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Cellular localization, assembly and abnormal aggregation of neurofilaments depend
on phosphorylation. Pathological processes associated with neurodegeneration
exhibit aberrant accumulation of microtubule associated aggregated forms of
hyperphosphorylated neuronal protein tau in cell bodies. These processes are critical
for the disease progression in patients suffering from Alzheimer’s disease, Parkinson’s
disease, and Amyotrophic Lateral Sclerosis. In healthy cells, tau is localized in axons.
Topographic regulation suggests that whereas the sites of synthesis of kinases and
neurofilaments are the cell bodies, and sites of their functional assemblies are axons,
phosphorylation/dephosphorylation are the key processes that arrange the molecules
at their precise locations. Phosphorylation sites in the dynamic developmental and
degenerative processes differ. Not all these processes are well understood. New
advancements identify epigenetic factors involved in AD which account for the influence
of age-related environment/genome interactions leading to the disease. Progress in
proteomics highlights previously found major proteins and adds more to the list
of those involved in AD. New key elements of specificity provide determinants of
molecular recognition important for the assembly of macromolecular complexes.
In this review, we discuss aberrant spatial distribution of neuronal polypeptides
observed in neuropathies: aggregation, association with proteins of the neuronal
cytoskeleton, and phosphorylation dependent dynamics. Particularly, we emphasize
recent advancements in understanding the function and determinants of specific
association of molecules involved in Alzheimer’s disease with respect to the topographic
regulation of phosphorylation in neuronal cytoskeleton and implications for the design of
new therapies. Further, we address the role of various filament systems in maintenance
of the shape, rigidity and dynamics of the cytoskeleton.
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Abbreviations: Aβ, Amyloid-β; AD, Alzheimer’s disease; AIS, axon initial segment; APP, amyloid precursor protein; CRMP,
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cis/trans isomerase, NIMA-interacting 1; PP2A, protein phosphatase 2A; PSD95, postsynaptic density protein 95.
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INTRODUCTION

Cellular localization, assembly and abnormal aggregation
of NFs depend on phosphorylation (Boumil et al., 2018).
Pathological processes associated with neurodegeneration
exhibit aberrant accumulation of MT associated aggregated
forms of hyperphosphorylated neuronal protein tau in the
cell bodies (Binukumar et al., 2013). These processes are
critical for the disease progression in patients suffering from
the AD, PD, and Amyotrophic Lateral Sclerosis (ALS). In
the healthy cells, NFs and tau are localized in the axons.
Proteolysis of the cell surface receptor and cell adhesion
molecule APP results in the production of amyloid peptides
(Roy and Rauk, 2005). Aβ peptide induces alterations in
axon to soma (retrograde) and soma to axon (anterograde)
traffic of tau isoforms that regulates distribution of tau in
neurons, F-actin remodeling, reduced MT dynamics, and
impairment of astrocytic glutamate transport (Kanaan et al.,
2013; Zempel et al., 2017). Distribution of NFs and tau is
regulated by posttranslational modifications (Shukla et al., 2012;
Kim et al., 2014) and interactions with cellular components
such as AIS proteins ankyrin G (AnkG), EB1 and GSK-3β

(Zempel et al., 2017) or PP2A and peptidyl-prolyl cis/trans
isomerase PIN1 (Figure 1; Rudrabhatla et al., 2009). Tau and
APP intracellular fragments alter gene transcription (Multhaup
et al., 2015). Phosphorylation and dephosphorylation by
kinases/phosphatases are key regulatory processes that we target
to provide effective preventive and treatment options. AD brains
are subject to neuroinflammation regulated by microglia and
immune cells in the central nervous system (Mastroeni et al.,
2017). Microglia carry out both beneficial and harmful functions:
plaque removal or release of neurotoxic inflammatory materials.
Although genetic associations exist which point to variations in
genes of glia residing proteins, further studies identify epigenetic
factors involved in AD which account for influence of age-
related environment/genome interactions leading to the disease.
Progress in proteomics adds new proteins involved in AD (Gozal
et al., 2009; Guzmán-Martinez et al., 2013; Robinson et al., 2017).
Cytoskeletal proteins interact with each other and assemble
in filaments in a highly specific manner; new key elements
of specificity provide determinants of molecular recognition
in the assembly of macromolecular complexes (Kurochkina
and Iadarola, 2015). Understanding the function of kinases,
phosphatases, and their targets outlines important implications
and insights how to prevent and cure progressive neurological
diseases.

