to determine which of these defense
mechanisms are most required to slow-down cognitive decline in dementia, and whether
combination therapies can synergize systems to exploit lithium’s neuro-protective power
while avoiding deleterious toxicity.

Keywords: lithium, dementia, GSK-3, oxidative damage, neuro-inflammation, proteostasis, neurogenesis, synaptic
maintenance

INTRODUCTION

Lithium has well-described clinical benefits as a mood-stabilizer,
and accumulating pre-clinical evidence has provided a basis
for research into its therapeutic use in the treatment of a
range of neurodegenerative conditions, including Alzheimer’s
(AD), Parkinson’s (PD) and Huntington’s (HD) diseases
(De Ferrari et al., 2003; Noble et al., 2005; Sarkar et al.,
2008; Chiu et al., 2011; Lieu et al., 2014). A narrow
therapeutic window for these effects, however, has led to
concerted efforts to understand the molecular mechanisms
of lithium action in the central nervous system (CNS),
in order to develop more selective treatments that harness
its neuroprotective potential whilst limiting its toxic side-
effects.

Animal models have proven pivotal in these studies, with
lithium displaying advantageous effects on behavior across
species, including worms (Caenorhabditis elegans; Farina et al.,
2017), zebrafish (Danio Rerio; Nery et al., 2014), fruit flies
(Drosophila melanogaster; Mudher et al., 2004; McBride et al.,
2005; Sofola et al., 2010; Castillo-Quan et al., 2016) and
rodents (O’Brien et al., 2004; King and Jope, 2013; Lu et al.,
2015; Gelfo et al., 2017). Due to their susceptibility to genetic
manipulation, these model organisms have provided evidence
for the direct molecular determinants to which lithium’s
neuro-protective effects are attributed, including inhibition of
inositol monophosphatase (IMPA), glycogen synthase kinase-3
(GSK-3), and a plethora of down-stream targets that further exert
neuroprotective potential. Lithium has an important role in
cytoprotection particularly by preventing oxidative and neuro-
inflammatory damage, maintaining protein homeostasis and
enhancing neurogenesis and synapticmaintenance. These neuro-
protective properties have beneficial effects across a range of
animal models of neurodegeneration, and understanding the
mechanisms underpinning these interactions has revealed new
targets for the development of drugs to slow-down neuronal
damage in these conditions.

Focussing on animal models of dementia, here we review
the evidence for the molecular basis of the generic mechanisms
by which lithium preserves neuronal function and improves
memory. Animal studies will be vital, however, for comparative
analyses to determine which of these defense mechanisms
are most required to slow-down cognitive decline as disease
progresses. We discuss the advantages of combination therapies
to synergize the targets of lithium’s protective effects, in
comparison with using lithium as a single multi-functional
therapy to combat the complex molecular pathology of
dementia.

MULTI-FACETED MECHANISMS OF
LITHIUM-MEDIATED
NEUROPROTECTION: EVIDENCE FROM
MODEL ORGANISMS

Although the precise molecular determinants of lithium action
remain unclear, evidence from model organisms have suggested
that IMPA andGSK-3 are direct regulators of its beneficial effects
on neuronal function (see Figure 1A). As originally posited
by Berridge et al. (1989), the inositol depletion hypothesis of
lithium action suggests that uncompetitive inhibition of IMPA
and inositol polyphosphate 1-phosphatase (IPP) leads to a
deficit in polyphosphoinositide (PIP) signaling, and subsequently
inhibition of neuronal excitation, which may explain its
beneficial effects as a mood stabilizer. Genetic mutation of
IPP in Drosophila melanogaster (Acharya et al., 1998) or the
IMPA homolog, ttx-7, in C. elegans (Tanizawa et al., 2006) has
indeed shown that these enzymes play an important role in
regulation of synaptic function in vivo, although this appears
to be mediated by enhancing rather than suppressing synaptic
transmission. Contrasting studies in mice, however, suggest that
inositol depletion may not alter PIP levels in the CNS (Berry
et al., 2004). Furthermore, IMPA1 deletion only partially mimics
lithium’s effects on gene expression in the hippocampus (Damri
et al., 2015) and IMPA2 deletion fails to phenocopy lithium’s
protective effects against depression and anxiety-like behavior
(Cryns et al., 2007). Hence the role of IMPA in mediating
lithium’s function in the mammalian CNS is less clear.

GSK-3 is also non-competitively inhibited by lithium
(Klein and Melton, 1996) and appears to be a more consistent
regulator of lithium’s neuro-protective effects across species
(Gurvich and Klein, 2002; Aghdam and Barger, 2007). GSK-3
is epistatically required for longevity in response to lithium in
both C. elegans (McColl et al., 2008) and Drosophila (Castillo-
Quan et al., 2016), and it’s mutation mimics lithium’s ability to
alter exploratory behavior in mice (O’Brien et al., 2004, 2011).
GSK-3 also plays a well-described role in the generation of
AD-associated amyloid β (Aβ) and tau pathologies (Kremer
et al., 2011), by promoting abnormal tau phosphorylation (Lucas
et al., 2001) and increasing amyloid production (Phiel et al.,
2003) and toxicity (DaRocha-Souto et al., 2012). Furthermore,
GSK-3 inhibition protects against neuronal damage and
cognitive decline in Drosophila (Mudher et al., 2004; Sofola
et al., 2010) and rodent models of AD and fronto-temporal
dementia (FTD; Serenó et al., 2009). As a pleiotropic enzyme,
however, GSK-3 inhibition may exert its neuroprotective effects
through diverse mechanisms, including maintenance of axonal
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transport and synaptic function, promoting adult neurogenesis,
preventing apoptosis and reducing neuro-inflammation
(Llorens-Martín et al., 2014). Building upon these observations,
and as extensively reviewed (Eldar-Finkelman and Martinez,
2011), drug development efforts have aimed to discover new
specific GSK-3 inhibitors with improved toxicity profiles for
treatment of neurodegenerative disorders in comparison with
lithium. These include ATP-competitive (indirubin, paullones,
thiazoles, SB-216763 and SB-415286) and non-ATP-competitive
(thiadiazolidindiones (TDZD-8, NP-12/tideglusib), and L803-
mts) inhibitors, which have shown promising pre-clinical
efficacy in improving cognition and protecting neurons in
rodent models of AD and FTD. Of these, non-ATP-competitive
GSK-3 inhibitors appear to have improved specificity and safety,
which has led to Phase II clinical trials for the use of tideglusib
in mild-moderate AD, as part of the ARGO study (Lovestone
et al., 2015), and in progressive supranuclear palsy (PSP), as
part of the TAUROS study (Tolosa et al., 2014). Although
tideglusib proved safe for use in both AD and PSP patients, and
some reduction in brain atrophy was observed in the TAUROS
study, no significant clinical improvement in primary measures,
ADAS-cog15 score or PSP rating scale, was reported in either of
these trials. Based on the observation that mild AD patients in
the ARGO study showed some cognitive improvement on lower
doses of lithium (500 mg; Lovestone et al., 2015), suggesting a
non-linear dose-response, future studies to examine the effects
of tideglusib in patients at earlier stages and to optimize the most
effective dose may be warranted.

