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Numerous neurodegenerative diseases including prion, Alzheimer’s and Parkinson’s
diseases are characterized by accumulation of protein aggregates in brain. Prion
disease is unique in that the natively folded prion protein forms diverse misfolded
aggregates with distinct molecular conformations (strains), which underlie different
disease phenotypes. In addition, the conformational strains are able to self-propagate
their unique conformations by recruiting normal protein monomers and converting their
conformations to misfolded conformers. There is an increasing body of evidence that
suggests other aggregation-prone proteins including tau and α-synuclein associated
with Alzheimer’s and Parkinson’s diseases, respectively, also behave like a prion that
has conformational strains with self-propagation (seeding) property. Moreover, misfolded
protein aggregates can promote misfolding and aggregation of different proteins
through cross-seeding, which might be associated with co-occurrence of multiple
neurodegenerative diseases in the same patient. Elucidation of diverse conformational
strains with self-propagation capability and of molecular basis for the cross-talk between
misfolded proteins is essential to the development of effective therapeutic intervention.
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INTRODUCTION

The hallmark of numerous neurodegenerative diseases is extra- or intra-cellular deposits of
misfolded protein aggregates in the central nervous systems (CNS; Sacchettini and Kelly, 2002;
Jahn and Radford, 2008; Eisenberg and Jucker, 2012; Knowles et al., 2014; Chiti and Dobson, 2017).
Protein misfolding and aggregation involves conformational changes from native polypeptides
to aggregation-prone misfolded conformers, which self-assemble into fibrillar aggregates. The
fibrillar protein assemblies adopt cross-β structures in which β-strands are arranged in an
orientation perpendicular to the aggregation axis (Tycko, 2006; Riek and Eisenberg, 2016). More
than 20 polypeptides have been identified to undergo misfolding transition associated with diverse
human disorders including Alzheimer’s and Parkinson’s diseases, amyloidosis, type 2 diabetes, and
prion diseases (Campioni et al., 2010; Eisenberg and Jucker, 2012; Chiti and Dobson, 2017).

The unique characteristics of prion protein is the ability to form diverse molecular
conformations (strains) associated with different disease phenotypes (Collinge, 2010;
Frost and Diamond, 2010; Westermark and Westermark, 2010; Jucker and Walker, 2013).
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Misfolded prion aggregates are also capable of propagating their
unique conformations and spreading pathological conditions
between cells and tissues. Growing evidence suggests that
other aggregation-prone proteins have prion-like properties
of conformational strains associated with distinct disease
phenotypes and self-propagation of the conformations through
seeding (Frost andDiamond, 2010; Kim andHoltzman, 2010; Lee
et al., 2010; Westermark and Westermark, 2010; Gerson et al.,
2016; Goedert et al., 2017). Recent high-resolution structural
studies using solid-state NMR and cryo-EM has begun to
reveal near-atomic resolution structures of several filamentous
aggregates (Colvin et al., 2016; Tuttle et al., 2016; Fitzpatrick et al.,
2017; Falcon et al., 2018; Guerrero-Ferreira et al., 2018; Li B. et al.,
2018). The high-resolution structures showed that a single
polypeptide can adopt distinct filamentous aggregates (strains)
with different molecular structures. In addition, misfolded
strains with different molecular structures induce distinct disease
phenotypes in animal models (Peelaerts et al., 2015), supporting
the prion hypothesis for the neurodegenerative diseases.

Traditionally, misfolding and aggregation of a single
protein was believed to be involved in each pathological
process. For example, intracellular deposition of misfolded
α-synuclein is linked to Parkinson’s disease (PD), while
intraneuronal accumulation of filamentous tau is associated
with Alzheimer’s diseases (AD). However, there is
mounting evidence that suggests AD and PD pathologies
are significantly overlapped presumably due to synergistic
interactions between tau and α-synuclein, highlighting the
complexity of Alzheimer’s diseases and related dementia
(ADRD) pathogenesis (Clinton et al., 2010; Moussaud
et al., 2014; Castillo-Carranza et al., 2018). Understanding
molecular basis for the misfolded conformational strains
with self-propagation properties and cross-seeding between
the misfolded proteins would, therefore, be crucial to the
development of therapeutic interventions for the debilitating
human disorders.

MISFOLDED CONFORMATIONAL STRAINS

Main structural feature of misfolded protein aggregates is the
cross-β fold in which β-strands are stacked in an orientation
perpendicular to the aggregation axis (bottom in Figure 1A).
Major driving force for the formation of cross-β structure is
the hydrogen bonding interactions between the main chain
carbonyl oxygen and amide hydrogen (Sawaya et al., 2007; Lu
et al., 2013; Riek and Eisenberg, 2016). Misfolded filamentous
aggregates share the common structural motif irrespective of
amino acid sequence. However, recent high-resolution structural
studies revealed that misfolded filamentous aggregates can adopt
diverse molecular structures within the common cross-β fold
(Eichner and Radford, 2011; Tycko, 2015; Annamalai et al., 2016;
Iadanza et al., 2018).

A majority of aggregation-prone proteins are intrinsically
disordered under the physiological condition. These proteins
include β-amyloid (Aβ) peptides, α-synuclein, and tau
associated with various age-related neurodegenerative diseases.
Intrinsically disordered proteins adopt a heterogeneous

ensemble of conformations. The diverse conformers in the
conformational ensemble might be induced to form distinct
misfolded aggregates (strains) with different molecular
conformations depending on experimental conditions
(Figure 1A). Indeed various pathological proteins including
Aβ peptides, α-synuclein and tau were shown to be able to
adopt distinct strains with different molecular structures,
which might be linked to phenotype diversities of the
neurodegenerative diseases (Guo et al., 2013; Riek and
Eisenberg, 2016; Goedert et al., 2017; Falcon et al., 2018;
Peng et al., 2018a,b).

It is, therefore, of critical importance to characterize various
strains with diverse molecular conformations to understand the
molecular basis for the prion-like propagation and spreading of
pathological protein aggregates. In this review article, diverse
high-resolution structures of filamentous aggregates formed by
three aggregation-prone proteins (Aβ peptides, α-synuclein, and
tau) will be discussed.