In this review, we discuss aberrant spatial distribution of
neuronal polypeptides observed in neuropathies: aggregation,
association with proteins of the neuronal cytoskeleton,
and phosphorylation dependent dynamics. Particularly, we
emphasize recent advancements in understanding the function
and determinants of specific association of the molecules
involved in AD with respect to the topographic regulation of
phosphorylation in neuronal cytoskeleton and implications for
the design of new therapies. Further, we address the role of
various filament systems in maintenance of the shape, rigidity
and dynamics of the cytoskeleton.

PHOSPHORYLATION AND
DEPHOSPHORYLATION AS KEY
FACTORS OF PROTEIN DYNAMICS,
ASSOCIATION, NEURONAL
DEVELOPMENT, AND PATHOLOGICAL
PROCESSES

Cytoskeletal Proteins
Filament systems like MTs, microfilaments, and intermediate
filaments (IFs) comprise cell cytoskeleton as key elements
regulating cell shape, rigidity and dynamics (Gruenbaum and
Aebi, 2014). Structure of fibrous and globular filamentous
proteins, assembly of filaments, and movement of motors are
important for cell dynamics and function (Siddiqui and Straube,
2017). Cytoskeleton not only provides cell support but is also
an important regulator of cell highly regular organization,
mobility, reaction pathways, and response to extreme conditions
(Unsain et al., 2018). Interactions of cytoskeletal components
with each other and with surrounding proteins are highly
specific, tightly regulated and drive functional assemblies
of the multiprotein complexes (Kurochkina and Iadarola,
2015).

Studies of neuron specific cytoskeletal proteins such as tau
and light (NFL), medium (NFM), and heavy (NFH) subunits
of NFs show that phosphorylation plays important role in
their function and dynamics. Phosphorylation stabilizes NFs,
protects from proteolysis, and promotes calcium mediated
assembly of NF subunits and cytoskeletal components in axons,
whereas dephosphorylation results in more dynamic chains
which repair and regenerate less mobile chains (Rudrabhatla
et al., 2009; Boumil et al., 2018). Tau regulates MT polymerization
and contains multiple binding sites. Its dynamic behavior is
reflected in its structure. Large portions of the molecule are
disordered (Figure 1) and are candidates for binding other
ligands. Carrying PxxP sequence, tau mono-, di- and tri-
phosphorylated peptides exhibit polyproline II conformation in
complex with antibody (Figure 1A) and PIN1 (Figure 1B).
Interactions of two Pin1 domains, WW substrate recognition
and catalytic (Figure 1D), with each other, PP2A and other
proteins contribute to its function (Wang et al., 2017). Tau
obtains helical conformation upon binding to tubulin and F-actin
(Kellogg et al., 2018; Figure 1C). All six human tau isoforms show
common mechanism of tau/PAD (Figure 1F) conformational
mobility associated with axonal transport inhibition (Cox et al.,
2016). Both NFs and tau associate with MTs and produce huge
complexes (Figure 1E) which are tethered to a membrane.
Ankyrin repeats target proteins to the plasma membrane and
link membrane proteins to the actin/spectrin cytoskeleton
(Figure 2).

