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Alzheimer’s disease (AD) is the most common type of dementia which characterized by
a progressive loss of memory and cognitive function due to degeneration of synapses
and axons. Currently, there is no cure for AD. Deposition of extracellular amyloid-β (Aβ)
plaques and intracellular tau neurofibrillary tangles (NFTs) are two hallmark pathologic
changes in the brains of Alzheimer’s patients. Autophagy is the major mechanism in
cells responsible for removing protein aggregates. Accumulation of immature autophagic
vacuoles (AVs) in dystrophic neurites of Alzheimer patients’ brains suggests that
autophagy process is disrupted. Till now, it is far from clear what role autophagy plays in
AD, a causative role, a protective role, or just a consequence of the disease process itself.
To design more effective therapeutic strategies towards this devastating disorder, it is
essential to understand the exact role of autophagy played during different stages of AD.

Keywords: Alzheimer’s disease, autophagy, autophagic vesicle, amyloid-β plaque, tau neurofibrillary tangle,
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common
form of dementia in the elderly, which is characterized by a progressive deficiency in memory
and cognitive functions (Scheltens et al., 2016). More than 50 million people are affected
by AD worldwide (Hodson, 2018). Autosomal dominant mutations in amyloid precursor
protein (APP), presenilin 1 (PS1), or presenilin 2 (PS2) cause early-onset familial AD (fAD).
Whereas the vast majority (>95%) of AD cases develop sporadically without a clear genetic
component or etiology, which are known as sporadic AD (sAD). Additionally, as the main
risk factor for AD is aging, AD is predicted to become a major socioeconomic burden in
the near future with the average life expectancy on the rise (Xia et al., 2018). Deposition
of extracellular amyloid-β plaques (Aβ, aggregated β-amyloid peptide) and intraneuronal
tau neurofibrillary tangles (NFTs, aggregated hyperphosphorylated tau protein) in specific
brain regions are two major lesions of this devastating pathology (Blennow et al., 2006).

Abbreviations: AD, Alzheimer’s disease; APP, amyloid precursor protein; PS1, presenilin 1; PS2, presenilin 2; fAD, familial
AD; sAD, sporadic AD; Aβ, amyloid-β; NFTs, neurofibrillary tangles; Atg, autophagy-related genes; AVs, autophagic
vacuoles; apoE4, apolipoprotein E4; LC3, microtubule-associated protein 1A/1B-light chain 3; mTOR, mammalian target
of rapamycin; Bcl2, B-cell lymphoma 2; TFEB, transcription factor EB; HD, Huntington’s disease; PD, Parkinson’s disease.
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Through proteolytic cleavage by β- and γ-secretase sequentially,
Aβ is generated from APP, and then secreted at the plasma
membrane (Vassar et al., 1999; De Strooper et al., 2012).
In aggressive early-onset fAD patients, mutations of APP or
γ-secretase-associated PS1 and PS2 were identified, which
strongly links Aβ to AD. The amyloid cascade hypothesis was
formed based on this strong causative relationship between Aβ

and AD (Hardy and Higgins, 1992; Karran et al., 2011), which
assumes that the deposition of Aβ peptide in the brain is a central
event in AD pathogenesis and predicts that Aβ accumulation
precedes the NFTs formation. Clinically, the extent of tau NFTs
formation correlates closely with the cognitive dysfunction of AD
to a greater degree than does Aβ plaque load (Nelson et al., 2012).
However, the etiology mechanisms underlying these pathological
changes and progressive loss of synapses and neurons in AD are
not clear yet.