Aβ Peptides
Aβ peptides are 36–43 residue peptides derived by the cleavage
of amyloid precursor protein. Major components of the amyloid
plaques observed in Alzheimer’s patients are Aβ(1–40) and
Aβ(1–42) peptides. Over the last two decades, structural studies
have been predominantly focused on misfolded aggregates of
the two Aβ peptides. The first structural model for Aβ(1–40)
fibrillar aggregates was reported on the basis of solid-state NMR
constraints (Petkova et al., 2002; Tycko, 2011; Lu et al., 2013).
Later, higher resolution structures were determined by solid-state
NMR and cryo-EM for the Aβ(1–42) fibrillar aggregates (Lu et al.,
2013; Colvin et al., 2016; Wälti et al., 2016; Gremer et al., 2017).

The atomic resolution structure of Aβ(1–42) fibrillar
aggregates revealed that the cross-β fold is stabilized by
various interactions (Figure 1B). First, the β-strands stacked
along the aggregation axis are held together by extensive
hydrogen bonding interactions between amide hydrogens and
carbonyl carbons in the peptide backbones (Figure 1C, left).
Second, hydrophobic interactions between bulky hydrophobic
sidechains play an important role in stabilizing the cross-β
fold (Figure 1B, right). A variety of hydrophobic interactions
through sidechain interdigitations (steric zipper) have been
observed in the fibrillar aggregates. Third, salt bridges
between acidic and basic side chains help maintain fibrillar
structures (Figure 1C, right).

Polymorphic nature of fibrillar aggregates has been also
observed for Aβ peptides incubated under different experimental
conditions (Tycko, 2015). Two distinct Aβ(1–40) fibrillar
aggregates were formed when the samples were incubated with
gentle circular agitation and quiescent (unstirred) conditions
(Petkova et al., 2005). The agitated fibrils exhibited straight
ribbon-type morphologies where protofilaments are laterally
associated. On the contrary, quiescent fibrils adopt twisted
morphologies in which protofilaments are twisted around each
other. Intriguingly, Aβ aggregates seeded by brain extracts
from different AD patients were also shown to exhibit distinct
molecular structures (Tycko, 2015; Qiang et al., 2017). These
experimental results suggest that distinct misfolded strains
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FIGURE 1 | (A) Schematic diagram of aggregation process for an
intrinsically disordered protein. Some of the aggregation-prone conformers in
the conformational ensemble may form various oligomers that can
self-assemble into fibrillar aggregates with different molecular conformations
depending on different environments (Jahn and Radford, 2005). (B)
Solid-state NMR structure of Aβ(1–42) filaments (sideview, left; top view,
right). (C) Hydrogen bonding interactions between carbonyl carbon (red) and
amide hydrogen (blue). (D) Salt bridges between NH3+ of K28 (blue) and
COO− of A42 (red) in Aβ(1–42) filaments. The filament structures were drawn
with PDB accession number (5KK3).

might be associated with different disease phenotypes. Further
investigation of molecular structures of diverse misfolded Aβ

aggregates and their biological activities will help understand
structure-function relationship of misfolded Aβ aggregates.

α-Synuclein
α-synuclein is a 140-residue intrinsically disordered protein
that is primarily localized at presynaptic terminals of the
CNS. Intracellular inclusions containing misfolded α-synuclein
aggregates are a hallmark of several neurodegenerative diseases
such as PD and dementia with Lewy bodies, collectively termed
synucleinopathies (Goedert, 2001; Lashuel et al., 2013).

The presynaptic protein consists of three main
regions: the amphipathic N-terminal (1–64), hydrophobic
non-Aβ-component (NAC; 65–95), and acidic C-terminal

region (96–140). The hydrophobic NAC region that plays
a central role in α-synuclein aggregation was shown to
be protected by long-range interactions between the N-
and C-terminal regions in the natively disordered state
of α-synuclein (Bertoncini et al., 2005b; Dedmon et al.,
2005). Thus, perturbations of the long-range interactions by
single-point mutations and interactions with small molecules
led to the formation of filamentous α-synuclein aggregates
(Bertoncini et al., 2005a).

Recent structural studies of misfolded α-synuclein aggregates
revealed that filamentous α-synuclein aggregates also have
different molecular structures depending on the experimental
conditions such as pH and salt concentration. Under low salt
conditions, α-synuclein filaments have ribbon-type morphology,
while twisted morphology was observed at high salt conditions
(Bousset et al., 2013). The two distinct filaments were also
shown to exhibit distinct disease phenotypes in mice models
(Peelaerts et al., 2015).

Very recently, high-resolution structures were determined by
solid-state NMR and cryo-EM (Figures 2A–E; Tuttle et al., 2016;
Guerrero-Ferreira et al., 2018; Li B. et al., 2018; Li Y. et al., 2018).
Solid-state NMR structure of α-synuclein filaments revealed
that the filament core consisting of residues 38–97 adopts a
Greek-key topology (Figure 2A; Tuttle et al., 2016). Near-atomic
high-resolution structures were also solved by cryo-EM at
resolution of 3–4 Å (Figures 2B–E). Two cryo-EM structures
exhibit a Greek-key type fold similar to that in solid-state
NMR structure (Figures 2B,C; Guerrero-Ferreira et al., 2018;
Li B. et al., 2018). However, detailed molecular structures such
as the location of the turn and sidechain orientations differ in
the structures. For example, residues 51–67 are disordered in the
solid-state NMR structure, while those regions are well defined
in the cryo-EM structure. The sidechain of residue A53 points
into the opposite directions. In addition, distinct cross-β folds
were observed in α-synuclein filaments formed in the presence
of tetrabutylphosphonium bromide (15mM; Figures 2D,F;
Li B. et al., 2018). In particular, the bent b-arch fold in Figure 2E
has distinct inter facial regions (residues 46–56), compared to
that (residues 68–78) in Figure 2D. The different molecular
structures also led to the formation of distinct morphologies,
rod and twisted polymorphsin Figures 2D,E, respectively
(Li Y. et al., 2018). Filamentous aggregates with different
molecular structures and morphologies (surface structure) may
interact with the monomers in a different way, leading to
differential (cross-) seeding activities. Additional structural
studies of the filamentous aggregates and elucidation of their
(cross-) seeding activities are, therefore, required to better
understand the differential functional properties of the diverse
α-synuclein filaments.

