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Vulvodynia is an idiopathic chronic pain disorder and a leading cause of dyspareunia, or
pain associated with sexual intercourse, for women. The key pathophysiological features
of vulvodynia are vaginal hyperinnervation and nociceptor sensitization. These features
have been described consistently by research groups over the past 30 years, but
currently there is no first-line recommended treatment that targets this pathophysiology.
Instead, psychological interventions, pelvic floor physiotherapy and surgery to remove
painful tissue are recommended, as these are the few interventions that have
shown some benefit in clinical trials. Recurrence of vulvodynia is frequent, even after
vestibulectomy and questions regarding etiology remain. Vestibular biopsies from women
with vulvodynia contain increased abundance of immune cells including macrophages
as well as increased numbers of nerve fibers. Macrophages have multiple roles in the
induction and resolution of inflammation and their function can be broadly described
as pro-inflammatory or anti-inflammatory depending on their polarization state. This
state is not fixed and can alter rapidly in response to the microenvironment. Essentially,
M1, or classically activated macrophages, produce pro-inflammatory cytokines and
promote nociceptor sensitization and mechanical allodynia, whereas M2, or alternatively
activated macrophages produce anti-inflammatory cytokines and promote functions
such as wound healing. Signaling between macrophages and neurons has been shown
to promote axonal sprouting and nociceptor sensitization. This mini review considers
emerging evidence that macrophages may play a role in nociceptor sensitization and
hyperinnervation relevant to vulvodynia and considers the implications for development
of new therapeutic strategies.

Keywords: vulvodynia, vestibulodynia, hyperinnervation, nociceptor sensitization, pain, macrophage polarization,
nerve growth factor

INTRODUCTION

Vulvodynia is a chronic pain disorder, usually characterized by pain localized to the vaginal
entrance (localized provoked vulvodynia; Goldstein et al., 2016). Pain can be intense and
may be associated with vaginismus, or spasm of pelvic floor muscles (Goldstein et al., 2016).
However, vulvodynia is primarily a pain disorder and not secondary to factors such as
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vaginismus, disordered arousal or lack of vaginal lubrication
(Heim, 2001). Frequently there is no history of trauma or
infection, though many women report prior candiasis (Leusink
et al., 2018). Women and girls of all ages can be affected but most
are in younger age groups and a high proportion under 25 years
(Harlow et al., 2014). Many women with vulvodynia are unable
to insert a tampon, engage in sexual activity involving vaginal
penetration or undergo a gynecological examination. The impact
on their self-esteem, relationships and fertility can be substantial.

The key pathological features of vulvodynia are vaginal
hyperinnervation (Bohm-Starke et al., 1998; Tympanidis et al.,
2003, 2004; Bornstein et al., 2004; Halperin et al., 2005;
Goetsch et al., 2010; Leclair et al., 2011; Tommola et al., 2016;
Liao et al., 2017) and nociceptor sensitization contributing to
mechanical and thermal hyperalgesia (Bohm-Starke et al., 2001).
Hyperinnervation includes multiple types of fibers including
fibers containing calcitonin gene-related peptide (Bohm-Starke
et al., 1999) and fibers expressing the receptor TRPV1
(Bohm-Starke et al., 1999; Tympanidis et al., 2004).

Despite evidence of structural and functional changes
related to innervation, the recommended first-line treatments
for vulvodynia are psychological interventions, pelvic floor
physiotherapy and surgery to remove painful tissue (Goldstein
et al., 2016). Whilst these interventions have shown benefit
in clinical trials, vulvodynia remains a highly prevalent
and recurrent pain disorder (Harlow et al., 2014). To date,
clinical trials for treatment targeting the pathophysiology
of vulvodynia have not demonstrated benefit (Goldstein
et al., 2016). Vestibulectomy is an invasive procedure but an
option if conservative treatments fail. Data from large clinical
trials are lacking but a relatively recent study found 90%
of women reported moderate or substantial improvement
(Swanson et al., 2014). Beneficial effects of surgery for
vulvodynia, and therefore removal of input from sensitized
fibers, indicates peripheral mechanisms make a substantial
contribution to the disorder, supporting the view that
appropriate interventions targeting peripheral pathology will be
beneficial (Keppel Hesselink et al., 2016).