Macroautophagy [hereafter referred to as autophagy, see
review by Cuervo and Wong (2014) for chaperone-mediated
autophagy] is a conserved process for clearing of long-lived
proteins, protein aggregates, dysfunctional cellular organelles
and invaded pathogens, which is an essential mechanism for
maintenance of cellular homeostasis (Dikic and Elazar, 2018).
Recently, it has become apparent that autophagy plays a central
role in development, aging, and neurodegeneration. In addition,
levels of autophagy are exquisitely regulated in different cells.
Homeostasis and survival of neurons depend on the essential
role of basal autophagy. The post-mitotic nature of neurons
predisposes them to the deposition of misfolded proteins and
damaged organelles which otherwise could be diluted through
cell division in replicating cells (Metaxakis et al., 2018). Mice
deficiency of the essential autophagy-related gene 5 (Atg5) or
Atg7 specifically in the central nervous system exhibit progressive
neuronal degeneration with abnormal intracellular proteins
accumulated and a large number of aggregates and inclusions
developed (Hara et al., 2006; Komatsu et al., 2006). Synapses
are regions of quick protein turnover with high energy demand.
Coordinated protein synthesis and degradation are indispensable
for the morphological and functional modifications of synapses
(Nikoletopoulou and Tavernarakis, 2018). It is now widely
accepted that neuronal autophagy is essential for the synapse
plasticity, which is required for learning and memory that is
impaired in AD (Bingol and Sheng, 2011; Hernandez et al.,
2012). Accumulating evidence also supports that, for the
maintenance of local axon homeostasis and protection against
axonal degeneration under stress conditions, normal function
of autophagy is particularly important. In the distal region
of the axon, Hollenbeck observed real-time autophagosome
formation, which suggested autophagosome biogenesis in the
axons locally (Hollenbeck, 1993). By employing live imaging,
recent studies clearly showed that autophagosomes are initially
produced in the distal terminals of axons, then transported
to the soma retrogradely, and finally ended in completing the
degradation of its contents by fusion with lysosomes (Yue,
2007; Maday et al., 2012). All of the above studies indicated
that during the neurite extension and maintenance process
autophagy was a key mechanism for shaping the structures of
neurite and growth-cone, and was essential for neural plasticity.

In the central nervous system, suppression of basal autophagy
causes severe axonal swelling and atrophy, which leads to
neurodegeneration eventually (Hara et al., 2006; Komatsu et al.,
2006).

However, several works confirmed the scarcity of
autophagosomes in healthy neurons (Mizushima et al., 2004;
Nixon et al., 2005; Boland et al., 2008), which may due to high
efficiency of autophagosome clearance in neurons (Boland and
Nixon, 2006; Boland et al., 2008). In addition, researches show
that autophagy is more efficient in young neurons than in old
ones (Boland et al., 2008), as autophagy-related proteins such as
Atg5, Atg7, and beclin-1 will decline with aging (Shibata et al.,
2006; Lipinski et al., 2010), which probably contributes to the
late onset of several neurodegenerative diseases including AD
(Harris and Rubinsztein, 2011).

MALFUNCTION OF AUTOPHAGY IN AD

A substantial amount of evidence supports that autophagy
dysregulation occurs in both AD patients and animal models. As
early as 1967, Suzuki found that, in AD patient brains, there were
a large amount of abnormal subcellular vesicles and aggregated
tau protein accumulated in the swollen or dystrophic neuritis
(Suzuki and Terry, 1967). The identity of these vesicles was
unknown at that time. In 2005, by using immunogold labeling
and electron microscopy, Nixon’s group found that these vesicles
accumulated in dystrophic neurites in AD brains were immature
autophagic vacuoles (AVs; Nixon et al., 2005). Data from
PS1/APP double transgenic mice also showed that large amount
of AVs accumulated in neuronal dendrites and soma before Aβ

plaques appeared when compared to age-matched controls (Yu
et al., 2005). In hippocampal neurons of AD mice, far before the
synaptic and neuronal loss, abnormal accumulation of immature
AVs in axon was observed (Tomiyama et al., 2010; Sanchez-Varo
et al., 2012). In several other animal models of AD including
TgCRND8 mice over-expressing mutant human APP695 and
APPSWE/PS1M146L, the abnormal accumulation of AVs has also
been observed (Cataldo et al., 2004; Yang et al., 2011a). Tau
aggregates are degraded through autophagy pathway (Wang
and Mandelkow, 2012; Ji et al., 2017). Autophagic gridlock also
contributes to the development of AD-like tauopathy (Bakhoum
et al., 2014). The abundance of AVs in the brains of AD
animal models and AD patients is in sharp contrast to the
rarely-observed AVs in normal brains, which suggests that the
accumulation of pathogenic proteins such as Aβ and tau in
AD may be caused by defective autophagy-lysosome proteolysis
pathway (Cataldo et al., 2004; Yang et al., 2011a).