Tau
Tau is an intrinsically disordered 352–441 residue microtubule-
binding protein that is abundantly present in the CNS. An
alternative splicing of the tau gene leads to six isoforms of
the tau protein. The six isoforms consist of the N-terminal
region with 0, 1, 2 inserts (0N, 1N, and 2N), prolin-rich domain
(PRD), microtubule binding domain with three or four repeats
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FIGURE 2 | (A) Solid-state NMR structure of α-synuclein filaments. (B–E) Cryo-EM structures of α-synuclein filaments. (F) Cryo-EM structures of tau filaments
extracted from an AD patient. (G–J) Cryo-EM structures of tau filaments induced by heparin. (K) Cryo-EM structures of tau filaments extracted from a PiD patient.
The filament structures were drawn with PDB accession numbers, 2N0A (A), 6A6B (B), 6FLT (C), 6CU7 (D), 6CU8 (E), 5O3L (F), 3QJM (G), 3QJP (H), 3QJH (I),
3QJQ (J), and 6GX5 (K).

(3R or 4R), and C-terminal region. Intraneuronal accumulation
of filamentous tau protein is a hallmark of a wide range of
neurodegenerative diseases such as AD and frontotemporal
dementia, collectively termed tauopathy (Ballatore et al., 2007;
Goedert et al., 2017). The filamentous tau aggregates in different
tauopathy patients were shown to have different composition.
For example, all six isoforms were observed in AD patients,
while only 4R-or 3R-isoform of tau was detected exclusively in
progressive supranuclear palsy (PSP) and Pick’s disease (PiD),
respectively (Goedert et al., 2017).

Recently, near-atomic resolution structures of tau filaments
were determined by cryo-EM (Fitzpatrick et al., 2017;
Falcon et al., 2018; Zhang et al., 2019). Figure 2F shows
high-resolution structure of 2N4R tau filaments derived
from an AD brain tissue (Fitzpatrick et al., 2017). Residues
306–378 form a core of the filament which adopts the cross-β
fold with β-helix structures, while the rest of the residues are
disordered and form the fuzzy coat. The two protofilaments
form twisted filaments with interfacial region of residues
332–336. Tau filaments (2N4R) induced by the addition of
heparin were shown to have at least four distinct molecular
structures (Figures 2G–J), which are quite different from
that in AD (Figure 2F; Zhang et al., 2019). In addition, tau
filaments (2N3R) from patients with PiD have a distinct
cross-β fold consisting of residues 254–378 (Figure 2K;
Falcon et al., 2018), highlighting structural diversities
of tau filaments. The distinct molecular conformations
of tau filaments may have different biological activities

associated with different disease phenotypes. More detailed
investigation of biological activities including toxicity and
self-propagation properties of diverse tau filaments will
lead to a deeper understanding of the phenotype diversities
of tauopathies. Finally, it is worth emphasizing that the
heparin-induced in vitro tau filaments (Figures 2G-J) adopt
completely different structures from those of in vivo tau
filaments (Figures 2F,K), highlighting the importance of using
physiological conditions for the biophysical studies of misfolded
protein aggregates. This also raises an important question
whether recombinant aggregation-proneproteins including
tau and α-synuclein can form disease-associated filamentous
aggregates observed in vivo, and thus special care must be taken
when developing therapeutic intervention on the basis of in vitro
filament structures.

SELF-PROPAGATION OF MISFOLDED
STRAINS IN A PRION-LIKE MANNER

Misfolded protein aggregates are initially found in a distinct
brain region depending on the type of diseases. At a later
stage, the protein aggregates gradually spread in a predictable
manner (Frost and Diamond, 2010; Kim and Holtzman, 2010;
Lee et al., 2010; Westermark and Westermark, 2010; Goedert
et al., 2017). For example, tau aggregates are initially found in the
locus coeruleus, entorhinal cortex and hippocampal formation,
which are associated with the memory, in Alzheimer’s patients.
Over time, the misfolded tau aggregates begin to appear in
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the neighboring regions of the temporal and frontal lobes,
which affect cognitive functions such as learning and speech. In
addition, the intracerebral injection of brain extracts containing
misfolded protein aggregates into transgenic mice induced the
formation of misfolded tau aggregates at near injection site
(Clavaguera et al., 2009, 2013; Iba et al., 2013). The induced
aggregates propagate systematically from the injection site and
spread to distant regions, promoting disease phenotypes similar
to those of the corresponding human diseases (Meyer-Luehmann
et al., 2006). It was also demonstrated that misfolded tau
aggregates can be taken by neurons in cell culture and the
tau aggregates were able to stimulate tau aggregation inside
the neurons. In addition, recent studies revealed that tau
aggregates propagate from neuron to neuron, suggesting that
the misfolded aggregates spread through neuronal networks
(Gibbons et al., 2019).

The prion-like behavior was also observed in other misfolded
proteins such as Aβ and α-synuclein. Intracellular injection of
brain extracts containing misfolded α-synuclein aggregates into
transgenic mice induced motor dysfunction similar to those
of PD (Sacino et al., 2014). In addition, misfolded aggregates
derived by purified recombinant α-synuclein were shown to
be able to induce α-synuclein aggregation in vivo (Peng et al.,
2018). Injection of the brain extracts including Aβ plaques as
well as synthetic Aβ aggregates seeded Aβ deposition in mice
(Meyer-Luehmann et al., 2006). These experimental evidences
clearly suggest that the aggregation-prone pathological proteins
have the ability of propagating their pathological conformations
like a prion. Elucidation of the molecular mechanism of the
self-propagation is critical to developing therapeutic agents that
can inhibit the propagation process.

