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Monoamine oxidase A (MAO-A) is an enzyme that regulates the levels of monoamine
neurotransmitters, such as serotonin, noradrenaline and dopamine and it has been
used as a therapeutic target for depression. However, MAO-A inhibitors, which directly
acts on MAO-A protein, have limited use due to their adverse effects. microRNAs
(miRNAs) are 18–22 nucleotide long, small non-coding RNAs, which have recently
emerged as regulators of protein levels that could potentially be new therapeutic targets
for psychiatric disorders. This review article aims to discuss the current status of the
treatment for depression with MAO-A inhibitors and the regulatory factors of MAO-A.
Further, the review also proposes possible regulatory mechanisms of MAO-A by miRNAs,
which leads to better understanding of the pathology of depressive disorders and their
potential use as therapeutic agents.
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INTRODUCTION

Depression is the most prevalent mental disorder worldwide (Ferrari et al., 2013; Kessler and
Bromet, 2013). The 5-hydroxytryptamine (5-HT) system, which includes the 5-HT transporters,
5-HT receptors and monoamine oxidase A (MAO-A), has been used as a drug target in the
pharmacotherapeutics for depression. MAO-A inhibitors have been used as antidepressants
and found to be effective especially for treatment-resistant depression and atypical depression.
However, the use of MAO-A inhibitors has adverse effects on peripheral organs and causes
excessive activity in the central nervous system. Therefore, identifying a novel method to inhibit
MAO-A that would have no adverse effects or less adverse effect could improve the quality of
medication for depression. In this review article, we address a question; Can microRNAs (miRNAs)
be prominent therapeutic targets for depression by regulating MAO-A in the brain?

Patients with depression show high MAO-A levels in brain regions, such as the prefrontal
cortex, midbrain and hippocampus (Meyer et al., 2006). Positron emission tomography (PET)
for MAO-A in the brain shows that higher MAO-A density in the brain might contribute
to the recurrence of depressive symptoms (Meyer et al., 2009), suggesting that inhibition
of MAO-A may be a prominent therapy to prevent the recurrence of depression. MAO-A
inhibitors act directly on MAO-A protein, inhibit its catalytic activity and result in elevated
5-HT concentration in the brain (reviewed in Finberg, 2014; Finberg and Rabey, 2016; Fišar,
2016). PET studies showed that treatment with MAO-A inhibitor, including moclobemide
and phenelzine, led to extensive MAO-A blockade across brain regions (Ginovart et al.,
2006; Sacher et al., 2011; Chiuccariello et al., 2015). Whole body imaging showed widespread
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distribution of MAO-A inhibitor, clorgyline, in peripheral
organs, such as the thyroid, lung, heart and kidney (Fowler et al.,
2004), indicating that action of MAO-A inhibitors is not brain-
specific. Inhibition of MAO-A is effective in the treatment of
atypical depression and treatment-resistant depression. Several
lines of evidence suggested that MAO inhibitors are effective
for tricyclic antidepressant-resistant depression (Thase et al.,
1992; McGrath et al., 1993). A meta-analysis showed that MAO
inhibitors are more effective for atypical depression, compared
to tricyclic antidepressants (Henkel et al., 2006). For example,
an MAO inhibitor, phenelzine, better prevents the recurrence
of depressive symptoms, compared to tricyclic antidepressants,
nortriptyline (Georgotas et al., 1989). In addition to changing
neurotransmitter levels in the brain, inhibition of MAO leads
to a neuroprotective effect against glucocorticoid (GC)-induced
apoptosis (Johnson et al., 2010; Lam et al., 2016). M30,
an MAO inhibitor with iron-chelating antioxidant properties,
prevents corticosterone-induced alteration in the hippocampus,
such as activation of indoleamine 2,3-dioxygenase, hippocampal
apoptosis, loss of synaptic proteins and neurodegeneration
and neuroinflammation (Lam et al., 2016). Selective MAO-A
inhibition with pirlindole abolishes the alteration induced by
chronic mild stress, such as behavioral changes in forced
swimming test and the dendritic atrophy of granule neurons,
but promotes adult neurogenesis in the hippocampus of rats
exposed to chronic mild stress (Morais et al., 2014), indicating
the effectiveness of MAO-A inhibition for stress-induced
neurobiological alterations in the brain. These clinical and animal
studies support the importance of proper regulation of MAO-A
for treatment of depression.