Recent transcriptomic analyses across species, however,
have revealed that lithium has wide-ranging cellular effects.
For example by altering DNA replication, metabolism and
endoplasmic reticulum (ER) genes in worms (McColl et al.,
2008), translation and cellular detoxification genes in flies
(Castillo-Quan et al., 2016), and neurogenesis, synaptic function,
anti-apoptosis and anti-inflammatory genes in rat and mouse
brain (Roux and Dosseto, 2017). This supports a multi-
faceted mechanism of lithium-mediated neuroprotection, of
relevance to many neurological conditions, through promotion
of its cytoprotective, anti-oxidant, anti-inflammatory, protein
homeostasis, neurogenic and synaptic maintenance properties.
Alterations in these pathways may be an indirect consequence
of GSK-3’s pleiotropic effects, but understanding the molecular
basis of their modulation has revealed new selective targets for
neuronal protection in dementia as we discuss below.

OXIDATIVE STRESS: Nrf2 AS A MEDIATOR
OF LITHIUM’S ANTI-OXIDANT
NEURO-PROTECTIVE EFFECTS

Oxidative damage is a common feature of dementia brain
(Sultana and Butterfield, 2010; Iadecola, 2013), with reactive
oxygen species (ROS) and peroxidized lipids and proteins
accumulating early in the disease process (Sultana and
Butterfield, 2010). This may be a result of aging related
mitochondrial damage, hypoxia-induced ischemia or amyloid
accumulation, and leads to wide-spread cellular damage through

prevention of cytoprotective signaling, induction of apoptosis
and neuro-inflammation (Guo et al., 2017).

Lithium prevents neuronal sensitivity to oxidative damage
across species, including hyperoxia in Aβ-expressing flies
(Kerr et al., 2017), cerebral ischemia and 3-nitropropionic
acid (3-NP)-induced neurotoxicity in rats (Khan et al., 2015;
Chen et al., 2016), and kainate and neuropeptide S-induced
behavioral and neurological damage in mice (Rojo et al.,
2008; Castro et al., 2009). Prevention of oxidative damage by
lithium in these paradigms commonly correlates with reduced
lipid peroxidation, as measured by thiobarbituric acid reactive
substances (TBARS; Shao et al., 2005; Castro et al., 2009) or
4-hydroxynonenal (4-HNE) levels (Tan et al., 2012), protein
carbonylation (Shao et al., 2005) and ROS production (Rojo
et al., 2008). Conversely lithium treatment increases expression
of anti-oxidant enzymes including catalase (Khan et al., 2015),
heme-oxygenase-1 (HO-1; Khan et al., 2015; Chen et al., 2016)
and NAD(P)H: quinone oxidoreductase 1 (NQ01; Chen et al.,
2016) as well as restoring levels of glutathione and glutathione-s-
transferases (GstD1, GstD2), an important mediator of neuronal
protection against oxidative damage (Baxter and Hardingham,
2016), in Drosophila (Kasuya et al., 2009; Kerr et al., 2017)
and rat (Khan et al., 2015) brain. Notably, the HO-1 inhibitor
SnPP reversed the beneficial effects of lithium against 3-NP-
induced oxidative stress and motor defects in rats (Khan et al.,
2015), providing epistatic evidence that prevention of oxidative
damage plays a key role in lithium-mediated neuronal protection
in vivo.