During the self-propagation process, the misfolded protein
aggregates recruit soluble monomeric proteins and induce
conformational changes to misfolded conformers. The end
of the filamentous aggregates may interact with the soluble
proteins or surface of the aggregates may also recruit the
monomeric proteins, promoting intermolecular associations
of the monomeric proteins. Distinct strains with different
molecular structure and morphologies may interact with
monomeric proteins in different ways to induce distinct
conformational changes to propagate their unique molecular
conformations. Elucidation of the molecular basis of the
interactions between the misfolded strains and monomeric
proteins would be of great importance in developing therapeutic
strategies to block the self-propagation process. Recently
solved high-resolution structures of the misfolded filamentous
aggregates will be of great use in investigating interactions
between the filaments and monomeric proteins.

CROSS-TALK BETWEEN MISFOLDED
PROTEINS

Traditionally, misfolding and aggregation of a single protein
is thought to be implicated in each neurodegenerative
disorder with an independent pathological process. There is,
however, an increasing body of evidence that suggests multiple

neurodegenerative diseases are significantly overlapped. First,
co-deposition of α-synuclein and tau was observed in ADRD
(Clinton et al., 2010; Irwin et al., 2013; Moussaud et al., 2014;
Nonaka et al., 2018). For example, misfolded α-synuclein
aggregates were found in more than 50% of AD, Down’s
syndrome, and familial AD cases (Lippa et al., 1998, 1999;
Hamilton, 2000). Tau aggregates were also detected in patients
with Parkinson’s disease dementia and the amount of tau
aggregates is correlated well with cognitive decline (Forman
et al., 2002; Irwin et al., 2013). Second, it was previously shown
that αsynuclein and tau can synergistically promote their mutual
aggregation, suggesting that synergistic interactions between the
two pathological proteins might exacerbate ADRD pathology
(Giasson et al., 2003; Oikawa et al., 2016). In particular,
misfolded α-synuclein aggregates with distinct molecular
conformations (strains) were shown to differentially induce the
formation of distinct tau strains in vivo (cross-seeding; Guo
et al., 2013). These results indicate that AD and PD pathologies
are significantly overlapped presumably due to synergistic
interactions between tau and α-synuclein, highlighting the
complexity of ADRD pathogenesis.

Recent studies have also shown that patients with type 2
diabetes have a higher risk for AD. In addition, about 80%
of Alzheimer’s patients develop type 2 diabetes, suggesting
that AD might be linked to type-2 diabetes (Jucker and
Walker, 2011). Misfolding and aggregation of a small 37-residue
peptide (islet amyloid polypeptide, IAPP) is associated with
type-2 diabetes. Misfolded IAPP aggregates were also shown
to be able to seed Aβ aggregation in vitro as well as in vivo
(Hu et al., 2015; Moreno-Gonzalez et al., 2017). Intracellular
injection of pancreas IAPP aggregates into transgenic mice
induced higher extracellular Aβ deposition in brain, resulting in
more severe learning and memory deficits (Moreno-Gonzalez
et al., 2017). These experimental results indicate the presence
of synergistic interactions between the two aggregation-prone
proteins, aggravating the diseases.

Despite the growing evidence of the cross-talk among protein
misfolding disorders, molecular mechanism of the synergistic
interactions remains to be determined. Aggregation-prone
proteins may interact directly with each other to promote mutual
aggregations, as was demonstrated in vitro. It is, however, unclear
how the filamentous aggregates mutually promote aggregation of
the other aggregation-prone proteins. Even though the misfolded
filamentous aggregates of the three proteins are stabilized by
similar interactions such as hydrogen bonding, salt-bridge, and
hydrophobic interactions, they adopt completely different cross-
b folds as shown in Figures 1B, 2. These different structures
suggest that disordered regions rather than the amyloid core
may interact with the monomers of different aggregation-
prone proteins, accelerating aggregation. For example, negatively
charged C-terminal region (101–140; pI, 3.4) that is not involved
in α-synuclein filament core may disrupt long-range interactions
present in positively charged tau (pI, 11.4; Mukrasch et al.,
2009), destabilizing tau monomers and subsequently promoting
aggregation, and vice-versa. Determination of high-resolution
structures of filamentous aggregates cross-seeded by other
misfolded aggregates will be required to better understand the
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cross-seeding activities. Misfolded protein aggregates may also
indirectly induce aggregation of the other pathological proteins
by interfering protein quality control systems, increasing cellular
vulnerability to misfolding and aggregation.

CONCLUDING REMARKS

It is increasingly evident that aggregation-prone proteins behave
like a prion that adopts diverse molecular conformations
with self-propagation properties and cross-seeding activities.
Recent advances in cryo-EM and solid-state NMR techniques
allowed high-resolution structures of misfolded filamentous
aggregates to be determined at near-atomic resolutions, which
revealed diverse molecular conformations. Additional structural
studies of filamentous aggregates cross-seeded by another
misfolded proteins and in vivo filaments extracted from
patient’s brains will greatly enhance our understanding of
molecular basis for the diverse molecular conformations.
Investigation of their biological activities such as toxicity and
cross-seeding ability will also provide more detailed insights
into structure-function relationship of the conformationally
diverse misfolded strains. Finally, it is important to note

that the high-resolution structures described in this review
were determined only for highly ordered filamentous protein
aggregates. Oligomeric intermediate states that are believed
to be real cytotoxic species may have different molecular
structures. Structural studies of the oligomers using cryo-
EM and solid-state NMR are, however, of great challenge
due to their heterogeneous, transient nature. A recent study
showed that oligomeric species dissociated from filamentous
aggregates exhibited cytotoxic activities (Ghag et al., 2018),
and thus high-resolution structures of the amyloid filaments
described above may help investigate structural features of the
cytotoxic oligomers.

AUTHOR CONTRIBUTIONS

KL wrote the manuscript.

FUNDING

This work was supported in part by National Institutes of Health
(NIH) grant (R01NS097490).

