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Extracellular regulated kinase 1/2 (ERK1/2) has been strongly implicated in several
cellular processes. In the brain ERK1/2 activity has been primarily involved in long-term
memory (LTM) formation and expression. Here, we review earlier evidence and describe
recent developments of ERK1/2 signaling in memory processing focusing the attention
on the role of ERK1/2 in memory retrieval and reconsolidation, and in the maintenance of
the memory trace including mechanisms involving the protection of labile memories. In
addition, relearning requires ERK1/2 activity in selected brain regions. Its involvement in
distinct memory stages points at ERK1/2 as a core element in memory processing and
as one likely target to treat memory impairments associated with neurological disorders.
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ROLE OF ERK1/2 IN LONG-TERM MEMORY FORMATION

A dominant hypothesis emerging in the last 25 years suggests that long-term memory (LTM)
formation has two main phases: (1) cellular or synaptic consolidation lasting hours to a couple of
days; and (2) systems consolidation which takes days to weeks and comprises the participation
of neocortical regions and their interaction with regions of the medial temporal lobe (Squire,
1992; Dudai, 2002). The initial cellular consolidation is thought to involve activation of several
neurotransmitter receptors and protein kinase signaling cascades, changes in transcription at the
nucleus and translation at the dendritic spines, many posttranslational modifications of synaptic
proteins and reorganization of synaptic contacts (McGaugh, 2000; Kandel, 2001; Dudai, 2002;
Alberini, 2009).

Extracellular regulated kinase 1/2 (ERK1/2; also known as p42/p44MAPK) are highly conserved
protein kinases linking several transmembrane receptors like glutamate NMDA-, cholinergic-,
β-adrenergic-, D1 dopamine- and neurotrophin receptors with transcriptional and translational
regulation. By activating several transcriptional factors like Elk-1 and CREB, ERKs signaling
regulates the expression of several plasticity-related proteins (PRPs) including Arc/Arg3.1 and
BDNF (Figure 1; Gutkind, 1998; Sweatt, 2001; Kelleher et al., 2004; Thomas and Huganir, 2004;
Bekinschtein et al., 2008; see also Yiannakas and Rosenblum, 2017).

Given that a definite property of LTM is its sensitivity to protein synthesis inhibitors
around training (Davis and Squire, 1984; Medina et al., 2008) and that ERK1/2 plays a crucial
role in several forms of synaptic plasticity (English and Sweatt, 1997; Rosenblum et al., 2002),
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FIGURE 1 | Schematic representation of some of the major components of the extracellular regulated kinase 1/2 (ERK1/2) signaling cascade and its main effects.
β-Adr-R, beta adrenergic receptor; Ach-R, muscarinic cholinergic receptors; NMDA-R, NMDA glutamate receptor; D1-R, dopamine 1 receptor; Raf (kinase that
phosphorylates MEK1/2 that in turn phosphorylates ERK1/2).

it is reasonable to think that ERK1/2 might be involved in many
cellular processes including LTM formation (Atkins et al., 1998).
After this seminal work demonstrating that contextual fear LTM
depends on the activation of ERK1/2 in the dorsal hippocampus,
several studies confirmed that this signaling cascade is required
in selected brain regions in a variety of learning tasks, including
Pavlovian fear conditioning (Schafe et al., 2000), step-down
inhibitory avoidance (Walz et al., 1999), learning a novel taste
(Swank and Sweatt, 2001), recognition memory (Kelly et al.,
2003), spatial Morris water maze (Kelleher et al., 2004), cocaine-
induced conditioned place preference (Pan et al., 2011) and
conditioned place avoidance (Wang et al., 2017). Most of these
studies have also shown that learning was associated with specific
changes in the phosphorylation state of ERK1/2. Moreover, some
reports showed two waves of ERK1/2 activation after training.
One is rapid and transient, peaking about 1–15 min after training
and the second one is delayed and persistent lasting for at
least 24 h in hippocampus and amygdala (see below ‘‘Role of
ERK1/2 in Memory Persistence’’ section; Schafe et al., 2000; Igaz
et al., 2004; Trifilieff et al., 2006, 2007; Besnard et al., 2014).
It has been reported that the delayed wave of nuclear ERK1/2,
CREB and ElK-1 activities are dependent on the activation
of NMDA receptor (Figure 1; Cammarota et al., 2000) and
that BDNF-induced changes in dendritic spine morphology in

hippocampal neurons is mediated by ERK1/2 (Alonso et al.,
2004).