IMMUNE CELLS AND
VULVODYNIA PATHOPHYSIOLOGY

In addition to hyperinnervation, vestibular biopsies from women
with vulvodynia contain increased abundance of immune cells
(Lundqvist et al., 1997; Tommola et al., 2015; Liao et al.,
2017) and vaginal swabs contain increased pro-inflammatory
cytokines (Zanotta et al., 2018). Increased T cells, B cells and
macrophages have been identified in samples from symptomatic
areas compared to non-symptomatic areas or healthy controls
(Liao et al., 2017). Symptomatic tissue also contained 70%
increase in nerve fibers immunoreactive for the pan-neuronal
marker PGP9.5, and over 100% increase in the density of
TRPV4-immunoreactive, putative mechano-nociceptive fibers
(Liao et al., 2017). Increased B lymphocytes, but not T cells or
macrophages, have been identified in archival vestibulectomy
tissue (Tommola et al., 2015). Conflicting findings are reported

regarding the abundance of mast cells in vestibular biopsy
samples (Bornstein et al., 2004; Liao et al., 2017). High numbers
of immune cells immunoreactive for nerve growth factor (NGF)
have been identified associated with intraepithelial nerve fibers
in biopsy samples from women with vulvodynia, suggesting
NGF may be a pathophysiological factor (Tommola et al., 2016).
Fibroblast-mediated pro-inflammatory responses to Candida
infection have also been implicated (Falsetta et al., 2015, 2017).
Fibroblasts cultured from vestibular tissue of vulvodynia patients
showed increased expression of receptors for bradykinin and
increased Dectin-1 receptors that bind Candida albicans. These
cells showed increased production of pro-inflammatory and
proalgesic interleukin (IL)-6 and prostaglandin E2 (PGE2) in
response to low-level exposure to Candida albicans or bradykinin
stimulation (Falsetta et al., 2015, 2017). Interestingly, patients’
pain sensitivity correlated with levels of cytokines produced by
cultured fibroblasts exposed to Candida (Foster et al., 2015),
consistent with a localized peripheral pathology making a
substantial contribution to patients’ pain.

Macrophages have an established role in many conditions
associated with chronic pain (Pinho-Ribeiro et al., 2017) but
few studies have investigated macrophage-neuron interactions
that may contribute to hyperinnervation and nociceptor
sensitization in vulvodynia. Macrophages are a heterogeneous
population of cells with multiple functions in development,
homeostasis and disease. In addition to phagocytosis of foreign
pathogens and apoptotic cells, macrophages release hundreds
of effector molecules and proteins including growth factors,
cytokines and chemokines (Mantovani et al., 2005). They
have high plasticity and depending on their phenotype or
polarization state, make contributions to both the induction
and resolution of inflammation. According to a simplified
descriptive framework, M1, or classically activated macrophages
promote inflammation and hyperalgesia. Their major release
factors include reactive oxygen and nitrogen species, and
the pro-inflammatory cytokines IL-1α, IL-1β, TNFα and IL-6
(Mantovani et al., 2005; Liu et al., 2019). M2 or alternatively
activated macrophages have anti-inflammatory effects and
promote hypoalgesia (Leung et al., 2016; Pannell et al., 2016;
Huo et al., 2018). In addition to releasing IL-10, subtypes
of M2 macrophages (M2a, M2b, M2c and M2d), contribute
to functions that promote cell proliferation, cell maturation,
resolution of inflammation and angiogenesis (Liu et al., 2019).
The clear differentiation between M1 and M2 macrophages
that can be seen in vitro does not fully represent the
complex array of functional and phenotypic states found
in vivo, including many transitional states of activation finely
tuned to different microenvironments and also dependent
on tissue specificity (Gordon and Taylor, 2005; Mosser and
Edwards, 2008; Cassetta et al., 2011; Lawrence and Natoli,
2011; Murray and Stow, 2014). Distinguishing macrophage
subsets based on the distinct expression of surface markers
remains a challenge and overlap of antigenicity of subtypes
is substantial, but a growing number of studies apply the
M1/M2 framework to compare macrophage abundance and
activation state in injury or disease conditions and in response
to interventions.
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In homeostatic conditions, a heterogeneous population
of macrophages maintains a state of dynamic equilibrium
within tissue, and those including embryonically derived tissue-
resident macrophages derived from circulating monocytes of
bone marrow origin (Jenkins et al., 2011; Epelman et al.,
2014). In many tissues such as liver and skeletal muscle,
influx of circulating monocytes and their differentiation into
M1 macrophages is a critical part of the acute inflammatory
response (Duffield et al., 2005; Arnold et al., 2007). Within
tissue, both recruited and residentmacrophages have the capacity
for proliferation (Epelman et al., 2014). In response to injury,
macrophages of different phenotypes are present simultaneously
and work synergistically (Duffield et al., 2005). M1 macrophages
transition to M2 phenotypes in a cytokine-driven process critical
for repair and remodeling (Arnold et al., 2007; Dal-Secco et al.,
2015). For example, in injured skeletal muscle, transition of M1
(CX3CR1lo/Ly6C+) macrophages to M2 (CX3CR1high/Ly6C-)
phenotype has been shown following phagocytosis of muscle
cell debris, and whereas M1 macrophages coculture promoted
proliferation of muscles cells, coculture with M2 macrophages
stimulated cell growth. The critical role of macrophages is
highlighted by observations that macrophage depletion at the
time of injury prevents muscle repair (Arnold et al., 2007).