REFERENCES

Annamalai, K., Guhrs, K. H., Koehler, R., Schmidt, M., Michel, H., Loos, C., et al.
(2016). Polymorphism of amyloid fibrils in vivo. Angew. Chem. Int. Ed. Engl.
55, 4822–4825. doi: 10.1002/anie.201511524

Ballatore, C., Lee, V. M., and Trojanowski, J. Q. (2007). Tau-mediated
neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev.
Neurosci. 8, 663–672. doi: 10.1038/nrn2194

Bertoncini, C. W., Fernandez, C. O., Griesinger, C., Jovin, T. M., and
Zweckstetter, M. (2005a). Familial mutants of α-synuclein with increased
neurotoxicity have a destabilized conformation. J. Biol. Chem. 280,
30649–30652. doi: 10.1074/jbc.c500288200

Bertoncini, C. W., Jung, Y. S., Fernandez, C. O., Hoyer, W., Griesinger, C.,
Jovin, T. M., et al. (2005b). Release of long-range tertiary interactions
potentiates aggregation of natively unstructured α-synuclein. Proc. Natl. Acad.
Sci. U S A 102, 1430–1435. doi: 10.1073/pnas.0407146102

Bousset, L., Pieri, L., Ruiz-Arlandis, G., Gath, J., Jensen, P. H., Habenstein, B.,
et al. (2013). Structural and functional characterization of two alpha-synuclein
strains. Nat. Commun. 4:2575. doi: 10.1038/ncomms3575

Campioni, S., Mannini, B., Zampagni, M., Pensalfini, A., Parrini, C.,
Evangelisti, E., et al. (2010). A causative link between the structure of
aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 6, 140–147.
doi: 10.1038/nchembio.283

Castillo-Carranza, D. L., Guerrero-Munoz, M. J., Sengupta, U., Gerson, J. E., and
Kayed, R. (2018). α-synuclein oligomers induce a unique toxic tau strain. Biol.
Psychiatry 84, 499–508. doi: 10.1016/j.biopsych.2017.12.018

Chiti, F., and Dobson, C. M. (2017). Protein misfolding, amyloid formation,
and human disease: a summary of progress over the last decade.
Annu. Rev. Biochem. 86, 27–68. doi: 10.1146/annurev-biochem-061516-
045115

Clavaguera, F., Bolmont, T., Crowther, R. A., Abramowski, D., Frank, S.,
Probst, A., et al. (2009). Transmission and spreading of tauopathy in transgenic
mouse brain. Nat. Cell Biol. 11, 909–913. doi: 10.1038/ncb1901

Clavaguera, F., Lavenir, I., Falcon, B., Frank, S., Goedert, M., and Tolnay, M.
(2013). ‘‘Prion-like’’ templated misfolding in tauopathies. Brain Pathol. 23,
342–349. doi: 10.1111/bpa.12044

Clinton, L. K., Blurton-Jones, M., Myczek, K., Trojanowski, J. Q., and
LaFerla, F. M. (2010). Synergistic interactions between Aβ, tau, and

α-synuclein: acceleration of neuropathology and cognitive decline. J. Neurosci.
30, 7281–7289. doi: 10.1523/jneurosci.0490-10.2010

Collinge, J. (2010). Medicine. Prion strain mutation and selection. Science 328,
1111–1112. doi: 10.1126/science.1190815

Colvin, M. T., Silvers, R., Ni, Q. Z., Can, T. V., Sergeyev, I., Rosay, M., et al.
(2016). Atomic resolution structure of monomorphic Aβ42 amyloid fibrils.
J. Am. Chem. Soc. 138, 9663–9674. doi: 10.1021/jacs.6b05129

Dedmon, M. M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M., and
Dobson, C. M. (2005). Mapping long-range interactions in α-synuclein using
spin-label NMR and ensemble molecular dynamics simulations. J. Am. Chem.
Soc. 127, 476–477. doi: 10.1021/ja044834j

Eichner, T., and Radford, S. E. (2011). A diversity of assembly mechanisms of a
generic amyloid fold.Mol. Cell 43, 8–18. doi: 10.1016/j.molcel.2011.05.012

Eisenberg, D., and Jucker, M. (2012). The amyloid state of proteins in human
diseases. Cell 148, 1188–1203. doi: 10.1016/j.cell.2012.02.022

Falcon, B., Zhang, W., Murzin, A. G., Murshudov, G., Garringer, H. J., Vidal, R.,
et al. (2018). Structures of filaments from Pick’s disease reveal a novel tau
protein fold. Nature 561, 137–140. doi: 10.1038/s41586-018-0454-y

Fitzpatrick, A. W. P., Falcon, B., He, S., Murzin, A. G., Murshudov, G.,
Garringer, H. J., et al. (2017). Cryo-EM structures of tau filaments from
Alzheimer’s disease. Nature 547, 185–190. doi: 10.1038/nature23002

Forman, M. S., Schmidt, M. L., Kasturi, S., Perl, D. P., Lee, V. M., and
Trojanowski, J. Q. (2002). Tau and α-synuclein pathology in amygdala
of Parkinsonism-dementia complex patients of Guam. Am. J. Pathol. 160,
1725–1731. doi: 10.1016/s0002-9440(10)61119-4

Frost, B., and Diamond,M. I. (2010). Prion-like mechanisms in neurodegenerative
diseases. Nat. Rev. Neurosci. 11, 155–159. doi: 10.1038/nrn2786

Gerson, J. E., Mudher, A., and Kayed, R. (2016). Potential mechanisms and
implications for the formation of tau oligomeric strains. Crit. Rev. Biochem.
Mol. Biol. 51, 482–496. doi: 10.1080/10409238.2016.1226251

Ghag, G., Bhatt, N., Cantu, D. V., Guerrero-Munoz, M. J., Ellsworth, A.,
Sengupta, U., et al. (2018). Soluble tau aggregates, not large fibrils, are the
toxic species that display seeding and cross-seeding behavior. Protein Sci. 27,
1901–1909. doi: 10.1002/pro.3499

Giasson, B. I., Forman, M. S., Higuchi, M., Golbe, L. I., Graves, C. L.,
Kotzbauer, P. T., et al. (2003). Initiation and synergistic fibrillization
of tau and alpha-synuclein. Science 300, 636–640. doi: 10.1126/science.10
82324