GSK-3 inhibition parallels many of these anti-oxidant
properties of lithium, with GSK-3 antisense oligonucleotides,
short-interfering RNAs (siRNA) and specific GSK-3 inhibitors
(SB216763, TDZD-8; Rojo et al., 2008; Chen et al., 2016)
preventing oxidative damage in rat models of cerebral ischemia
and the SAMP8 mouse model of aging-related AD (Farr et al.,
2014; Chen et al., 2016). The transcription factor nuclear
factor (erythroid-derived 2)-like 2 (Nrf2) has been proposed
as a key molecular mediator of the antioxidant effects of
lithium down-stream of GSK-3 as reviewed by Kanninen et al.
(2011; see Figure 1B). Nrf2 responds to cellular stress, for
example under oxidative or neuro-inflammatory conditions,
which are common features of neurodegenerative diseases,
by increasing expression of an array of antioxidant response
element (ARE)-containing genes to counteract damage (Bruns
et al., 2015). Lithium increases Nrf2 activity in Drosophila
(Castillo-Quan et al., 2016; Kerr et al., 2017), and pheno-
copies specific GSK3β inhibition (siRNA and SB216763,
TDZD-8) in increasing Nrf2 nuclear translocation and activating
transcription of Nrf2 target genes, HO-1 and NQ01, in rat
and mouse brain (Rojo et al., 2008; Chen et al., 2016).
Moreover, Nrf2 is genetically required for lifespan extension
by lithium in flies (Castillo-Quan et al., 2016) and increased
Nrf2 nuclear translocation correlates with reduced oxidative
damage and improved cognition in SAMP8 mice following
treatment with antisense GSK-3 (Farr et al., 2014). These
further suggest a causal role for Nrf2 in mediating the
neuroprotective effects of lithium and GSK-3 inhibitors in
dementia models.
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FIGURE 1 | Multi-modal mechanisms of lithium-mediated neuronal protection in model organisms. (A) Glycogen synthase kinase-3 (GSK-3) and inositol
monophosphatase (IMPA) are direct targets of lithium action in the central nervous system (CNS). Model organisms have revealed IMPA as a mediator of improved
synaptic function in response to lithium, but IMPA1/2 mutations fail to consistently pheno-copy lithium’s protective effects on behavior in mice. GSK-3 appears to be
a conserved mediator of lithium action, required for increased longevity, improved cognition and prevention of Alzheimer’s disease (AD) pathology across worm, fly
and mice models of neurodegeneration. (B) Animal models have also uncovered several pathways which may preserve downstream neuro-protection processes in
response to lithium via GSK-3-dependent and independent mechanisms. GSK-3 inhibition is an upstream regulator of lithium’s activation of nuclear factor
(erythroid-derived 2)-like 2 (Nrf2) in preventing oxidative damage, inhibition of signal transducer and activator of transcription 3 (STAT3) to prevent
neuro-inflammation, increased Wnt-dependent gene transcription to guide adult neurogenesis, and potentially prevention of protein synthesis by inhibiting translation.
More recent evidence also suggests that lithium can exert neuro-protection through non-GSK-3-dependent anti-inflammatory effects on toll-like receptor 4 (TLR4),
increased neurogenesis, cell survival and long term potentiation (LTP) via CREB-dependent transcription of brain-derived neurotrophic factor (BDNF) and prevention
of long term depression (LTD) by inhibition of over-active metabotropic glutamate receptor (mGLuR)-dependent synaptic transmission. Finally, inhibition of IMPA
mediates lithium-dependent activation of autophagy, by reducing inositol levels, thus maintaining protein turnover. Genetic and pharmacological modulation of these
anti-oxidant, anti-inflammatory, neurogenesis, cell survival, synaptic plasticity and proteostasis signaling pathways prevents neurodegeneration and improves
cognition in Drosophila and mouse models of AD, fronto-temporal dementia (FTD) and Fragile X syndrome.

As a general regulator of neuronal protection, Nrf2 has
become an attractive therapeutic target for the treatment of
several neurodegenerative diseases including AD (Kanninen
et al., 2009) and vascular dementia (Alfieri et al., 2011).
Genetic activation of Nrf2 protects against neuronal and
cognitive decline in Drosophila and mouse models of AD
and PD (Kanninen et al., 2009; Barone et al., 2011; Kerr
et al., 2017), and pharmacological Nrf2 activators, including
triterpenoid compounds (CDDO-EA and CDDO-TFEA) and
dimethyl fumarate (DMF), prevent oxidative damage and afford
neuronal protection in mouse models of AD (Dumont et al.,
2009), FTD (Cuadrado et al., 2018), amyotrophic lateral sclerosis
(ALS; Neymotin et al., 2011), PD (Chen et al., 2009; Lastres-
Becker et al., 2016) and cerebral ischemia (Fowler et al.,

2017). Most classical Nrf2 activators are electrophilic agents
which modify cysteine residues on Keap1, a negative regulator
of Nrf2, disrupting their physical interaction and enabling
Nrf2 to activate transcription. The non-selective nature of this
mechanism, however, is thought to explain their toxicity, due
to off-target effects, as observed in clinical trials (Abed et al.,
2015). Recent drug discovery efforts have therefore focussed on
developing direct disruptors of the Keap1-Nrf2 protein-protein
interaction (PPI), with the aim of improving safety profiles (Abed
et al., 2015; Wells, 2015). We and others have indeed reported
promising results using small molecule and peptide Keap1-Nrf2
PPI disruptors in protecting against amyloid-induced synapto-
toxicity in mouse primary neurons (Kerr et al., 2017) and
neuronal protection in vivo using rat models of global cerebral
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ischemeia (Tu et al., 2015). Of note, our own studies using
Drosophila and neuroblastoma cells suggest that lithium and
GSK-3 inhibitors (TDZD8) are weak activators of Nrf2, relative
to Keap1-Nrf2 disruption, in response to amyloid toxicity (Kerr
et al., 2017). Combined GSK-3 inhibitor and Nrf2 activator
therapies may be an advantage, as additive protective effects
against Aβ toxicity are observed with Keap1 mutation and
lithium treatment in the fly (Kerr et al., 2017) and DMF has
recently been shown to prevent tau phosphorylation through
inhibition of GSK-3 and neuronal damage by subsequent
activation of Nrf2 through Keap1 dependent and independent
mechanisms (Cuadrado et al., 2018). Hence further work is
required to establish the relative importance of these pathways
in maintaining Nrf2 activity in AD and other neurodegenerative
diseases.

NEURO-INFLAMMATION: TLR4/NFκB AND
STAT3 AS ANTI-INFLAMMATORY
MEDIATORS OF LITHIUM-MEDIATED
NEUROPROTECTION

Alterations in microglia activation and inflammatory factors are
an early feature in the brains of dementia patients, including
AD and vascular dementia (Calsolaro and Edison, 2016).
Moreover, neuronal inflammation directly correlates with
decline in cognitive function across species, for example
following bacterial infection in flies (Cao et al., 2013; Wu
et al., 2017) and viral infection (Hosseini et al., 2018) in mice,
suggesting a causal link between inflammatory dysregulation
andmemory impairment. Based on the increasing risk associated
with immunity genes (including TREM2 and CD33) and early
neuropathological detection of inflammation in late-onset
AD (LOAD), emerging theories also suggest that chronic,
aging-associated, inflammation may be an initiating factor
leading to the disease-defining neuronal loss, amyloid and
tau pathologies of Alzheimer’s (as reviewed in Nazem
et al., 2015). Amyloid aggregates may then induce further
microglial dysfunction exacerbating a vicious cycle of neuro-
inflammation and progression of disease. Several rodent
models of AD have been developed based on this inflammation
hypothesis, including peripheral immune challenge with
bacterial lipopolysaccharide (LPS; Pintado et al., 2012) or
viral polyriboinosinic-polyribocytidilic acid (PolyI:C) proteins
(Krstic et al., 2012), intracerebroventricular (i.c.v) injection
of streptozotocin (STZ; Chen et al., 2013) and transgenic
over-expression of p25 (Sundaram et al., 2012), resulting in
neuro-inflammation, amyloid plaques, NFTs and cognitive
dysfunction. Moreover, mice and rat models of traumatic
brain injury (Yu et al., 2012) and cerebral ischemia (Kawabori
and Yenari, 2015) result in neuro-inflammation, including
increase in toll-like receptors (TLRs), microglial activation, and
expression of pro-inflammatory enzymes (cyclo-oxygenase-2,
COX-2) and cytokines (IL-1β, TNFα), in correlation with
secondary cognitive defects comparable to TBI (Vincent et al.,
2014) and vascular-related dementias (Kawabori and Yenari,
2015).