MACROPHAGES AND REGULATION OF
NOCICEPTIVE SIGNALING

Macrophages are implicated in the regulation of pain sensitivity
in multiple conditions (Gong et al., 2016; Shepherd et al.,
2018; Sakurai et al., 2019). Macrophage infiltration has been
demonstrated in pain-associated synovial tissue from patients
with advanced osteoarthritis and in pain-associated models
of joint, muscle and paw inflammation (Gong et al., 2016;
Shepherd et al., 2018; Sakurai et al., 2019). More importantly,
macrophage depletion via clodronate liposomes reduces the
elevated pro-inflammatory cytokines and NGF and reduces
pain behaviors in a model of arthritis (Sakurai et al., 2019).
Similarly, macrophage depletion prevents local hyperalgesia in
response to plantar injection of angiotensin II (Shepherd et al.,
2018), and widespread hyperalgesia in response to repeated
intra-muscular injection of acidic saline and pro-inflammatory
agents (Gong et al., 2016). Macrophage blockade using a
toll-like receptor 4 antagonist also prevents hyperalgesia in
this model (Gong et al., 2016). Increased abundance of ED-1+
monocytes/macrophages in injured rat sciatic nerves correlates
with allodynia (Cui et al., 2000) whereas macrophage depletion
alleviates thermal hyperalgesia following rat sciatic nerve ligation
(Liu et al., 2000) and prevents mechanical allodynia associated
with chemotherapy-induced peripheral neuropathy (Sekiguchi
et al., 2018). Macrophage to neuron signaling, particularly
nociceptor sensitization via the release of proalgesic cytokines,
is well established.

Apart from animal models, there has been increased
interest in identifying macrophage phenotypes in conditions
associated with chronic pain in humans. Synovial fluid
from patients with knee osteoarthritis was found to contain

markedly higher ratios of M1 (CD11c+) to M2 (CD206+)
macrophages compared to healthy controls, and this ratio
correlated with measures of radiographic joint disease (Liu et al.,
2018). Cadaveric intervertebral discs with degenerative changes
contained increased M1 (CCR7+) macrophages and subtypes of
M2 macrophages (M2c, CD163+), specifically localized in areas
of nucleus, annulus and vertebral endplate showing structural
defects (Nakazawa et al., 2018). These findings are supported by a
mouse model of intervertebral disc injury that showed increased
M1 macrophages at day 1 returning to normal levels at 28 days,
and increased M2a (CD206+) and M2c macrophages (CD163) at
days 7, 14 and 28 (Nakazawa et al., 2018).

The shift from M1 to M2 phenotypes appears critical
for resolution of protective hyperalgesia associated with the
acute inflammatory response. Spinal cord injury, a condition
frequently associated with prolonged neuropathic pain, results
in a sustained increased abundance of M1 phenotype cells in the
spinal cord (Kigerl et al., 2009; Pruss et al., 2011). These cells
produce pro-inflammatory and cytotoxic cytokines and they
include M1 macrophages derived from circulating monocytes
and activated microglia sharing the same antigenicity and
morphology (David and Kroner, 2011). In rat models of spinal
cord injury, a relatively brief increase in the total number of M2
(CD206+) macrophages/microglia is accompanied by a greater,
sustained accumulation of M1 (arginase+) macrophages, with
high ratios ofM1 toM2 polarizedmacrophages at 28 days (Kigerl
et al., 2009) and 70 days following injury (Pruss et al., 2011). This
has implications for pain sensitivity as well as secondary injury
such as demyelination. Bone cancer pain is another clinical
challenge in which altered macrophage phenotype has been
implicated. In a mouse model of bone cancer pain, increased M1
(iNOS+, CD16/32/Iba1+) spinal cord macrophages/microglia
were identified, with increased production of IL-1β and reduced
production of IL-10 (Huo et al., 2018). Administration of
dehydrocorydaline, an alkaloidal component isolated from
Rhizoma corydalis previously shown to reduce inflammatory
pain (Yin et al., 2016), resulted in increased M2 (CD206/Iba1)
spinal cord microglia/macrophages and reduced pain
behavior (Huo et al., 2018).