The use of MAO-A inhibitors, however, has been limited
because of their adverse effects. A cardiovascular effect called the
‘‘cheese effect’’ is caused by the inhibition of metabolism of food
tyramine following MAO inhibitor treatment (Horwitz et al.,
1964; Anderson et al., 1993). Under normal condition, dietary
tyramine is metabolized in the gut and liver, and thus tyramine
does not enter the systemic circulation. However, because
MAO-A is a major enzyme which catalyzes the metabolism
of tyramine, inhibition of MAO-A leads to the elevation of
blood tyramine levels, followed by the potentiation of the
sympathomimetic effect of tyramine, causing the elevation of
blood pressure (Youdim and Bakhle, 2006). This adverse effect
limits the use of MAO inhibitors for clinical treatment of
depression, regardless of their effectiveness. Serotonin syndrome
or serotonin toxicity is another concern in the use of MAO
inhibitors. Excessive MAO-A inhibition leads to elevated 5-HT
levels, which cause autonomic hyperactivity (fever, diaphoresis
and tachycardia), neuromuscular hyperactivity (tremor, clonus,
myoclonus and hyperreflexia), and altered mental status (Sun-
Edelstein et al., 2008). Irreversible MAO inhibitors, such as
tranylcypromine, can cause severe serotonin syndrome even
when used alone (Boyer and Shannon, 2005). Reversible
MAO-A inhibitors have also been associated with serotonin
syndrome (Hawley et al., 1996a,b; Mason et al., 2000).
Moclobemide causes serotonin syndrome at a higher percentage
(approximately 50%) when used with other serotonergic
agents, including selective serotonin reuptake inhibitors and

serotonin–noradrenaline reuptake inhibitor (Isbister et al.,
2003). These adverse effects of MAO-A inhibitors are mainly
caused by their off-target effects in the peripheral organs and
the brain. Therefore, development of methods for targeted
inhibition of MAO-A in brain regions involved in the
pathophysiology of depression would be necessary for the
improvement of pharmacotherapy for depression. Modulating
the regulators of MAO-A, such as miRNAs, is one of the possible
methods for brain-specific or brain region-specific inhibition of
MAO-A.

Studies have suggested that MAO-A in the brain is regulated
by several factors, including transcription factors, steroid
hormones and enzymes (reviewed in Higuchi et al., 2017).
Recent studies suggest transcription factors for MAO-A gene,
such as Kruppel like factor 11 (KLF11) and cell division cycle
associated 7 like (CDCA7L; also known as R1), inhibit MAO-A
in the brain (Johnson et al., 2011; Grunewald et al., 2012;
Harris et al., 2015). In addition, silent mating type information
regulation 2 homolog 1 (SIRT1) affects the regulation of MAO-A
transcription by deacetylating helix-loop-helix transcription
factor (nescient helix-loop-helix 2 (NHLH2); Libert et al.,
2011) and Forkhead box O-1 (FOXO1; Wu and Shih, 2011).
Furthermore, GC increases the gene expression of MAO-A
through binding of GC receptors (GRs) to a GC response element
in the promoter region of MAO-A gene (Ou et al., 2006). Ring
finger protein 180 (RNF180), also known as ring finger protein in
neural stem cells (RINES), ubiquitinates MAO-A and promotes
its degradation (Kabayama et al., 2013). These regulatory factors
could be potential therapeutic targets to inhibit MAO-A gene
expression and miRNAs targeting their genes could also be used
to modulate MAO-A in the brain.