Alterations in such neuro-inflammatory factors have indeed
been shown to correlate with cognitive improvement by
lithium using these mammalian models. Studies using a
rat LPS model of neuro-inflammation identified lithium
as an anti-inflammatory agent through its prevention of
neuro-inflammatory prostaglandin production, for example
PGE2 and TXB2 (Basselin et al., 2007), and elevation of
the anti-inflammatory docosanoid 17S-hydroxy-DHA (17-OH-
DHA; Basselin et al., 2010). Consistent with these observations,
lithium treatment also prevented traumatic brain injury and
cerebral ischemia-induced microglial activation, in mouse and
rat brain, and this associated with prevention of neuronal loss
(Li et al., 2011; Yu et al., 2012) and anxiety-like behavior using an
open-field test (Yu et al., 2012). Correlating with prevention of
cognitive defects, lithium carbonate improved spatial reference
and working memory in a rat intra-hippocampal injection model
of AD and reversed reductions in anti-inflammatory (IL-4) and
increases in pro-inflammatory (IL-1β, TNFα) cytokines in the
frontal cortex and hippocampus (Budni et al., 2017).

The molecular mediators of lithium’s anti-inflammatory
effects in dementia models are unclear, but correlative evidence
suggest that GSK-3, toll-like receptor 4 (TLR4), signal transducer
and activator of transcription (STAT) and nuclear factor-κB
(NFκB) pathways may play a causal role (Jope et al., 2017;
see Figure 1B). Pro-inflammatory agents such as LPS and
6-hydroxydopamine (6-OHDA) increase microglial GSK-3
activity in vitro (Yuskaitis and Jope, 2009; Green and Nolan,
2012). Conversely, both lithium and specific GSK-3 inhibitors
prevented neuro-inflammatory IL-1β, IL-6, TNFα and nitric
oxide (NO) production in rat microglia (Yuskaitis and Jope,
2009; Green and Nolan, 2012) and astrocytes (Wang et al., 2013),
as well as in mouse hippocampal slice cultures in correlation
with neuronal protection (Yuskaitis and Jope, 2009). Alterations
in expression of TLR4 and its target transcription factor NFκB,
a key regulatory pathway in microglial activation and cytokine
production, correlated with lithium’s rescue of surgery-induced
memory impairment in aged rats in association with reductions
in hippocampal TNF-α and IL-1β (Lu et al., 2015). Additionally,
using TLR4 knockout mice, Cheng et al. (2016) demonstrated
that TLR4 was required for anxiety-induced GSK-3 activation
in the hippocampus and subsequently that GSK-3 inhibition,
using TDZD-8, alleviated increased cytokine and chemokine
production and NFκB activation in this model. Alternatively,
GSK-3 phosphorylates and activates STAT3 by promoting its
association with the pro-inflammatory interferon-γ (IFN-γ)
receptor in mouse primary astrocytes, by mechanisms which
appear independent of TLR4; and lithium and TDZD-8 block
these effects (Beurel and Jope, 2008). Together these data suggest
that GSK-3 may mediate lithium’s anti-inflammatory and neuro-
protective effects by independently modulating TLR4/NFκB
and STAT3 signaling. However, further research is required to
delineate these pathways by measuring the effects of altering
TLR4, NFκB and STAT3 on lithium and GSK-3 inhibitor-
mediated neuronal protection in animal models.

Although lithium’s prevention of neuro-inflammation may
simply represent one of the multi-faceted mechanisms by which
GSK-3 inhibition protects neurons, the above evidence also
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suggests that TLR4 is a direct target for lithium, upstream of
GSK-3 (see Figure 1B). Genetic modification of TLR4 protected
against anxiety-like behavior in mice (Cheng et al., 2016), as
well as Aβ and oxidative stress-induced toxicity in primary
mouse neurons (Tang et al., 2008). Conversely Aβ and 4-HNE
increased TLR4 protein in mouse neurons, and TLR4 levels
were altered in AD patient brain (Tang et al., 2008), further
suggesting that this may represent an attractive therapeutic
target for AD. Consistently, the naturally-occurring compound
gx-50 prevented Aβ-induced microglial activation and neuro-
inflammation (IL-1β, TNFα, NO, COX2) in rat microglia
cultures and APP transgenic mouse brain, to levels comparable
with TLR4 gene silencing, and this correlated with a rescue
of Aβ-induced enhancement of TLR4 protein in vitro and
in vivo (Shi et al., 2016). Moreover, small molecule antagonists
of TLR4 have recently been developed (De Paola et al., 2016)
and protect against neuro-toxicity using in vitro models of ALS
(De Paola et al., 2016) and LPS-induced neuro-inflammation
(Perrin-Cocon et al., 2017), suggesting that an investigation of the
potential of these drugs in dementia models is warranted. Finally,
targeted modulation of NFκB and STAT3 pathways may offer
selective protection against neuro-inflammation in dementia,
for example using natural and rationally-designed inhibitors of
the NFκB pathway (as reviewed, Srinivasan and Lahiri, 2015)
and small molecule STAT3 inhibitors which are effective in
cancer models (Fletcher et al., 2011). This requires empirical
comparison with the efficacy of lithium and GSK-3 inhibitors
against neuronal protection using in vitro and in vivo models of
AD and other dementias.