Frontiers in Molecular Neuroscience | www.frontiersin.org 6 July 2019 | Volume 12 | Article 158

https://doi.org/10.1002/anie.201511524
https://doi.org/10.1038/nrn2194
https://doi.org/10.1074/jbc.c500288200
https://doi.org/10.1073/pnas.0407146102
https://doi.org/10.1038/ncomms3575
https://doi.org/10.1038/nchembio.283
https://doi.org/10.1016/j.biopsych.2017.12.018
https://doi.org/10.1146/annurev-biochem-061516-045115
https://doi.org/10.1146/annurev-biochem-061516-045115
https://doi.org/10.1038/ncb1901
https://doi.org/10.1111/bpa.12044
https://doi.org/10.1523/jneurosci.0490-10.2010
https://doi.org/10.1126/science.1190815
https://doi.org/10.1021/jacs.6b05129
https://doi.org/10.1021/ja044834j
https://doi.org/10.1016/j.molcel.2011.05.012
https://doi.org/10.1016/j.cell.2012.02.022
https://doi.org/10.1038/s41586-018-0454-y
https://doi.org/10.1038/nature23002
https://doi.org/10.1016/s0002-9440(10)61119-4
https://doi.org/10.1038/nrn2786
https://doi.org/10.1080/10409238.2016.1226251
https://doi.org/10.1002/pro.3499
https://doi.org/10.1126/science.1082324
https://doi.org/10.1126/science.1082324
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Lim Prion-Like Conformational Strains

Gibbons, G. S., Lee, V. M. Y., and Trojanowski, J. Q. (2019). Mechanisms of cell-
to-cell transmission of pathological tau: a review. JAMA Neurol. 76, 101–108.
doi: 10.1001/jamaneurol.2018.2505

Goedert, M. (2001). Alpha-synuclein and neurodegenerative diseases. Nat. Rev.
Neurosci. 2, 492–501. doi: 10.1038/35081564

Goedert, M., Eisenberg, D. S., and Crowther, R. A. (2017). Propagation of
tau aggregates and neurodegeneration. Annu. Rev. Neurosci. 40, 189–210.
doi: 10.1146/annurev-neuro-072116-031153

Gremer, L., Scholzel, D., Schenk, C., Reinartz, E., Labahn, J., Ravelli, R. B. G.,
et al. (2017). Fibril structure of amyloid-β(1–42) by cryo-electron microscopy.
Science 358, 116–119. doi: 10.1126/science.aao2825

Guerrero-Ferreira, R., Taylor, N. M., Mona, D., Ringler, P., Lauer, M. E., Riek, R.,
et al. (2018). Cryo-EM structure of alpha-synuclein fibrils. Elife 7:e36402.
doi: 10.7554/eLife.36402

Guo, J. L., Covell, D. J., Daniels, J. P., Iba, M., Stieber, A., Zhang, B., et al. (2013).
Distinct α-synuclein strains differentially promote tau inclusions in neurons.
Cell 154, 103–117. doi: 10.1016/j.cell.2013.05.057

Hamilton, R. L. (2000). Lewy bodies in Alzheimer’s disease: a neuropathological
review of 145 cases using α-synuclein immunohistochemistry. Brain Pathol. 10,
378–384. doi: 10.1111/j.1750-3639.2000.tb00269.x

Hu, R., Zhang, M., Chen, H., Jiang, B., and Zheng, J. (2015). Cross-seeding
interaction between β-amyloid and human islet amyloid polypeptide. ACS
Chem. Neurosci. 6, 1759–1768. doi: 10.1021/acschemneuro.5b00192

Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A., and Radford, S. E.
(2018). A new era for understanding amyloid structures and disease. Nat. Rev.
Mol. Cell Biol. 19, 755–773. doi: 10.1038/s41580-018-0060-8

Irwin, D. J., Lee, V. M., and Trojanowski, J. Q. (2013). Parkinson’s disease
dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat.
Rev. Neurosci. 14, 626–636. doi: 10.1038/nrn3549

Iba, M., Guo, J. L., McBride, J. D., Zhang, B., Trojanowski, J. Q., and Lee, V. M.
(2013). Synthetic tau fibrils mediate transmission of neurofibrillary tangles
in a transgenic mouse model of Alzheimer’s like tauopathy. J. Neurosci. 33,
1024–1037. doi: 10.1523/JNEUROSCI.2642-12.2013

Jahn, T. R., and Radford, S. E. (2008). Folding versus aggregation: polypeptide
conformations on competing pathways. Arch. Biochem. Biophys. 469, 100–117.
doi: 10.1016/j.abb.2007.05.015

Jahn, T. R., and Radford, S. E. (2005). The Yin and Yang of protein folding. FEBS
J. 272, 5962–5970. doi: 10.1111/j.1742-4658.2005.05021.x

Jucker, M., and Walker, L. C. (2011). Pathogenic protein seeding in Alzheimer
disease and other neurodegenerative disorders. Ann. Neurol. 70, 532–540.
doi: 10.1002/ana.22615

Jucker, M., and Walker, L. C. (2013). Self-propagation of pathogenic
protein aggregates in neurodegenerative diseases. Nature 501, 45–51.
doi: 10.1038/nature12481

Kim, J., and Holtzman, D. M. (2010). Medicine. Prion-like behavior of amyloid-β.
Science 330, 918–919. doi: 10.1126/science.1198314

Knowles, T. P., Vendruscolo, M., and Dobson, C. M. (2014). The amyloid state
and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol.
15, 384–396. doi: 10.1038/nrm3810

Lashuel, H. A., Overk, C. R., Oueslati, A., and Masliah, E. (2013). The many
faces of α-synuclein: from structure and toxicity to therapeutic target.Nat. Rev.
Neurosci. 14, 38–48. doi: 10.1038/nrn3406