Since vulvodynia is a condition affecting women, sex-related
differences regarding nerve-immune cell interactions regulating
nociceptive signaling are important to consider. Sex differences
in clinical pain are well established, including higher prevalence
of chronic pain among women compared to men, greater
sensitivity of women to multiple measures of experimentally
induced pain and different analgesic responses to opioid
drugs (Bartley and Fillingim, 2013; Sorge and Totsch, 2017).
Multi-disciplinary studies have implicated multiple biological,
psychological and social factors. Interactions between sex
hormones and the immune system, particularly involving
microglia and T cells, are proposed to account for much of
the biological component (Sorge and Totsch, 2017). Less is
documented regarding sex-related differences in macrophage
regulation of nociception, though ovarian hormone regulation
of macrophage phenotype and number (Scotland et al., 2011)
may show macrophages are particularly important for pain
in females.
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Microglial promotion of spinal cord neuron hyperexcitability
in models of neuropathic and inflammatory pain appears
more important in males than females. Intrathecal LPS to
activate microglia produces allodynia only in male mice
(Sorge et al., 2011) and analgesic responses to microglial
inhibitors are testosterone dependent (Sorge et al., 2015).
T cells may also contribute to sex-related differences in pain.
T cells are more abundant in female compared to male mice
and, partly due to diminished testosterone-related inhibition,
produce more pro-inflammatory, proalgesic mediators (Sorge
et al., 2015). Whereas female CD-1 mice require 2–3-fold
more morphine for an equivalent analgesic response to males,
the difference is abolished in T-cell deficient mice (Rosen
et al., 2019). Female rodents have greater abundance of
macrophages in peritoneal and pleural cavities, higher TLR
expression by resident macrophages and greater production
of pro-inflammatory cytokines on macrophage stimulation
(Scotland et al., 2011; Ćuruvija et al., 2017). These findings
support the view that further investigation into the role of
macrophages in chronic pain conditions affecting women
is warranted.

In summary, data from human studies and animal studies
investigating chronic inflammatory, neuropathic and cancer
pain, all support the view that macrophage phenotype may
be an important peripheral factor influencing pain sensitivity.
Additionally, there is evidence M2 macrophages promote
analgesia. In a model of peripheral neuropathic pain, application
of cultured M2 macrophages to the injured nerve reduced
mechanical pain sensitivity (Pannell et al., 2016), possibly
due M2 macrophage production of endogenous opioids
(Pannell et al., 2016). Interestingly, regular exercise promotes
M2 macrophage polarization in skeletal muscle (Leung et al.,
2016) and protects against hyperalgesia in models of chronic
muscle and paw pain, with no sex-related differences identified
(Leung et al., 2016).

MACROPHAGE-NEURON SIGNALING
AND HYPERINNERVATION

Macrophage to neuron signaling may promote axonal
sprouting and hyperinnervation. Pronounced and persistent
hyperinnervation has been described following inflammation
in skin (Reynolds and Fitzgerald, 1995; Chakrabarty et al.,
2013), synovium (Ghilardi et al., 2012), muscle (Ambalavanar
et al., 2006) and deep fascia (Hoheisel et al., 2015), and in
association with painful endometriotic lesions (Anaf et al., 2000;
Morotti et al., 2014). This hyperinnervation involves sensory
A- and C-fibers and is accompanied by mechanical and thermal
hypersensitivity (Reynolds and Fitzgerald, 1995; Chakrabarty
et al., 2013). All of these tissues contain abundant macrophages
that release effector molecules and growth factors shown to
promote hyperinnervation. Few studies have investigated the
specific contributions of macrophages to hyperinnervation,
though macrophages are shown to regulate the regeneration of
injured peripheral nerves, by sensing hypoxia at the nerve bridge,
recruiting endothelial cells and driving neovascularization

critical for Schwann cell migration (Cattin et al., 2015). In vitro
studies show distinct effects of M1 and M2 macrophages on
neuronal growth and survival (Kigerl et al., 2009). Adult DRG
neurons incubated in M1 macrophage conditioned media
show shorter, more highly branched neurites whereas those
incubated in M2 conditioned media showed a uni- or bi-polar
phenotype with elongated axons. M1 conditioned media was
toxic to cortical neurons whereas M2 conditioned media was not
(Kigerl et al., 2009).