NEURONAL PROTEOSTASIS: LITHIUM
MAINTAINS PROTEIN TURNOVER BY
BLOCKING TRANSLATION AND
ENHANCING AUTOPHAGY

Protein homeostasis is maintained by balancing protein synthesis
and degradation. Qualitative adaptation of the proteome,
as well as the rapid removal of damaged and unfolded
proteins, is essential for normal cell functioning and this is
particularly important for non-diving cells, such as neurons,
where damaged components cannot be excluded through cell
division (Douglas and Dillin, 2010; Balchin et al., 2016).
Interestingly, lithium impacts on several aspects of proteostasis,
for example by reducing protein synthesis and increasing protein
degradation through modulation of proteasomal activity and
induction of autophagy. This may prove beneficial for many
neurodegenerative diseases, including AD and other forms of
dementia, either by enhancing clearance of abnormal protein
aggregates, which are a common feature of these conditions,
or by maintaining protein homeostasis and therefore preserving
neuronal cell function.

Initial evidence for the effect of lithium on reduction of
protein synthesis came from studies on the development of sea
urchin embryos (Berg, 1968). Lithium treatment using clinically-
relevant lithium doses (0.6–1.0 mM) was able to down-regulate
the expression of the epsilon subunit of the initiation factor-2B

(eIF2B) in rat brain suggesting down-regulation of protein
synthesis (Bosetti et al., 2002). Interestingly, in vitro experiments
using the SH-SY5Y human neuroblastoma cell line showed that
lithium had a positive effect on translation through reduced
inhibitory phosphorylation of elongation factor eEF2, while
GSK-3 inhibitors had opposing effects on phospho-eEF2, thereby
reducing translation (Karyo et al., 2010). Similarly, GSK-3 was
a positive regulator of translation in breast cancer cells, via
phosphorylation of 4E-BP1 and a concomitant increase in eIF4E-
dependent protein synthesis (Shin et al., 2014). Using a different
in vitro system, CHO.T cells, it was shown that GSK-3 negatively
affects translation by mediating inhibitory phosphorylation of
eIF2B (Welsh et al., 1998). These conflicting results may depend
on the system studied and differences between in vitro and in vivo
approaches, but lithium consistently reduces protein synthesis
across species in models of neurological diseases. Low lithium
concentrations decreased levels of cerebral protein synthesis
to control levels in the Fmr1 KO mouse model of Fragile X
syndrome, but had no effect on translation in wild-type mice (Liu
et al., 2012). Lithium reduced protein synthesis, accompanied by
increased longevity, in Drosophila models of AD (Sofola et al.,
2010; Sofola-Adesakin et al., 2014), and experiments in yeast
(Schizosaccharomyces pombe) confirmed the inhibitory effect of
lithium on translation and its anti-aging effect as measured by
chronological lifespan (Sofola-Adesakin et al., 2014). Although
the precise molecular mechanisms remain unclear, several in vivo
approaches therefore demonstrate reduced protein synthesis
in response to lithium (Figure 1B). The benefits of this may
include improved neuronal function by re-investing energy in
cell maintenance processes, or delaying formation of protein
aggregates by improving protein quality due to the increased
availability of the protein folding and degradation machinery.

Lithium treatment is also increasingly linked to degradation
pathways such as autophagy. Autophagy is a process whereby
a portion of the cytoplasm is packaged into autophagosomes
and subsequently, upon fusion with the lysosome, the content
is degraded (Mizushima and Komatsu, 2011; Nikoletopoulou
et al., 2015; Suzuki et al., 2017). Autophagy can degrade
selective or random cargo and it is the only process that can
degrade entire organelles (Mizushima and Komatsu, 2011).
The main autophagy inducers are starvation and lack of
growth factors which, through inhibition of mammalian target
of rapamycin (mTOR) signaling, then trigger ULK1 complex
(ULK1-ATG13-FIP200-ATG101) formation at Atg9-containing
membranes and activation of the class 3 phosphatidylinositol-
3-OH kinase (PI(3)K) complex (Jung et al., 2010). Significantly,
autophagy can degrade protein aggregates and its reduction
and defects have been consistently considered as contributing
factors towards neurodegeneration (Tanaka and Matsuda, 2014;
Frake et al., 2015). Moreover, knock-out mice that lack
ATG5 or ATG7 autophagy genes in neurons, although viable,
suffer from motor and behavioral defects, correlating with
ubiquitinated protein aggregation and apoptosis (Hara et al.,
2006; Komatsu et al., 2006). This suggests that insufficient
autophagic clearance may directly cause neurodegeneration.
Compounds that enhance autophagy, such as lithium, are
therefore a promising therapeutic strategy for a variety of
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neurodegenerative conditions, such as AD, FTD, PD, HD and
ALS, by removing toxic protein aggregates and/or improving
mitochondrial health via mitophagy (Frake et al., 2015; Lionaki
et al., 2015; Galluzzi et al., 2017; Menzies et al., 2017). For
example, lithium treatment ameliorated motor dysfunction in
mice overexpressing FTD-mutated human tau (P301L) via
increased autophagy (Shimada et al., 2012). Low dose lithium
also delayed disease in ALS patients (Fornai et al., 2008a),
and neuroprotection by lithium in the SOD1G93A mouse
model of ALS has been attributed to increased autophagy
(Fornai et al., 2008a,b). Although some studies report no
prevention of disease progression in this model (Pizzasegola
et al., 2009). Numerous studies therefore report that lithium
treatment is beneficial for a variety of neurodegenerative
disorders owing to its capacity to enhance autophagy (Motoi
et al., 2014). It is important to note, however, that there
are exceptions where improvements in memory and decreased
amyloid plaque formation following lithium treatment of
mice expressing APPswe/PS1A246E associated with decreased
autophagy (Zhang et al., 2011). These discrepancies may be
explained bymethodological differences in measuring autophagy
or by variations in the lithium concentration used (Klionsky
et al., 2016).