POTENTIAL miRNAs THAT CHANGE
BRAIN MAO-A LEVELS

miRNAs are small non-coding RNAs with approximately 18–22
nucleotides, which downregulate the translation of mRNAs or
promote the degradation of mRNAs by binding to specific
complementary sequences of target mRNAs. miRNAs play an
important role in various neurobiological processes, including
neurogenesis (Lang and Shi, 2012; Schouten et al., 2012), stress
response (Manakov et al., 2012) and neurodegeneration (Gascon
and Gao, 2012). Many miRNAs are highly conserved throughout
evolution from invertebrate to vertebrate species (Davis et al.,
2015). Several studies addressed the roles of miRNAs in the
regulation of MAO-A. MAO-A gene is predicted to be a target of
many miRNAs in miRNA target prediction (e.g., miRanda (Betel
et al., 2010), TargetScan (Agarwal et al., 2015) and microT-CDS
(Reczko et al., 2012; Paraskevopoulou et al., 2013)). In addition,
some studies suggest that miRNAs indirectly regulate MAO-A
by targeting mRNA coding the regulatory factors of MAO-A
expression.

miR-142
miR-142 family is mitochondria-enriched miRNAs in the
hippocampus. In the hippocampus of rats, miR-142-3p and
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-5p are present at higher levels in mitochondria, compared
to cytosol. miR-142-3p and -5p are detected in primary
cortical neuronal, astrocyte and microglial culture prepared
from rat pups; however, their levels are higher in astrocytes
and microglia, compared to neuronal cells (Wang et al.,
2015). This study (Wang et al., 2015) did not investigate
the relationship between miR-142 family and the regulation
of MAO-A. However, it would be interesting topic because
the hippocampus receives serotonergic projections extensively
from the median raphe nucleus (Morin and Meyer-Bernstein,
1999) and MAO-A is localized in the outer mitochondrial
membrane (Edmondson et al., 2005). A few studies have
shown the involvement of miR-142 in the regulation of
MAO-A expression in the brain. miR-142 expression in human
neuronal cell line leads to a decrease in MAO-A mRNA and
enzyme activity (Chaudhuri et al., 2013a). In a prediction
based on the nucleotide sequence of 3’-UTR, MAO-A mRNA
is not a direct target of miR-142. However, overexpression
of pre-miR-142 and transfection of miR-142-5p mimic in
HEK293T cells reduces Sirtuin 1 (SIRT1) protein levels, whereas
inhibition of miR-142-5p increases SIRT1 protein levels. Human
neurons transduced with miR-142-expressing lentivirus also
show a decrease in SIRT1 protein levels (Chaudhuri et al.,
2013b). Furthermore, Chaudhuri et al. (2013a) tested the effect
of SIRT1 overexpression on MAO-A protein levels in miR-
142-overexpressing cells and observed that a reduction of
MAO-A induced by miR-142 overexpression was abolished by
SIRT1 overexpression, indicating that the effect of miR-142 on
MAO-A is mediated by SIRT1.

miR-132
miR-132 is a brain-enriched miRNA, which shows higher
expression levels in the brain, compared to other organs in
humans and mouse (Sempere et al., 2004), suggesting that
this miRNA could be a good target to modulate MAO-A
specifically in the brain. miR-132 is a potential miRNA which
targets MAO-A gene (Figure 1). Toxoplasma gondii infection
in human neuroepithelioma cells and mice brain upregulate
miR-132, decrease MAO-A gene expression and protein levels
and decrease dopamine metabolism but not 5-HT metabolism,
suggesting that miR-132 could downregulate MAO-A and
selectively affect dopaminergic system rather than 5-HT system
(Xiao J. et al., 2014). In this study, however, the interaction
between miR-132 and MAO-A gene was validated only with
in silico prediction. Therefore, experimental validation of their
interaction should be the subject of additional studies. Chronic
unpredictable mild stress (CUMS) downregulates the levels of
miR-132 in the hippocampus but not in the frontal lobe of
mice, whereas this effect of CUMS in the hippocampus is
reduced by duloxetine treatment (Pan and Liu, 2015), indicating
that antidepressant effects of duloxetine might be mediated by
miR-132 in the hippocampus.