The participation of ERK1/2 in synaptic plasticity and
memory is not restricted to mammals. Sutton et al. (2001)
demonstrated that ERK1/2 participates in an intermediate
memory inAplysiawhose function seems to be the establishment
of LTM, and phosphorylation of ERK1/2 signaling is crucial
for LTM formation in the crab (Feld et al., 2005). Also,
ERK1/2 homologe is required for memory formation in
Drosophila (Pagani et al., 2009).

Could We Dissect the Role of ERK1/2 in
Different Processes Leading to Long-Term
Memory Formation?
The prevalent view in LTM formation considers the requirement
of protein synthesis as a fundamental step of this process
(McGaugh, 2000; Kandel, 2001). In that scenario, the activation
of ERK1/2 is suggested as part of intracellular signaling
cascades involved. However, the recently postulated ‘‘behavioral
tagging’’ hypothesis explains the process of LTM formation
based on two fundamental and equally important steps: the
setting of a transient learning tag and the synthesis of protein
(Moncada and Viola, 2007). The idea is based on synaptic
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tagging and capture hypothesis (Frey and Morris, 1997) which
postulated that proteins are used to yield long-lasting changes
when they are captured by tags signaling to specific sites
activated by the stimuli. Thus, a question arose whether
ERK1/2 activation in LTM formation is part of the tag.
Under this conceptual framework, a learning experience that
induces LTM triggered both processes. However, proteins
utilized by tags could also arrive from the synthesis induced
by a separated independent event. Therefore, protocols of
behavioral tagging take advantage of this fact in order to
dissect the setting of the learning tag from the synthesis
of PRPs. Original experiments demonstrated that a weak
learning only sets its learning tag and could stabilize into
LTM by utilizing PRP induced by an associated strong event
(for review see Moncada et al., 2015). Because the transient
learning tag is triggered by the learning session, the way
to study the critical factors involved in its setting and/or
maintenance is blocking them around the time of the weak
training. The activation of some particular kinases in the
hippocampus such as αCAMKII, PKA and ERK1/2 are involved
in the formation of LTM from the very first moment after
learning, making them interesting candidates as tag components
(McGaugh, 2000; Izquierdo et al., 2006). Our results suggest
that αCAMKII, PKA and PKMζ play an essential role in
the setting of the inhibitory avoidance learning tag, while its
machinery does not require the activity of ERKs1/2 neither
the synthesis of further proteins (Moncada et al., 2011). In
contrast, ERK1/2 kinases have been shown to be required
specifically for the setting of synaptic-tags associated with
long-term depression (Navakkode et al., 2005; Sajikumar et al.,
2007). Thus, the lack of requirement of ERK kinases for the
setting of the inhibitory learning-tags is consistent with the
idea that avoidance memory might be processed by mechanisms
associated with long-term potentiation induction (Whitlock
et al., 2006). The activation of ERKs appears to be necessary for
providing PRP to induce the formation of LTM (Cammarota
et al., 2000). Consistent with these findings is the demonstration
that the induction of structural long-term potentiation by
activation of few dendritic spines is needed to induce a
wave of nuclear ERK activation and therefore gene expression
(Zhai et al., 2013). Finally, the intrahippocampal infusion of
ERK1/2 inhibitor, but not PKA inhibitor, impaired the effect of
novelty exposure on the promotion of contextual fear extinction
memory. Thus, hippocampal ERK1/2 may serve as behavioral
tags to promote LTM extinction (Liu et al., 2015). Alternatively,
the analysis of the results based on ‘‘behavioral tagging’’
hypothesis was recently discussed in terms of non-synaptic
mechanisms, like changes in neuronal intrinsic excitability (Korz,
2017).

Role of ERK1/2 in Short-Term Memory
Much less is known about the role played by ERK1/2 signaling
pathway in mammalian short-term memory (STM), mainly
because the cellular and molecular mechanisms of STM are
not well understood. Typically, STM is referred to as the
information store lasting from minutes to few (2–4) hours
which is independent of de novo protein synthesis and gene

expression. The inhibition of ERK1/2 in the dorsal hippocampus
immediately after inhibitory avoidance training attenuated STM
formation (Alonso et al., 2002; Igaz et al., 2006; see also
Giovannini et al., 2015). In addition, blocking hippocampal
BDNF function resulted in decreased phosphorylation of
ERK2 and impairment of STM while intrahippocampal infusion
of recombinant human BDNF increased ERK1/2 activation and
facilitated STM (Alonso et al., 2002). On the other hand, in
contextual fear STM is insensitive to MEK inhibition (Zamorano
et al., 2018).