Lee, S. J., Desplats, P., Sigurdson, C., Tsigelny, I., and Masliah, E. (2010). Cell-to-
cell transmission of non-prion protein aggregates.Nat. Rev. Neurol. 6, 702–706.
doi: 10.1038/nrneurol.2010.145

Li, B., Ge, P., Murray, K. A., Sheth, P., Zhang, M., Nair, G., et al. (2018). Cryo-EM
of full-length α-synuclein reveals fibril polymorphs with a common structural
kernel. Nat. Commun. 9:3609. doi: 10.1038/s41467-018-05971-2

Li, Y., Zhao, C., Luo, F., Liu, Z., Gui, X., Luo, Z., et al. (2018). Amyloid fibril
structure of α-synuclein determined by cryo-electron microscopy. Cell Res. 28,
897–903. doi: 10.1038/s41422-018-0075-x

Lippa, C. F., Fujiwara, H., Mann, D. M., Giasson, B., Baba, M., Schmidt, M. L.,
et al. (1998). Lewy bodies contain altered α-synuclein in brains of many
familial Alzheimer’s disease patients with mutations in presenilin and amyloid
precursor protein genes. Am. J. Pathol. 153, 1365–1370. doi: 10.1016/s0002-
9440(10)65722-7

Lippa, C. F., Schmidt, M. L., Lee, V. M., and Trojanowski, J. Q. (1999).
Antibodies to α-synuclein detect Lewy bodies in many Down’s syndrome

brains with Alzheimer’s disease. Ann. Neurol. 45, 353–357. doi: 10.1002/1531-
8249(199903)45:3<353::aid-ana11>3.0.co;2-4

Lu, J. X., Qiang, W., Yau, W. M., Schwieters, C. D., Meredith, S. C., and Tycko, R.
(2013). Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain
tissue. Cell 154, 1257–1268. doi: 10.1016/j.cell.2013.08.035

Meyer-Luehmann, M., Coomaraswamy, J., Bolmont, T., Kaeser, S., Schaefer, C.,
Kilger, E., et al. (2006). Exogenous induction of cerebral β-amyloidogenesis
is governed by agent and host. Science 313, 1781–1784. doi: 10.1126/science.
1131864

Moreno-Gonzalez, I., Edwards Iii, G., Salvadores, N., Shahnawaz, M., Diaz-
Espinoza, R., and Soto, C. (2017).Molecular interaction between type 2 diabetes
and Alzheimer’s disease through cross-seeding of protein misfolding. Mol.
Psychiatry 22, 1327–1334. doi: 10.1038/mp.2016.230

Moussaud, S., Jones, D. R., Moussaud-Lamodière, E. L., Delenclos, M.,
Ross, O. A., and McLean, P. J. (2014). Alpha-synuclein and tau: teammates
in neurodegeneration? Mol. Neurodegener. 9:43. doi: 10.1186/1750-
1326-9-43

Mukrasch, M. D., Bibow, S., Korukottu, J., Jeganathan, S., Biernat, J.,
Griesinger, C., et al. (2009). Structural polymorphism of 441-residuetau
at single residue resolution. PLoS Biol. 7:e34. doi: 10.1371/journal.pbio.
1000034

Nonaka, T., Masuda-Suzukake, M., and Hasegawa, M. (2018). Molecular
mechanisms of the co-deposition of multiple pathological proteins in
neurodegenerative diseases. Neuropathology 38, 64–71. doi: 10.1111/neup.
12427

Oikawa, T., Nonaka, T., Terada, M., Tamaoka, A., Hisanaga, S., and Hasegawa, M.
(2016). α-Synuclein fibrils exhibit gain of toxic function, promoting tau
aggregation and inhibiting microtubule assembly. J. Biol. Chem. 291,
15046–15056. doi: 10.1074/jbc.M116.736355

Peelaerts, W., Bousset, L., Van der Perren, A., Moskalyuk, A., Pulizzi, R.,
Giugliano, M., et al. (2015). α-Synuclein strains cause distinct
synucleinopathies after local and systemic administration. Nature 522,
340–344. doi: 10.1038/nature14547

Peng, C., Gathagan, R. J., Covell, D. J., Medellin, C., Stieber, A., Robinson, J. L.,
et al. (2018a). Cellular milieu imparts distinct pathological α-synuclein
strains in α-synucleinopathies. Nature 557, 558–563. doi: 10.1038/s41586-018-
0104-4

Peng, C., Gathagan, R. J., and Lee, V. M. (2018b). Distinct α-Synuclein strains
and implications for heterogeneity among α-Synucleinopathies.Neurobiol. Dis.
109, 209–218. doi: 10.1016/j.nbd.2017.07.018

Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D.,
Delaglio, F., et al. (2002). A structural model for Alzheimer’s β-amyloid fibrils
based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci.
U S A 99, 16742–16747. doi: 10.1073/pnas.262663499

Petkova, A. T., Leapman, R. D., Guo, Z. H., Yau, W. M., Mattson, M. P.,
and Tycko, R. (2005). Self-propagating, molecular-level polymorphism in
Alzheimer’s β-amyloid fibrils. Science 307, 262–265. doi: 10.1126/science.
1105850

Qiang, W., Yau, W. M., Lu, J. X., Collinge, J., and Tycko, R. (2017). Structural
variation in amyloid-β fibrils fromAlzheimer’s disease clinical subtypes.Nature
541, 217–221. doi: 10.1038/nature20814

Riek, R., and Eisenberg, D. S. (2016). The activities of amyloids from a structural
perspective. Nature 539, 227–235. doi: 10.1038/nature20416

Sacchettini, J. C., andKelly, J.W. (2002). Therapeutic strategies for human amyloid
diseases. Nat. Rev. Drug Discov. 1, 267–275. doi: 10.1038/nrd769

Sacino, A. N., Brooks, M., Thomas, M. A., McKinney, A. B., Lee, S.,
Regenhardt, R.W., et al. (2014). Intramuscular injection of α-synuclein induces
CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic
mice. Proc. Natl. Acad. Sci. U S A 111, 10732–10737. doi: 10.1073/pnas.
1321785111