Interestingly, lithium has been shown to induce authophagy
through mTOR-independent mechanisms (Figure 1B), more
specifically via inhibition of IMPA leading to free inositol
depletion and reduced myo-inositol-1,4,5-triphosphate (IP3)
levels (Sarkar et al., 2005; Sarkar and Rubinsztein, 2006). This
effect is replicated by the IMPA inhibitor L-690,330 (Atack et al.,
1993) which enhanced the degradation of A53T α-synuclein
and HDQ74 mutant huntingtin protein-expressing PC12 cells
(Sarkar et al., 2005). GSK3β inhibition using SB216763 did
not have any effect on autophagy induction or mutant
HDQ74 protein clearance (Sarkar et al., 2005), providing further
support that the effects of lithium on autophagy are GSK-3
independent. GSK3β inhibition can, in fact, have opposing
effects and reduce autophagy through activation of the mTOR
pathway. As these two lithium targets, IMPA and GSK3β, have
independent but opposing effects on autophagy, combination
of lithium with the mTOR inhibitor rapamycin, which has
beneficial neuroprotective effects in Drosophila and mice models
of AD and FTD (Khurana et al., 2006; Spilman et al., 2010;
Ozcelik et al., 2013; Lin et al., 2017), maximized autophagy
induction and clearance of mutant aggregate prone proteins
more effectively than singular treatments using in vitro and
Drosophilamodel of HD (Sarkar et al., 2008).

CROSS-TALK BETWEEN Wnt, BDNF AND
mGluR SIGNALING PATHWAYS MEDIATES
LITHIUM-DEPENDENT NEUROGENESIS,
CELL SURVIVAL AND SYNAPTIC
PLASTICITY

Lithium plays many crucial roles required for proper nervous
system function, such as promoting neurogenesis, synaptic

plasticity and cell survival (Chen et al., 2000; Schloesser et al.,
2008; Kim and Thayer, 2009; see Figure 1B). Neurogenesis is
vital for hippocampal plasticity, and persists into adulthood
in the mammalian brain. It underlies learning and memory
processes, and thus alterations in neurogenesis are implicated
in neurodegenerative diseases such as AD (Taupin, 2008).
Several animal studies have investigated neurogenesis in AD
with rather conflicting results. For example, two studies
that utilized APPSwe, Ind transgenic mice, expressing both
the Swedish and Indiana amyloid precursor protein (APP)
mutations but under different promoters, reported opposing
phenotypic outcomes. One study reported an enhancement in
neurogenesis in the hippocampus of transgenic mice relative
to controls (Jin et al., 2004), while the other showed a
reduction (Fiorentini et al., 2010). In the latter study, however,
treatment of young mice with lithium, at 3 months of
age, significantly increased neurogenesis in correlation with
activation of Wnt signaling, as measured by increased nuclear
β-catenin staining in newborn neurons (Fiorentini et al.,
2010). Canonical Wnt signaling inhibits GSK3, thus enabling
translocation of β-catenin to the nucleus and enhancing its
association with the TCF/LEF family of transcription factors.
Subsequent transcription of Wnt/β-catenin target genes leads to
regulation of diverse processes that are critical for development
of the mammalian CNS such as synapse plasticity and
neurogenesis (Valvezan and Klein, 2012). Similarly, lithium
pheno-copies the effects of Wnt signaling on GSK-3 inhibition
andmodulates neurogenesis and synaptic plasticity via activation
of downstream β-catenin/TCF-LEF target genes (Fiorentini
et al., 2010; Valvezan and Klein, 2012; Morris and Berk,
2016). Moreover, lithium is able to suppress astrogliogenesis
(generation of new astroglia/astrocytes), through non-GSK-
3-mediated mechanisms. Hence lithium may increase the
neuronal fate of neuronal stem cells in two ways, by increasing
neurogenesis and reducing astrogliogenesis (Zhu et al., 2011).

Cell survival by lithium is mediated by upregulation of basal
adenylate cyclase activity, and thereby cyclic AMP (cAMP)
and protein kinase A (PKA), which leads to CREB-dependent
transcription of brain-derived neurotrophic factor (BDNF) and
anti-apoptotic B cell lymphoma protein-2 (Bcl-2) genes (Chen
and Chuang, 1999; Quiroz et al., 2010). Bcl-2 has been attributed
to lithium’s anti-apoptotic effects, potentially by decreasing the
pro-apoptotic Bax and p53 genes (Sugawara et al., 2010; Can
et al., 2014). Bax promotes mitochondrial cytochrome c release
subsequently promoting cytosolic activation of caspases and thus
the degradation of specific protein substrates (Chen and Chuang,
1999). Bcl-2 counteracts these effects by preventing cytochrome c
translocation and thus inhibiting Bax-induced caspase activation
(Kluck et al., 1997). Alterations in the expression of Bcl-2
family members in AD brain have indicated a role for apoptosis
in neuronal loss in this condition, but the role of caspase
activation in mediating effects on AD pathology are unclear.
Over-expression of Bcl-2 or neutralizing antibodies for Bax,
however, prevented Aβ-induced death in vitro using primary
neurons (Kudo et al., 2012). Lithium-mediated GSK-3 inhibition
suppresses apoptosis (Chin et al., 2005), but it should be noted
that the specific role of bcl-2 in mediating this effect is unclear
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as recent data has challenged alterations in its expression in
response to lithium in light of optimal normalizing probes
(Odeya et al., 2018).