In Drosophila, olfactory conditioning activates
ERK1/2 transiently in the mushroom-body neurons. This
increased kinase activity occurs 15 min after one trial
aversive olfactory learning and significantly prolongs labile
STM, mediating active protection of labile memory through
maintenance of learning-induced synaptic structural changes
(Zhang et al., 2018). The regulation of a labile aversive memory
trace by ERK1/2 signaling pathway is bidirectional: its activation
sustains the trace for many hours and its inhibition provoked
memory decay.

Role of ERK1/2 on LTM Formation After
Spaced Relearning
From the seminal study of Ebbinghaus (1913), we know that
the formation of lasting memories benefits from a temporal
spaced rest intervals of sessions in contrast to a massed one that
involves short or no intervals. This spacing effect has been well
demonstrated either in invertebrates and mammals (for a review
see Smolen et al., 2016).

Studying in Aplysia the tail-elicited siphon withdrawal reflex,
Philips et al. (2007) characterized that 45 min, but not of
15 or 60 min, of spacing interval between the electrical shocks
applied to the tail, was effective for induction of LTM for
sensitization of this defensive reflex. There was also a narrow
window of ERK1/2 activation, measured in the tail sensory
neurons, 45 min after a single stimulation. If it was disrupted by
the exposure to theMEK (kinase that activates ERK1/2) inhibitor
U0126, LTM was impaired indicating that this kinase activation
is necessary for memory induced by spaced training (Philips
et al., 2013). The authors also described that the treatment with
serotonin of pleural-pedal ganglia isolated from the mollusk
imitated the restricted temporal activation of ERK1/2 observed
in vivo; this in turn activated p90 RSK kinase and increased the
transcription of the immediate early gene ApC/EBP, providing
a potential molecular window for memory formation induced
by relearning. A computational model based on serotonin-
induced PKA and ERK signaling pathways activation, revealed
that the efficacy of a protocol to induce long-term facilitation
in Aplysia is determined by interaction among these kinases
activation leading to CREB1 phosphorylation (Zhang et al.,
2011).

Working on another invertebrate model, Pagani et al. (2009)
trained Drosophila flies with a standard olfactory conditioning
consisting of pairing odor with an electric shock. They
demonstrated that the cycle of ERK1/2 activation is involved
in defining the duration of resting intervals necessary for LTM
induction. In that sense, ERK1/2 activation must decay enough
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to permit a resetting with the subsequent trial during spaced
training, being the tyrosine phosphatase SHP2 a key factor
involved. The spacing effect is a phenomenon which also affects
structural plasticity. In this sense, analyzing the number of
new synaptic boutons at the single-synapse level after distinct
patterns of stimulation in motoneurons of Drosophila, it was
showed that suppressing or enhancing ERK1/2 signaling changed
how synapses decode a pattern of stimuli (San Martin et al.,
2017).

Another kind of memory that responds to the spacing
effect is fear potentiated startle memory. Training rats with
two-trial light-shock pairing with inter trials ranged between
45 min and 3 days resulted in the expression of a robust LTM
(Parsons and Davis, 2012). Amygdala ERK1/2 activation 1 h after
training was suggested as part of the mechanism of metaplasticity
that permits the formation of persistent memory. The role
of ERK1/2 activation in relearning was also demonstrated in
inhibitory avoidance. This hippocampus-dependent aversive
paradigm showed additional learning induced by a second
training session performed 1 day after the first one. However,
this additional memory does not involve the hippocampus
but, instead, the striatum. The infusion of a MEK inhibitor
into striatum, both at the time of second training and 3 h
later, caused the impairment of this memory enhancement
(Cammarota et al., 2005). Synaptic ERK1/2 activation was
also associated with formation of object location memory
in fragile X syndrome model in mice (Seese et al., 2014).
In this case, three short-spaced trials separated by 1 h
elevated pERK1/2 in the septotemporal segment of the
hippocampus; and the inactivation of ERK1/2 before the last trial
blocked LTM.