miR-34 Family
miR-34 family is highly conserved across species. miR-34a is
expressed at the highest levels in the brain among different
mouse organs, although it is present at moderate levels in the

lung, heart and kidney as well (Bommer et al., 2007). miR-34a
targets SIRT1 mRNA (Yamakuchi et al., 2008; Yamakuchi and
Lowenstein, 2009; Tarantino et al., 2010; Figure 1), which
has two binding sites of miR-34 family (Zovoilis et al., 2011).
miR-34c is highly expressed in the hippocampus, compared to
other brain regions (Zovoilis et al., 2011). APPPS1-21 mice,
a model of amyloid pathology, show an increase in miR-34c
levels and a decrease in SIRT1 protein, but not SIRT1 mRNA
levels, in the hippocampus, in line with an action of miR-34c to
repress the translation of mRNA (Zovoilis et al., 2011). miR-34
seed inhibitor abolishes the reduction of SIRT1 protein and
the impaired memory function in APPPS1-21 mice (Zovoilis
et al., 2011). Since SIRT1 is involved in the regulatory system of
MAO-A in the brain (Libert et al., 2011), miR-34c could be used
as a therapeutic target for depression.

Acute restraint stress and chronic social defeat stress
upregulate miR-34c in the amygdala of mice (Haramati
et al., 2011). miR-34c overexpression leads to a decrease
in corticotropin-releasing factor receptor type 1 (CRFR1)
expression in the amygdala via binding to 3’UTR of
CRFR1 mRNA. Also, miR-34c overexpression decreases in
the responsiveness of cells to CRF in mouse neuroblastoma N2a
cells expressing CRFR1 but not CRFR2 (Haramati et al., 2011).
However, the functional connection between miR-34c and other
factors involved in the regulation of MAO-A in depression or
stress has not been studied. Considering that miR-34c can affect
SIRT1 (Zovoilis et al., 2011; Figure 1), it would be plausible to
hypothesize that miR-34c might be involved in the regulation of
MAO-A in stress-related disorders.

miR-124
miR-124, one of the highly conserved miRNAs, is the most
abundant miRNA in the brain, which is involved in various
pathophysiology in the brain, such as neurodegeneration, stress
response, brain tumor and neuroimmune disorders (Reviewed
in Sun et al., 2015). miR-124 is a brain-specific miRNA (Babak
et al., 2004; Barad et al., 2004; Kim et al., 2004; Sempere
et al., 2004; Cao et al., 2006); therefore, modulation of miR-124
is likely to be a good strategy for brain-specific inhibition
of MAO-A, which has not been achieved with conventional
MAO-A inhibitors. In addition, real-time RT-PCR showed that
miR-124 expression levels are higher in the cerebral cortex than
cerebellum and spinal cord, suggesting the regional difference
in miR-124 expression in the central nervous system (Mishima
et al., 2007). The role of miRNA-124 in stress and depression is
also well studied. Acute restraint stress decreases miR-124 but
increases mineralocorticoid receptors (MRs), a target of miR-
124, in the amygdala of mice, indicating the function of miR-124
as a regulator of MR levels (Mannironi et al., 2013). Chronic
ultra-mild stress induces the downregulation of miR-124 in the
hippocampus of mice, which is abolished by chronic treatment
with imipramine (Higuchi et al., 2016). In addition, miR-124
overexpression in the hippocampus leads to stress resilience
to chronic ultra-mild stress, while the inhibition of miR-124
increases the stress susceptibility of mice (Higuchi et al., 2016).
In another study (Bahi et al., 2014), however, chronic social
defeat stress upregulated miR-124 in the hippocampus but not
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in the cortex of rats. The overexpression of miR-124 in the
hippocampus exacerbates depressive behavior; the inhibition
shows anti-depressant-like effects. Both overexpression and
inhibition of miR-124 in the cortex, however, show no effect on
behavior (Bahi et al., 2014). This result indicates that effect of
miR-124 is brain-region-specific. The difference in the roles of
miR-124 in the hippocampus between these two studies (Bahi
et al., 2014; Higuchi et al., 2016) suggests that effects of miR-124
may depend on types of stress, model animals and genetic
background.