Sawaya, M. R., Sambashivan, S., Nelson, R., Ivanova, M. I., Sievers, S. A.,
Apostol, M. I., et al. (2007). Atomic structures of amyloid cross-β spines
reveal varied steric zippers. Nature 447, 453–457. doi: 10.1038/nature
05695

Tuttle, M. D., Comellas, G., Nieuwkoop, A. J., Covell, D. J., Berthold, D. A.,
Kloepper, K. D., et al. (2016). Solid-state NMR structure of a pathogenic
fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 23, 409–415.
doi: 10.1038/nsmb.3194

Frontiers in Molecular Neuroscience | www.frontiersin.org 7 July 2019 | Volume 12 | Article 158

https://doi.org/10.1001/jamaneurol.2018.2505
https://doi.org/10.1038/35081564
https://doi.org/10.1146/annurev-neuro-072116-031153
https://doi.org/10.1126/science.aao2825
https://doi.org/10.7554/eLife.36402
https://doi.org/10.1016/j.cell.2013.05.057
https://doi.org/10.1111/j.1750-3639.2000.tb00269.x
https://doi.org/10.1021/acschemneuro.5b00192
https://doi.org/10.1038/s41580-018-0060-8
https://doi.org/10.1038/nrn3549
https://doi.org/10.1523/JNEUROSCI.2642-12.2013
https://doi.org/10.1016/j.abb.2007.05.015
https://doi.org/10.1111/j.1742-4658.2005.05021.x
https://doi.org/10.1002/ana.22615
https://doi.org/10.1038/nature12481
https://doi.org/10.1126/science.1198314
https://doi.org/10.1038/nrm3810
https://doi.org/10.1038/nrn3406
https://doi.org/10.1038/nrneurol.2010.145
https://doi.org/10.1038/s41467-018-05971-2
https://doi.org/10.1038/s41422-018-0075-x
https://doi.org/10.1016/s0002-9440(10)65722-7
https://doi.org/10.1016/s0002-9440(10)65722-7
https://doi.org/10.1002/1531-8249(199903)45:3<353::aid-ana11>3.0.co;2-4
https://doi.org/10.1002/1531-8249(199903)45:3<353::aid-ana11>3.0.co;2-4
https://doi.org/10.1016/j.cell.2013.08.035
https://doi.org/10.1126/science.1131864
https://doi.org/10.1126/science.1131864
https://doi.org/10.1038/mp.2016.230
https://doi.org/10.1186/1750-1326-9-43
https://doi.org/10.1186/1750-1326-9-43
https://doi.org/10.1371/journal.pbio.1000034
https://doi.org/10.1371/journal.pbio.1000034
https://doi.org/10.1111/neup.12427
https://doi.org/10.1111/neup.12427
https://doi.org/10.1074/jbc.M116.736355
https://doi.org/10.1038/nature14547
https://doi.org/10.1038/s41586-018-0104-4
https://doi.org/10.1038/s41586-018-0104-4
https://doi.org/10.1016/j.nbd.2017.07.018
https://doi.org/10.1073/pnas.262663499
https://doi.org/10.1126/science.1105850
https://doi.org/10.1126/science.1105850
https://doi.org/10.1038/nature20814
https://doi.org/10.1038/nature20416
https://doi.org/10.1038/nrd769
https://doi.org/10.1073/pnas.1321785111
https://doi.org/10.1073/pnas.1321785111
https://doi.org/10.1038/nature05695
https://doi.org/10.1038/nature05695
https://doi.org/10.1038/nsmb.3194
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Lim Prion-Like Conformational Strains

Tycko, R. (2006). Molecular structure of amyloid fibrils: insights from solid-state
NMR. Q. Rev. Biophys. 39, 1–55. doi: 10.1017/s0033583506004173

Tycko, R. (2011). Solid-state NMR studies of amyloid fibril structure. Annu.
Rev. Phys. Chem. 62, 279–299. doi: 10.1146/annurev-physchem-032210-
103539

Tycko, R. (2015). Amyloid polymorphism: structural basis and neurobiological
relevance. Neuron 86, 632–645. doi: 10.1016/j.neuron.2015.03.017

Wälti, M. A., Ravotti, F., Arai, H., Glabe, C. G., Wall, J. S., Böckmann, A., et al.
(2016). Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid
fibril. Proc. Natl. Acad. Sci. U S A 113, E4976–E4984. doi: 10.1073/pnas.
1600749113

Westermark, G. T., and Westermark, P. (2010). Prion-like aggregates: infectious
agents in human disease. Trends Mol. Med. 16, 501–507. doi: 10.1016/j.
molmed.2010.08.004

Zhang, W., Falcon, B., Murzin, A. G., Fan, J., Crowther, R. A., Goedert, M., et al.
(2019). Heparin-induced tau filaments are polymorphic and differ from those
in Alzheimer’s and Pick’s diseases. Elife 8:e43584. doi: 10.7554/eLife.43584

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Lim. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Neuroscience | www.frontiersin.org 8 July 2019 | Volume 12 | Article 158

https://doi.org/10.1017/s0033583506004173
https://doi.org/10.1146/annurev-physchem-032210-103539
https://doi.org/10.1146/annurev-physchem-032210-103539
https://doi.org/10.1016/j.neuron.2015.03.017
https://doi.org/10.1073/pnas.1600749113
https://doi.org/10.1073/pnas.1600749113
https://doi.org/10.1016/j.molmed.2010.08.004
https://doi.org/10.1016/j.molmed.2010.08.004
https://doi.org/10.7554/eLife.43584
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles

	Diverse Misfolded Conformational Strains and Cross-Seeding of Misfolded Proteins Implicated in Neurodegenerative Diseases
	INTRODUCTION
	MISFOLDED CONFORMATIONAL STRAINS
	A Peptides
	-synuclein
	Tau

	SELF-PROPAGATION OF MISFOLDED STRAINS IN A PRION-LIKE MANNER
	CROSS-TALK BETWEEN MISFOLDED PROTEINS
	CONCLUDING REMARKS
	AUTHOR CONTRIBUTIONS
	FUNDING
	REFERENCES