Neurotrophins are also important mediators of cell survival,
neurogenesis and synaptic maintenance. BDNF binds to tyrosine
receptor kinase B (TrkB), both of which are widely expressed
in the developing and adult mammalian brain, and activates
phospholipase Cγ (PLCγ), phosphatidylinositol 3-kinase (PI3K),
and extracellular signal-regulated kinase (ERK) pathways which
are involved in neuronal differentiation, preventing apoptosis,
promoting cell survival andmaintaining synaptic plasticity (Tajes
et al., 2009; Cunha et al., 2010). BDNF/TrkB-induced PI3K
signaling leads to phosphorylation and inhibition of GSK-3,
enabling the activation of downstream effectors, including
mTOR, that play a key role in synaptic remodeling (Cunha
et al., 2010; Morris and Berk, 2016). Moreover, BDNF plays
an important role in the induction and maintenance of long
term potentiation (LTP), synaptic transmission by acting at
pre- and postsynaptic sites, and presynaptic release of the
excitatory neurotransmitter glutamate (Jovanovic et al., 2000;
Wurzelmann et al., 2017). Patients with bipolar disorder have
significantly decreased BDNF in blood serum levels compared to
healthy controls (Fernandes et al., 2015), and conversely lithium
treatment is associated with increased serum BDNF protein in
these patients (Gideons et al., 2017). Chronic lithium treatment
has been shown to increase BDNFmRNA and protein expression
across brain regions in rodent and mice models (Fukumoto
et al., 2001; Hashimoto et al., 2002; Gideons et al., 2017), as
well as in cortical neurons following acute administration. Indeed
pre-treatment with either lithium or BDNF protected rat cerebral
cortical neurons from glutamate excitotoxicity (Hashimoto et al.,
2002), suggesting that BDNF is a key regulator of lithium-
mediated neuroprotection. However, the therapeutic potential
of BDNF is restricted, due to its relatively short half-life of less
than 10 min, and inability to cross the blood-brain barrier (BBB;
Wurzelmann et al., 2017). Small molecules that mimic BDNF’s
function without its pharmacokinetic barriers would, therefore,
be highly favorable. One such compound is 7,8-dihydroxyflavone
(7,8-DHF), a selective TrkB agonist, which initiates activation
of BDNF/TrkB signaling pathways, with a much longer half-life
and greater permeability across the BBB than BDNF (Jang et al.,
2010; Wurzelmann et al., 2017). Importantly, 7,8-DHF has been
shown to have beneficial effects in cellular and animal models
of AD, such as protecting primary neurons from Aβ-induced
toxicity and promoting synaptogenesis (Zhang et al., 2014).
Furthermore, chronic administration of 7,8-DHF prevented Aβ

deposition, restored synaptic plasticity, and prevented memory
deficits in AD transgenic mice (Zhang et al., 2014), suggesting
that BDNF/TrkB signaling may have therapeutic potential in
treatment of AD.

Glutamate is a major excitatory neurotransmitter in the
CNS that plays important roles in synaptic plasticity and
memory by initiating diverse signaling pathways including
mTOR activation, phospholipase C, inositol triphosphate, ERK
signaling and calcium release (Kumar et al., 2015; Ribeiro et al.,
2017). Glutamate acts on ionotropic receptors such asN-methyl-
D-asparate (NMDA), and metabotropic receptors to initiate

an array of signaling responses (Kumar et al., 2015; Ribeiro
et al., 2017). Metabotropic glutamate receptors (mGLuRs) are
distributed throughout the CNS, and carry outmultiple functions
in maintaining synaptic transmission. Dysregulation of mGluRs
have been implicated in several neurodegenerative diseases such
as PD and AD, as well as diseases that affect intellectual
capabilities including Fragile X Syndrome (Niswender and
Conn, 2010; Ribeiro et al., 2017). Lithium attenuates the effects
of hyperactive glutamate-mediated calcium signaling and has
therefore been used as a therapy for conditions in whichmGLuRs
are dysfunctional (Sourial-Bassillious et al., 2009). For example,
Fragile X mental retardation 1 (Fmr1) knockout mice have
enhanced long term depression (LTD) in the hippocampus, due
to increased activity of mGluR group I type 5 (Huber et al.,
2002). Treating Fmr1 knockout mice with lithium improved
hyperactivity and rescued cognitive impairment by restoring
mGluR-LTD (Choi et al., 2011; Liu et al., 2011). Similarly
in Drosophila fmr1 (dfmr1) mutant flies, lithium significantly
improved mushroom body defects and restored learning and
memory capabilities, as measured by altered courtship behavior,
through a reduction in mGluR activity (McBride et al., 2005).
Lithium affects signaling pathways that overlap with those
regulated by mGluR. For example group 1 mGluRs mediate
cerebellar mGluR-LTD by increasing inositol triphosphate (IP3)
generation and releasing intracellular Ca2+ stores, and lithium is
able to reverse these effects by inhibiting inositol levels (Berridge,
1993, 2009; Schloesser et al., 2008; Lüscher and Huber, 2010).
Moreover, as previously mentioned, in lower model organisms
loss of function mutations in the genes involved in inositol
turnover, IMPA (ttx in C. elegans) and IPP (ipp in Drosophila),
display defects in localization of synaptic components and
synaptic transmission, respectively, which are phenocopied by
lithium treatment (Acharya et al., 1998; Tanizawa et al., 2006).
This strengthens the role of lithium in maintaining synaptic
function by GSK-3 and IMPA-dependent mechanisms (see
Figure 1B).

Although memantine, an NMDA antagonist, is currently
used in symptomatic treatment of AD, long-term inhibition of
this glutamate receptor may also lead to memory impairment
due to its direct role in excitatory glutamatergic synaptic
transmission. mGluR5 antagonists are therefore an attractive
alternative, as mGluR5 plays a modulatory role in synaptic
maintenance (Kumar et al., 2015). In particular, MPEP
(2-Methyl-6-(phenylethynyl)pyridine) and MTEP(2-Methyl-
4-thiazolyl)ethynyl)pyridine) are non-competitive mGluR
antagonists that protect against neuronal toxicity in vitro, using
primary neurons from AD transgenic mice, by preventing Aβ

oligomer-induced dendritic spine loss (Um et al., 2013; Overk
et al., 2014). Aβ oligomers interact with Prion protein (Prpc),
and enhance the interaction between Prpc and mGluR for
signal transmission (Um et al., 2013; Haas et al., 2017). MPEP
and MTEP inhibit both glutamate and Aβ/Prpc signaling, while
BMS-94923, a silent allosteric modulator does not alter glutamate
signaling but rather inhibits the mGluR5-Prpc interaction (Haas
et al., 2017). Furthermore, BMS-94923 is able to prevent Aβ

oligomer-induced inhibition of synaptic plasticity, and rescues
memory deficits in a transgenic mouse model of AD, and as
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TABLE 1 | Drugs targeting downstream mediators of lithium-mediated neuroprotection.

Class Drugs Neuroprotection in vitro and in animal
models of neurodegeneration

Reference

GSK-3 inhibitors ATP competitive: Indirubin Paullones
Thiazoles Arylindolemaleimide
(SB-216763 and SB-415286)

Neuroprotection, synaptic maintenance,
improved cognitive function, reduced tau
phosphorylation and, in some cases Aβ

accumulation, in mouse models of AD and FTD.