Chronic corticosterone treatment increases miR-124 in the
prefrontal cortex of rats and in silico prediction showed that the
promoter region of miR-124 has GR binding motif (Dwivedi
et al., 2015), suggesting that miR-124 may modulate the response
of the prefrontal cortex to hyperactivity of the HPA axis in stress.
A recent study suggested that miR-124 targets GR mRNA and
miR-124 mimics decreases protein levels of GR in HEK 293 cells
(Wang et al., 2017; Figure 1). Inhibition ofmiR-124 by antagomir

abolishes the reduction of the hippocampal GR protein, the
decrease of sucrose preference and the increase of immobility
time induced by chronic corticosterone administration (Wang
et al., 2017), indicating the involvement of miR-124 in
these behavioral changes and the antidepressant-like effects of
antagomir for miR-124. GC signaling is one of the factors which
regulate the expression of MAO-A (Ou et al., 2006); therefore,
miR-124 might affect the regulation of MAO-A by changing GR
protein levels.

miR-22
Microarray study showed higher expression levels of miR-22
in the brain tissues of rat, such as the hippocampus, olfactory
bulb, brain stem, cortex and hypothalamus, compared to the
peripheral organs, including the heart, liver, kidney and lung
(Hua et al., 2009), suggesting that miR-22 is brain-enriched
miRNA. Two widely used miRNA target prediction, miRanda
and TargetScan, show that 3’-UTR of human MAO-A gene has

FIGURE 1 | Proposed mechanism of MAO-A regulation by microRNAs (miRNAs). miR-142, 34a and 34c target SIRT1, which activates MAO-A gene expression via
deacetylation of NHLH2. miR-124 targets GR, which activates MAO-A gene expression by binding to MAO-A promoter region. miR-22 and 132 may directly target
MAO-A mRNA. SIRT1, Sirtuin 1; NHLH2, Nescient Helix-Loop-Helix 2; GC, Glucocorticoid; GR, Glucocorticoid receptor; MAO-A, monoamine oxidase A.
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miR-22 target sites. Muiños-Gimeno et al. (2011) investigated
the functional relationship between miRNAs and MAO-A
gene expression by luciferase assay. miR-22 downregulates
MAO-A gene as well as genes related to psychiatric disorders,
such as brain-derived neurotrophic factor (BDNF) and 5-
HT2C receptor (Muiños-Gimeno et al., 2011). In addition,
many studies suggested that miR-22 targets SIRT1 gene in
various types of cells, such as glioblastoma, cardiomyocytes,
renal cell carcinoma and breast cancer cell lines (Xu et al.,
2011; Chen et al., 2016; Du et al., 2016; Kurylowicz et al.,
2016; Xiong et al., 2016; Zhang et al., 2016, 2017; Zou
et al., 2017). SIRT1 is one of the regulatory factors of
MAO-A gene expression, which activates NHLH2 (also known
as neuronal SCL-like protein 2, NSCL-2), a transcription
activator for MAO-A gene (Libert et al., 2011). Therefore,
expression and functions of miR-22 in MAO-A containing
cells in the brain should be the subject in future studies
(Figure 1).