ROLE OF ERK1/2 IN MEMORY RETRIEVAL

Retrieval is the only way to measure memory (James, 1890).
Although considerable efforts have been made in elucidating
the molecular signatures associated with the acquisition of new
information, much less is known about the molecular signaling
events that accompany memory retrieval. This general assertion
does not fit well when one considers the role of ERK1/2 activity
on the expression ofmemory. There are plenty of studies showing
the importance of this signaling cascade in memory retrieval and
its consequences, extinction and reconsolidation (see later Role
of MAPK in reconsolidation). Inhibition of ERK1/2 activation
before testing 24 or 48 h after training abolished expression of
aversive (Szapiro et al., 2000; Chen et al., 2005; Sindreu et al.,
2007; Besnard et al., 2013, 2014; Zamorano et al., 2018) and
spatial memories (Zhang et al., 2004). Expression of aversive
memory is hindered by pretest administration of MEK inhibitor
into the prelimbic (Luo et al., 2017) and anterior cingulate cortex
(Barros et al., 2000).

Retrieval-induced ERK1/2 activation has been also observed
in several species and in different learning tasks. For instance,
ERK activity increases after inhibitory avoidance retention
test in rats, and this increase is proportional to the amount of
retrieval (Szapiro et al., 2000). Using immunohistochemical
analysis, Besnard et al. (2014) demonstrated that after

retrieval of contextual fear conditioning (0–30 min) there
were clear-cut increases in the activation of ERK1/2 signaling
in the dentate gyrus and CA1, but not in CA3, region of
the hippocampus. Also they observed selected changes in
ERK1/2 activity in some nuclei of the amygdala. Based probably
in the differences in the timing of postrecall animals sacrifice,
those findings are in partial agreement with those recently
published by Zamorano et al. (2018): recall of contextual
fear conditioning is accompanied by a selective increase
in the phosphorylation state of ERK1/2 in CA1 pyramidal
neurons, but not in CA3 and dentate gyrus neurons. Those
hyperphosphorylated neurons of the CA1 regions exhibited
also ERK1/2 activation during training, suggesting that
CA1 ERK1/2 participates in encoding contextual information of
emotional value.

The role of ERK1/2 signaling is not restricted to spatial or
fear memories involving the hippocampal formation and related
cortical regions. Pretest infusion of MEK inhibitor into the
nucleus accumbens abolished retrieval of cocaine- conditioned
place preference and prevented the recall-induced increase in the
phosphorylation state of ERKs, CREB, Elk-1 and the expression
of c-fos (Miller and Marshall, 2005).

ROLE OF ERK1/2 IN MEMORY
RECONSOLIDATION AND EXTINCTION

Twomain consequences of memory retrieval are reconsolidation
and extinction. These are two different and mutually exclusive
processes resulting from the labilization of the memory trace
by unreinforced retrieval and both require ERK1/2 activation
(see below). There is also a transitional state of the original
memory after reactivation, baptized as limbo, with no evidence
of reconsolidation or extinction in which ERK1/2 signaling plays
no role (Merlo et al., 2014, 2018).

Reconsolidation refers to as the process of LTM
destabilization/stabilization after retrieval involving
posttranslational changes and gene expression regulation.
The participation of ERK1/2 in memory reconsolidation
was first demonstrated by Kelly et al. (2003) who found
that ERK1/2 signaling in the hippocampus is important to
reconsolidate recognition memory. After that, using different
aversive as well as appetitive learning tasks others confirmed that
ERK1/2 signaling cascade in selected brain regions is required
for reconsolidation (Duvarci et al., 2005; Miller and Marshall,
2005; Krawczyk et al., 2015). Combining pharmacological and
genetic approaches, Cestari et al. (2006) found that ERK2 played
a pivotal role in reconsolidation of cued fear conditioning. The
last three above-mentioned works obtained results consistent
with a role of ERK1/2 in memory restabilization, while two
more recent works (Besnard et al., 2014; Zamorano et al., 2018)
suggested that in addition to restabilization, ERK1/2 participates
in memory destabilization. It is important to note that these
mechanisms vary across brain regions and learning tasks. One
explanation for this discrepancy may involve activation of
different pools of ERK1/2. A good example consistent with this
idea is the work of Merlo et al. (2018) who suggest that NMDA
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receptor-dependent activation of different pools of amygdalar
ERK1/2 may be required for reconsolidation and extinction of
fear conditioning.