Cutaneous hyperinnervation induced by plantar injection
of complete Freund’s adjuvant is accompanied by abundant
angiotensinogen and renin production in macrophages and
T cells (Chakrabarty et al., 2013). Hyperinnervation and
hyperalgesia were prevented by an angiotensin receptor II
antagonist, indicating angiotensin II produced by macrophages
and T cells modulates sensory fiber sprouting. Subsequent
research by this team found vestibular biopsies from
women with vulvodynia contain increased macrophages
and T cells expressing renin and angiotensinogen (Liao
et al., 2017), and that an angiotensin receptor II antagonist
prevented vaginal hyperinnervation in rats in response to
CFA (Chakrabarty et al., 2018).

The ability of macrophages to induce nerve sprouting is
shown in sympathetic hyperinnervation following myocardial
infarction in a mechanism involving their production of NGF
(Hasan et al., 2006; Wernli et al., 2009). NGF also contributes
to sensory hyperinnervation and hyperalgesia in response to
inflammation (Woolf et al., 1994), and anti-NGF therapy has
anti-nociceptive effects in the treatment of arthritis (Sakurai
et al., 2019). Macrophages are an important source of NGF
following injury (Lindholm et al., 1987). NGF not only acts on
nerve fibers, but also acts on macrophages, potentially affecting
polarization state. In cultured macrophages, NGF promotes
cell survival and alters the release of 53 of 507 proteins
secreted by macrophages, including growth factors, cytokines,
and chemokines (Williams et al., 2015). Regarding proteins
associated with classically activated or alternatively activated
macrophages, NGF stimulation increased macrophage secretion
of TGF-β and decreased secretion of IL-10, IL-1α and IL-1β
(Williams et al., 2015).

Injury models indicate that actions of NGF mediated by
macrophages may be sustained for prolonged periods. In
the intervertebral disc injury model, injured discs contain
increased abundance of macrophages, NGF mRNA and NGF
protein 1 day following injury, and all three measures
continue to be substantially increased 28 days following
injury (Nakawaki et al., 2019).

SUMMARY AND CONCLUSIONS

For many years lack of suitable models of vulvodynia was a major
barrier to the development of treatments that specifically target
the pathophysiology of the disease. Recently developed models
of vaginal hyperinnervation in rats and mice are an important
advancement (Farmer et al., 2011; Barry et al., 2018; Chakrabarty
et al., 2018; Sharma et al., 2018). Increased abundance of
macrophages has been observed in these models accompanying
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increased vaginal nerve fibers, consistent with signs in patient
biopsies, but the extent to which macrophages contribute
to hyperinnervation or nociceptor sensitivity in vulvodynia
remains unclear. Indeed, macrophage polarization state has not
yet been described in clinical vulvodynia or in models, and
the impact of macrophage depletion has not been identified.
Therefore, direct evidence for a specific role of macrophages in
vulvodynia is lacking.

However, a significant body of research demonstrates
macrophages can contribute to hyperinnervation and nociceptor
sensitization in multiple pathological conditions. Therapeutic
approaches that target angiotensin signaling, putatively involving
macrophages, appears promising in addressing key pathological
features of vulvodynia. As with other organs in the body, the
composition of embryonically and adult-derived macrophage
subpopulations in the vagina is not yet clear, nor the
extent to which local proliferation and circulating monocytes
replenish and expand populations within a tissue in homeostatic
and disease states. This could have implications on the
effectiveness of interventions targeting monocyte migration
or proliferation of subtypes of macrophages, in addition

to factors altering macrophage polarization state. Studies
clearly show macrophages are highly dynamic and can
transition between polarization states that have distinct effects
on nociception, suggesting they are a potential target for
interventions to modulate pain sensitivity. Modulation of the
microenvironment by interventions including exercise, can
alter macrophage phenotype and shift the balance of their
functions and potentially protect against the development of
chronic pain.
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