POSSIBLE MECHANISM OF MAO-A
REGULATION BY miRNAs

miRNAs Modulate MAO-A Regulators
miRNAs may change the protein levels of the regulators of
MAO-A and indirectly influence MAO-A in the brain. In this
type of regulation, miRNAs downregulate the gene transcription
of the regulatory factors of MAO-A, which in turn lead to
reduced protein levels of the regulatory factors (Figure 1).
This could result in upregulation of MAO-A if the regulatory
factors are inhibitory in nature, or downregulation of MAO-A
if the regulatory factors are activators of MAO-A. For example,
miR-142 targets SIRT1, an activator of MAO-A gene expression,
and influence MAO-A (Chaudhuri et al., 2013a). SIRT1 is a
target of many types of miRNAs (Bicker and Schratt, 2010;
Gao et al., 2010; Saunders et al., 2010; Yamakuchi, 2012; Zhou
et al., 2012; Ahn et al., 2013; Chaudhuri et al., 2013a; Choi
and Kemper, 2013), although miRNA-mediated regulation of
SIRT1 in depression has not been fully understood. Previous
studies have found several regulatory factors of MAO-A, such
as KLF11 (Grunewald et al., 2012; Harris et al., 2015), R1 (Ou
et al., 2006; Johnson et al., 2011) and RINES (Kabayama et al.,
2013). Except for SIRT1, relationship betweenmiRNAs and these
regulatory factors of MAO-A have not been studied, although
a few studies show that some miRNAs target several types of
KLF family proteins (Kinoshita et al., 2010; Tian et al., 2010;
Muiños-Gimeno et al., 2011; Nagata et al., 2014; Xiao H. et al.,
2014; Ma et al., 2015; Periyasamy et al., 2018), suggesting a
possibility that KLF11 also could be a target of miRNAs in the
brain. Elucidating the relationship between miRNAs and these
regulatory factors would be useful to find miRNAs which can
be novel therapeutic targets for better control of MAO-A in the
brain.

miRNAs Directly Target MAO-A mRNA
Another possible mechanism by which miRNAs changes
MAO-A levels is that miRNAs directly target MAO-A mRNA

as proposed about miR-132 (Xiao J. et al., 2014; Figure 1) and
miR-22 (Muiños-Gimeno et al., 2011; Figure 1). Expression
of miRNAs is regulated by transcription factors. Regulatory
elements controlling the expression of miRNAs are located
within 1 kb upstream of pre-miRNA genes (Lee et al., 2007).
So far, transcription factor-miRNA pathways in the regulation
of MAO-A have not been identified. Patients with depression
and animal models of depression show changes in miRNA
expression (Dwivedi, 2011, 2016; Chan and Kocerha, 2012;
Ma et al., 2016) as well as the levels of transcription factors,
such as KLF11 and R1 (Johnson et al., 2011; Harris et al.,
2015). It has been reported that KLF3 and KLF4 regulate the
expression levels of miR-182 (Sachdeva et al., 2015; Segura
et al., 2017), indicating that KLF family of proteins may regulate
the expression levels of miRNAs and further modulate the
downstream signaling of the pathway. Therefore, it is plausible
to hypothesize that KLF11 could regulate the expression of
miRNAs in the brain and influence the regulation of MAO-A.
However, the relationship between these transcription factors
and miRNAs have not been fully elucidated. Predicting the
putative binding sites of transcription factors in the promoter
region of pre-miRNA genes and experimentally elucidating the
relationship of transcription factors with miRNA expression
would be required.

miRNA THERAPEUTICS FOR DEPRESSION

The techniques to modulate the function of miRNAs in the brain
are important issues which may decide whether miRNAs can be
potential therapeutic targets for depression.