So far, three genes, APP, PS-1, and PS-2, have been identified
as causative genes for fAD (Tang and Gershon, 2003). Research
has found wild type PS1 but not mutation forms, by regulating
the distribution of v-ATPase subunit V0a1 onto lysosome,
is crucial for lysosome acidification and thus contributes to
the regulation of autophagy-lysosome degradation system in
a γ-secretase-independent way (Lee et al., 2010). As a major
genetic risk factor for sAD, apolipoprotein E4 (apoE4) has been
found to induce malfunction of autophagy. Aβ42 in lysosome
were significantly elevated in ApoE4 transgenic mice, which
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finally led to neuronal death in the hippocampus (Belinson
et al., 2008). In addition, other study found that in Neuro-2a
cells ApoE4 potentiates leakage from lysosome and enhances
Aβ peptide-induced apoptosis (Ji et al., 2006). Progressive
accumulation of AVs and lysosomal deficits in the brain has been
widely recognized as another hallmark of AD (Nixon and Yang,
2011), though it is still a debate whether autophagy dysfunction is
the result or the cause of AD (Shin et al., 2014; Peric and Annaert,
2015). Furthermore, gender difference may have an influence
on the malfunction of auto-lysosome system (Congdon, 2018).
In general, accumulating evidence seems to indicate that in the
early stages of AD development autophagy has a protective role,
whereas it appears to potentiate neuronal degeneration in the
more advanced stages.

MECHANISMS UNDERLYING AUTOPHAGY
IMPAIRMENT IN AD

The abnormal accumulation of autophagosomes in neurons
of AD brain constituted the first sign of autophagy deficits.
But, it is not fully understood what is the exact mechanism
underlying dysfunction of autophagy in AD (Liang and Jia,
2014). The build-up of AVs in neurodegenerative diseases may
reflect enhanced autophagy induction, impaired later lysosomal
degradation steps in the autophagic pathway, or a lower rate of
autophagy initiation combined with insufficient lysosome fusion
and digestion (Barnett and Brewer, 2011). In general, the field
is still at odds over which stage or stages of the autophagic-
lysosomal pathway is dysfunctional in AD.

Altered Autophagy Initiation in AD
Although autophagosomes are numerous in brains of the
PS1M146L/APP751SL mouse and in brains of AD patients, it does
not necessarily indicate that autophagy induction is upregulated.
Actually, the expression of beclin-1 which is an essential protein
for autophagy initiation is decreased in brains of AD patients
when compared with that of healthy individuals (Liang et al.,
1999; Pickford et al., 2008). The loss of beclin-1 is believed
to be caused by the increased activity of caspase 3, as this
enzyme-mediated cleavage of beclin-1 occurs in brains of AD
patients (Rohn et al., 2011). In an APP transgenic mouse model
with beclin-1 deletion, the basal level of autophagy is disrupted,
and intracellular Aβ accumulation increased (Pickford et al.,
2008). Protein p62 is an autophagic cargo receptor, which was
shown to bind directly to microtubule-associated protein 1A/1B-
light chain 3 (LC3; Pankiv et al., 2007). In a triple transgenic
mouse model of AD (3xTg-AD), Du et al. (2009a,b) observed
a significant decrease in p62 expression. On the contrary, a
genome-wide research indicated that autophagy is up-regulated
specifically in AD, due both to the transcriptional up-regulation
of positive regulators of autophagy and to the reactive oxygen
species-dependent activation of a critical kinase for the initiation
of autophagy, the type III PI3 kinase (Lipinski et al., 2010).
Bordi et al. (2016) reported that autophagy flux increased in
CA1 neurons of Alzheimer hippocampus as indicated by striking
upregulation of Atgs, increases in autophagosome formation
and lysosomal biogenesis beginning at early AD stages. As

controversy is evident, more effort should be made in this area
to assess real-time autophagy activity at different stages of AD
pathogenesis. Autophagy may be regulated differentially in the
early stage and late stage of AD. In this regard, developing reliable
in vivo autophagy flux assay methodology should be a priority for
the field.