Eldar-Finkelman and
Martinez (2011)

Non-ATP competitive: Thiadiazolidindiones
(TDZD-8, NP12/tideglusib) L803-mts

IMPA inhibitor L-690,330 Enhanced degradation of mutant α-synuclein
and huntingtin in PC12 neuroblastoma cells.

Sarkar et al. (2005)

Nrf2 activators Triterpenoids (CDDO-MA, CDDO-EA,
CDDO-TFEA)

Reduced oxidative stress, improved cognition
and motor function in mouse models of AD
and ALS.

Dumont et al. (2009),
Neymotin et al. (2011)

22h Protected mouse primary neurons from
amyloid-induced toxicity.

Kerr et al. (2017)

Dimethyl fumarate (DMF) Preserved viability against Aβ-induced toxicity in
SHSY-5Y cell and mouse hippocampal slice
cultures, and was neuro-protective in mouse
models of PD and FTD.

Lastres-Becker et al.
(2016), Campolo et al.
(2018), Cuadrado et al.
(2018)

BDNF/TrkB activator dihydroxyflavone (7,8-DHF) Protected primary neurons from Aβ-induced
toxicity, and promoted synaptogenesis.

Zhang et al. (2014)

mGluR inhibitors MPEP (2-Methyl-6-(phenylethynyl)pyridine),
and
MTEP(2-Methyl-4-thiazolyl)ethynyl)pyridine

Prevented toxicity in neuronal cultures and AD
and DLB mouse models.

Um et al. (2013), Overk
et al. (2014)

BMS-94923 Prevented Aβ-induced inhibition of synaptic
plasticity, and rescued memory deficits in an AD
mouse model.

Haas et al. (2017)

TLR4 inhibitors IAXO102 and FP7 Protected toxicity in primary neurons from the
SOD1G93A mice model of ALS.

De Paola et al. (2016)

Gx-50 Prevented Aβ-induced microglial activation and
neuro-inflammation in rat microglia and
APPswe, PSEN1dE9 mice.

Shi et al. (2016)

such this drug has great therapeutic potential for AD treatment,
without the adverse side effects from modulating glutamate
(Haas et al., 2017).

FUTURE PERSPECTIVES: COMBINATION
THERAPIES VS. LITHIUM TREATMENT
FOR DEMENTIA?

Lithium therefore has multi-factorial neuro-protective effects,
and drugs targeting several of these mechanisms can slow
cognitive decline in animal models of dementia (see Table 1).
Combining such therapies may synergize these protective
properties whilst excluding the toxic peripheral side effects,
due to renal COX2 activation, observed with long-term
lithium treatment. Although specific GSK-3 inhibitors, such
as tideglusib, have reached clinical trial and appear to be
safe for human use, they have so-far not shown significant
therapeutic benefit in mild-moderate AD and further studies
are required to optimize dosing and to measure effects at
earlier disease stages (Lovestone et al., 2015). GSK-3 inhibition

however does not recapitulate all of the protective features
of lithium (see Figure 1), and this raises the possibility that
their combined use with drugs targeting non-GSK-3-dependent
mechanisms of lithium action may exert more effective neuro-
protection under accumulating damage in dementia. Few studies
have investigated these interactions, but additive protective
effects have been observed when combining lithium with
rapamycin or Keap1 inhibition in Drosophila models of HD
and AD respectively (Sarkar et al., 2008; Kerr et al., 2017).
Although lithium enhances autophagy by inhibiting IMPA, as
described above, GSK-3 inhibition limits this protective property
of lithium by activating mTOR. Combining lithium with
the mTOR inhibitor rapamycin therefore enhances autophagy
leading to improved efficacy against huntingtin-induced proteo-
toxicity in comparison to treatment with either compound
alone (Sarkar et al., 2008). Our studies also indicate that
lithium, and TDZD-8, protect against Aβ42 neuro-toxicity
predominantly through Nrf2-independent mechanisms and that
dual Keap1-Nrf2 disruption and lithium treatment enhance
neuro-protection through non-overlapping mechanisms (Kerr
et al., 2017). Further work is required to uncouple these
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mechanisms using specific GSK-3 inhibitors and to optimize
conditions for supplementing GSK-3 dependent neuroprotection
with rapamycin and Nrf2 activators, as well as testing
their combination with anti-inflammatory (TLR4 antagonists),
neurogenic (TrKB agonists) and synaptic maintenance (mGluR
antagonists) compounds, which have individual beneficial effects
in neuroprotection (Table 1).

Alternatively, improved formulation and administration of
lithiummay better encapsulate the benefits of its neuroprotective
properties in a single dementia therapy. Chronic (>15 months)
microdose lithium administration has been suggested to stabilize
memory impairment in AD patients (Nunes et al., 2013) and
prevent neuropathology and cognitive decline in mice and
rat models of AD with no observed toxicity (Nunes et al.,
2015; Wilson et al., 2017). More recently LISPRO, a new ionic
co-crystalized formulation of lithium salicylate and L-proline,
has been reported to have improved brain penetrance and a
safer pharmacokinetic profile over classical lithium chloride
and carbonate salts (Habib et al., 2017). At therapeutically
relevant doses, chronic LISPRO treatment prevented abnormal
Aβ accumulation and tau phosphorylation, as well as neuronal
and synaptic loss, in the Tg2576mousemodel of AD (Habib et al.,
2017). Interestingly, this correlated with several of the established
neuro-protective properties of lithium salts, including inhibition
of GSK-3, enhanced autophagy, reduced neuro-inflammation
and enhanced neurogenesis. Unlike lithium carbonate and
lithium salicylate, however, acute or chronic LISPRO treatment
did not enhance renal COX2 levels in vitro or in vivo, suggesting
an improved safety profile by preventing the chronic renal
toxicity observed using traditional lithium formulations.

The promise of lithium as a multi-functional therapy for the
treatment of dementia therefore remains. Pre-clinical studies,
across model organisms from flies to rodents, will prove
vital however for systematic comparison of the effectiveness
of combination treatments over new and microdose lithium
formulations in slowing cognitive decline. Such analyses will
guide the best approach for capturing the beneficial effects of
lithium in the design of new disease-modifying therapies for
clinical use in AD, as well as other neurodegenerative conditions
for which lithium has shown favorable neuro-protective effects.
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