Methodologies to Modulate miRNAs
There are several approaches to manipulate miRNAs. miRNA
mimics could compensate the downregulation of specific
miRNAs observed in the pathogenic state. Introduction of
synthetic oligonucleotides that mimic a specific miRNA or
introduction of viral vectors that over-express a specific miRNA
are the examples of therapeutic approaches by miRNA mimics.
Antagomirs are single-stranded RNAs that have complementary
sequences to miRNA targets and inhibit the activity of miRNAs
(Krützfeldt et al., 2005). Another methodology called ‘‘miR
sponges’’ has also been used to modulate the miRNAs (Ebert
et al., 2007). Sponge RNAs contain multiple miRNA binding
sites to soak up a miRNA of interest in cells and create a
loss of function of the miRNA. Another proposed method to
modulate the function of miRNA is target protection. Modified
antisense oligonucleotides complementary to a miRNA binding
site of specific mRNA disrupt the interaction between miRNA
and mRNA, thus increasing the stability of mRNA (Choi et al.,
2007; Staton and Giraldez, 2011). Designs of miRNA mimics,
antagomirs, miR sponges and target protectors are decided based
on the sequence of miRNAs or miRNA binding sites in mRNA.
The binding of antagomirs and miR sponges with miRNAs
are done with the Watson-Crick base paring of nucleotides,
which makes designing antagomirs and miR sponges easier,
compared to designing/screening molecules which bind to a
specific protein.
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In experimental settings, these methodologies have been used
to modulate the function of miRNAs in the brain. For example,
miR-124 antagomir injected into the lateral ventricle shows
antidepressant effects in corticosterone-induced depressive-like
mice by targeting GR (Wang et al., 2017). miR sponge treatment
to primary neurons (Olde Loohuis et al., 2015) and hippocampal
injection of lentiviral miR sponge (Bofill-De Ros et al., 2015)
modulate miRNAs. Therefore, these methodologies are effective
to modulate the function of miRNAs in the brain.

Drug Delivery in miRNA Therapeutics
Delivery of the reagents targeting miRNAs in the brain is one
of the major difficulties in miRNA therapeutics of psychiatric
diseases. Reagents for miRNA therapeutics are required to
cross the blood-brain barrier to access the miRNAs in the
brain. Intravenous administration of antagomir targetingmiR-16
efficiently silences the miR-16 in most of the peripheral tissues
except the brain (Krützfeldt et al., 2005), indicating that delivery
of antagomirs to the brain is one of the challenges in miRNA
therapeutics in the central nervous system.

In experimental settings, antagomirs and miRNA sponges
have often been injected directly into the brain of animals to
test their effects on mRNA targets involved in the pathology in
the brain (Jimenez-Mateos et al., 2012, 2015; Bofill-De Ros et al.,
2015; Zheng et al., 2016). Intranasal administration of labeled
antagomir to Alzheimer’s disease model mice demonstrated that
the antagomir reaches the brain and shows similar effects to
intraventricular injection of the antagomir (Lee et al., 2012),
indicating that intranasal administration of antagomirs might
be a possible therapeutic approach. In addition, a study showed
that rabies virus glycoprotein-labeled nanomaterials injected
intravenously are capable of delivery of miRNA mimics to the
brain in vivo (Hwang et al., 2011). Many types of delivery system
for miRNAs, such as lipid-based carriers, polymer-based carriers
and carbon-based carriers have been developed (Reviewed in
Wen, 2016); however, most of them have been used to deliver

miRNAs to peripheral tissues. Development of a delivery system
of miRNAs into the brain would be one of the key problems
that we need to overcome for successful miRNA therapeutics of
psychiatric diseases.

CONCLUSION

Here, we reviewed whether miRNAs can be therapeutic
targets for depression. Several studies suggest that miRNAs
indirectly regulate MAO-A by targeting the regulators of
MAO-A expression, such as SIRT1, indicating the potential
of miRNAs as therapeutic targets. No studies have reported a
miRNA directly targeting MAO-A mRNA, except for studies
that predict that miR-132 and miR-22 could target MAO-A
mRNA (Muiños-Gimeno et al., 2011; Xiao J. et al., 2014).
Brain-specific (miR-124) or brain-enriched (miR-132, miR-34
and miR-22) miRNAs can be good therapeutic targets to
modulate MAO-A specifically in the brain, which could avoid
adverse effects caused by conventional MAO-A inhibitors in
peripheral organs. More detailed investigation on the localization
of miRNAs in the brain and the potential association between
transcription factors and miRNAs related to MAO-A regulation
would be necessary to further discuss the potential of these
miRNAs as therapeutic targets to control MAO-A in specific
brain regions related to the pathophysiology of depression.
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