Symmetry/Polarization in Neuronal
Development
Neuron-specific cytoskeleton gives neuronal cell its shape.
Unique features of the neuron with cell body in the central
and meters long axons in the peripheral nervous system require
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FIGURE 1 | Tau protein (A) Triply phosphorylated at S202/T205/S208 Tau peptide 202–209/511–518 (blue) in complex with anti-tau antibody AT8 (Light chain gold
and Heavy chain pink) /Pdb entry 5e2w/. (B) Fragment 541–553 bound to the WW domain (green) of PIN1 / Pdb entry 1i8h/. (C) Fragments 292–319/608–635
/5n5b/ and 254–290/571–607 /Pdb entry 5n5a/ bound to F-actin. (D) PIN1 WW (green) and catalytic (yellow) domains / Pdb entry 1nmv/. (E) Fragment 573–600
(blue) /Pdb entry 6cvn/ bound to tubulin (green, magenta). (F) Domain structure; PAD, Phosphatase Activating Domain.

specific structural components and maintenance (Binukumar
et al., 2013). The asymmetric MT cytoskeleton plays a key
role in axon-dendrite specification during the development and
polarized protein sorting in mature neurons. The distribution of

neuronal proteins to axons and dendrites depends on joint action
of MT-binding proteins CRMP, directed motors (kinesin UNC-
104/Kif1A) (Kanaan et al., 2013), and diffusion barriers (ankyrin)
(Maniar et al., 2012).
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FIGURE 2 | Ank1 (A) Ankyrin repeats domain / Pdb entry 1n11/. Inner row
helices green; outer row helices blue. (B) Spectrin binding ZU5
domain/C-terminal fragment ZU5-ANK (blue) / Pdb entry 3f59/ and its
complex with spectrin repeats (red) / Pdb entry 3kbt/.

Phosphorylation/Dephosphorylation in
Pathologies
Pathological hyperphosphorylated and aggregated tau is
surrounded by more than 150 proteins as shown by studies of
neurofibrillary tangles (Wang et al., 2005). Many efforts focus
on abnormal aggregation of Aβ, NFs and tau. However, the
impairment of the function of tau, NFs, and other proteins in
topographic regulation of phosphorylation could provide keys
to pathology (Lane et al., 2012). Tau and NF colocalize and
co-immunoprecipitate with PSD95 regulating the interaction
of PSD95 with NMDAR subunits. Axonal protein tau has a
dendritic function: postsynaptic targeting of the Src kinase
Fyn. Fyn phosphorylates the NR subunit 2 of NMDA receptors
(NMDARs) and promotes its interaction with the PSD95
(Ittner et al., 2010). NMDARs, for instance, mediate excitatory
glutamatergic signals from ON and OFF bipolar cells in distinct
subliminae of the inner plexiform layer to retinal ganglion cells.
Tetrameric structure of NMDAR embraces two NR1 and two
NR2 subunits. Localization of NR2A/NR1C2 splice variant and
PSD93 /PSD95 of MAGUK to the PSD OFF synapses whereas
NR2B/NR1C2 splice variant and SAP102/MAGUK to the ON
synapses perisynaptically suggests specific roles for various
receptor isoforms (Zhang et al., 2016). NMDAR is regulated
by Cdk5 phosphorylation (Li et al., 2001). MT-binding protein
CRMP (UNC-33) being similar to tau is also involved in dynamic
regulation of MTs, and its isoforms expressed during brain
oncogenesis carry out signaling function in axon outgrowth and
guidance (Bretin et al., 2005; Meng et al., 2016). Cdk5, GSK3β,
and Pin1 regulate CRMP2A, major isoform of CRMP (Maniar

et al., 2012). Unlike tau, CRMP2, regulated by posttranslational
modifications, actively engages in protein endocytosis and
vesicular cycling. Aβ-induced modifications of CRMP2 could
possibly result in impaired axonal transport and synapse loss:
pathological processes associated with AD (Hensley and Kursula,
2016; Yang et al., 2017). CRMP2 is targeted as possible agent that
could prevent or delay the progression of AD.

Hyperphosphorylation with involvement of Cdk5, GSK3β

and other kinases and oxidation contribute to AD pathogenesis
(Khanna et al., 2012). Phosphorylation of neuronal cytoskeletal
proteins is restricted selectively in axonal but not in cell body
compartment under physiological conditions. However, under
pathological state, it is deregulated, and occurs aberrantly in
the cell body compartment as well. Phosphorylation sites in the
dynamic developmental and degenerative processes differ (Yu
et al., 2009). Strategies to treat pathologies target posttranslational
modifications and mediation of localization, dynamics, and
assembly.