Extinction is the learned inhibition of the expression of
previously acquired memories (Izquierdo et al., 2016). In other
words, retrieval performed in the absence of an unconditioned
stimulus gives rise to a fading process called extinction (Pavlov,
1956). Fear extinction revealed by a decrease in fear after
non-reinforced trials require ERK1/2 activation and is associated
with specific modifications in the phosphorylation state of
hippocampal ERK1/2 (Szapiro et al., 2003; Fischer et al., 2007).
Similar findings were obtained in amygdala-dependent learning
tasks where the increase in ERK1/2 activation is NMDA receptor-
dependent (Merlo et al., 2014, 2018; see Cestari et al., 2014
for references). In addition, a novel ERK-S6K1-GluA1 signaling
cascade in amygdala is critically involved in extinction (Huynh
et al., 2018). A third brain region is crucial for extinctionmemory
formation: the medial prefrontal cortex. ERK1/2 signaling in
this region appears to modulate extinction consolidation and
retrieval (see Izquierdo et al., 2016).

ROLE OF ERK1/2 IN MEMORY
PERSISTENCE

Besides the role of retrieval consequences in memory persistence
(see ‘‘Role of ERK1/2 in Memory Reconsolidation and
Extinction’’ section), there are other mechanisms involving
ERK1/2 that modulate (see also ‘‘Role of ERK1/2 in Short-Term
Memory’’ section) memory durability. In 2008, two studies
showed that ERK/MAPK signaling is crucial for the maintenance
of long lasting memory storage in rodents. One of the works
demonstrated that the activation of ERK1/2 by the neurotrophin
BDNF is important for the persistence of two aversive learning
tasks (Bekinschtein et al., 2008). This signaling cascade activation
occurs around 12 h after training and is consistent with a
previous finding showing an increase in the phosphorylation
state of ERK2 late after inhibitory avoidance training (Igaz
et al., 2004). What are the downstream targets of ERK1/2 for
maintaining the memory trace? Two immediate early genes,
c-fos and egr-1, exhibited an increased expression between
12 h and 24 h after training that is blocked by inhibiting the
BDNF/ERK1/2 signaling pathway (Bekinschtein et al., 2007;
Katche et al., 2010, 2012). The other study demonstrated
a circadian oscillation of the phosphorylation state of
ERK1/2 and CREB in the hippocampus after contextual
fear conditioning (Eckel-Mahan et al., 2008). The authors
found that disruption of this oscillation by inhibition of
ERK1/2 at the peak of ERK1/2 activity blocks its oscillation
and hinders the persistence of contextual fear memory. In
addition, disruption of ERKs oscillation by exposing the mice
to constant light conditions also impairs memory persistence.
These findings suggest that memory persistence may depend

on the lasting oscillation of ERK1/2/CREB transcriptional
signaling pathways during the circadian cycle (Eckel-Mahan,
2012).

It has been indicated that memory reconsolidation is
a required step for the strengthening of hippocampus-
dependent contextual fear memory, thus supporting a role
of ERK1/2 activation in memory durability (Lee, 2008).
Moreover, inhibition of ERK1/2 signaling 3 h after memory
reactivation did not affect memory reconsolidation when tested
24 h after retrieval, but greatly impaired performance when
tested 7 days apart (Krawczyk et al., 2016). Also, pretest blockade
of ERK1/2 signaling abolished fear memory expression and
relearning-induced strengthening (Roesler and Quevedo, 2009).
In addition, in the fly Zhang et al. (2018) suggest that a conserved
mechanism involving ERK signaling is important for memory
persistence (see also ‘‘Role of ERK1/2 in Short-Term Memory’’
section).

CONCLUSION

Neurons possess different transmembrane neurotransmitter
receptors which respond to synaptic activity and are coupled
to the activation of ERK1/2 kinases. As a consequence,
changes occur in gene transcription, protein translation
and posttranslational modification that are required in
information processing. Brain makes an internal representation
of our experiences and it encodes, stores, and retrieves
information in a dynamic way. Here, we summarized the
role of ERK1/2 activation across the memory life, focusing
on recent advances in the field of memory formation and
relearning, extinction, reconsolidation and persistence of
memory storage. From this compilation of data, it emerges a
main conclusion: ERK1/2 activity in selected brain regions is a
core and evolutionary conserved cellular element of memory
processing. Future advances in this field include the study
of downstream targets of ERKs activation (receptors, ion
channels and factors affecting protein synthesis, trafficking and
degradation), as well as the evaluation of novel inhibitors of
ERK1/2 pathway in the prevention or treatment of neurological
and psychiatric diseases involving memory disorders.
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