DOMAINS OF SPECIFIC MULTIPROTEIN
ASSEMBLIES: ANKYRIN REPEATS

Ankyrin repeats are important scaffold components that mediate
shape, rigidity, dynamics of association, and function of the
multiprotein assemblies. In mammals, ankyrins are encoded
by three different genes, ankyrin R (ANK1), ankyrin B
(ANK2/ANKB), and ankyrin G (ANK3/ANKG), all of which
have similar structure and function, and undergo alternative
splicing to generate multiple isoforms (Kordeli et al., 1995).
Epigenetic wide association studies identified ANK1 (Figure 2)
as one of the key risk factors for AD (Chi et al., 2016;
Mastroeni et al., 2017). ANK1 is also implicated in type 2
diabetes (Imamura et al., 2012). Microglia is the source of
ANK1 and no elevated expression of ANK1 occurs in CA1
astrocytes or neurons. Changes in expression of 13 out of 14
ankyrin repeats proteins in AD neurons with downregulated
AnkRD18 and upregulated AnkRD34, increased ANK1 in PD
microglia, elevated AnkRD36/ANKRD52/ANKRD18CP in AD
astrocytes, and overexpressed Ankle2 in PD microglia suggest
that this involvement is not disease specific but a process related
to neuroinflammation. Association of ANK1 gene methylation
changes with AD (Lunnon et al., 2014) shows how epigenetic
mechanisms could provide a link to age-related inflammation
and highlights this gene as an AD risk factor.

Progress in proteomics reveals AnkB and AnkG involvement
in AD (Gozal et al., 2009). Giant long ANKB isoform in
Drosophila shows involvement in synapse stability and links
to neurodegeneration (Pielage et al., 2008). Knockout of the
long AnkG isoform results in neuroanatomical defects in mice
(van der Werf et al., 2017) and impaired filtering of cellular
components (Sun et al., 2017). AnkG is the site of clustering
of Na+ and K+ channels and their interactions with numerous
modulators (Gennarini et al., 2017). AnkG, site of assembly
of Na+ /K+-ATPase, together with other cytoskeletal proteins
(GABA A receptor gephyrin) makes connections to membrane
proteins associated with lipid rafts (Dalskov et al., 2005).
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AnkG may be considered the most important AIS constituent.
The AIS is a specialized compartment in neurons that
resides between axonal and somatodendritic domains where
the assembly of neuronal IFs takes place. It serves as a site
of action potential firing and helps maintain neuron polarity.
It also acts as a submembrane diffusion barrier that restrict
the mobility of plasma membrane components (Bennett, 1992;
Winckler et al., 1999) and an intracellular selective filter
for the transport of organelles and molecules between these
domains through the cytoplasm. AnkG integrates proteins that
function in three layers of the AIS: the plasma membrane
(outermost surface), submembrane cytoskeleton (middle layer),
and inner AIS shaft (cytoplasmic region), and acts as its main
organizer. Advancements in deciphering structure of ankyrins,
phosphorylation states and role in assembly of the multiprotein
complexes help to understand the mechanisms and suggest new
studies (Zhang et al., 1998; Chen et al., 2017).

CONCLUSION

Progress in understanding the role of phosphorylation/
dephosphorylation in regulation of spatial distribution and
transport of proteins involved in neurodegenerative diseases
brings new approaches and evolvement of new treatments.

Understanding MT dynamics, posttranslational modifications,
specific distribution and assembly of cellular components, and
signaling which links neuronal dysfunction to neuropathies leads
to the development of new therapies (Yeh et al., 2004; Shukla
et al., 2012; Kanaan et al., 2013). Aβ accumulation can be treated
with amyloid removal strategies such as one utilizing DARPins
(Hanenberg et al., 2014). Ankyrin G vaccination is tested for
the reduction of Aβ and lowering toxicity (Santuccione et al.,
2013). Ankyrin repeats are interaction sites of phosphorylation
dependent dynamic assembly of proteins and nucleic acids (Hall
et al., 2018) including those involved in transcription regulation
(Kohda et al., 2016) and signaling, and present promising targets
for the design of new drugs.
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