Disrupted Transportation of
Autophagosome
In normal neurites, for final lysosomal degradation, immature
AVs are transported retrogradely from distal axon terminals
towards the soma. In the AD brain, their transportation might
be impeded as suggested by the significant build-up of AVs
within dystrophic neuritis (Nixon, 2007). In mouse and cell
models of AD, it has also been reported that the transportation
of autophagy-related compartments is selective defected (Nixon
and Yang, 2011). Inhibiting the delivery of autophagosomes to
lysosomes induces a rapid AVs accumulation in neurites, with
very similar morphology to what has seen in the AD brain, which
further suggests that defective axonal transportation of AVs may
play a role in AD pathogenesis (Boland et al., 2008).

In the central nervous system, tau protein is mainly found
in neurons, where it primarily localizes in axons and to a
much lesser extent in dendrites and neuronal soma (Binder
et al., 1985). Tau is effectively degraded through the autophagy
pathway and regulates autophagy in reverse (Caballero et al.,
2018). Several studies have shown that autophagy-lysosome
system impairment leads to the formation of tau oligomer and
insoluble aggregate, whereas their formation can be significantly
alleviated through the induction of autophagy (Hamano et al.,
2008; Congdon et al., 2012). In addition, autophagy dysfunction
can be a result of tau hyperphosphorylation as tau modifications
can provoke lysosomal aberrations (Lim et al., 2001; Lin et al.,
2003). Tau is critical for autophagosome retrograde trafficking
and maturation to fuse with lysosome through facilitating
the assembly and stabilization of microtubule (Dixit et al.,
2008). Importantly, in AD models, tau may gain a toxic
function as tau deficiency is largely protective against Aβ

toxicity, which suggests that Aβ-mediated neurotoxicity seems
to require tau in AD (Roberson et al., 2007; Ittner et al.,
2010). However, other studies offer an opposite point of view
that the real causative factor of axonal dysfunction is the
abnormality of lysosomal proteases (Xie et al., 2015). To clarify
the molecular defects that underlie the AVs transportation
failure in AD, more studies are required to identify the role of
each defect.

Defective Lysosomal Fusion/Degradation
in AD
There are reports show that PS1 is critical for the acidification
of lysosome and the fusion of the autophagosome with
the lysosome. Abnormal accumulation of AVs have been
identified in fibroblasts derived from patients with fAD-linked
PS1 mutations, where markedly impairment of the turnover of
long-lived proteins is detected (Esselens et al., 2004; Lee et al.,
2010, 2015; Neely et al., 2011). Others believe that lysosomal
calciumhomeostasis defects, but not proton pump defects, causes
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endo-lysosomal dysfunction in PS1-deficient cells (Coen et al.,
2012; Zhang et al., 2012). Anyway, supported by accumulating
evidence, a critical role of lysosomal proteolytic failure has
been suggested in the development of neurodegeneration in AD
(Colacurcio et al., 2018). In AD brain, the AVs accumulated
are electron-dense autolysosomes and autophagosomes which
are filled with undigested or incompletely-digested ‘‘waste’’
proteins (Nixon et al., 2005). Abnormally high levels of Aβ,
ubiquitinated proteins, and LC3-II are presented in the lysosome
and AVs fractions isolated from the brains of TgCRND8 mice
(Yang et al., 2011b). The morphology of accumulated AVs in
brains of a transgenic mouse model of AD and AD patients
is very similar to that induced by blockage of lysosomal
proteolysis with specific cathepsin deletion (Koike et al.,
2000; Boland et al., 2008). In neurons, selectively blocking
of cathepsin-mediated proteolysis within autolysosomes using
inhibitors of cysteine-protease or aspartyl-protease also leads
to a marked accumulation of AVs with electron-dense double-
membrane which contained incompletely degraded LC3-II
(Boland et al., 2008). The above evidence strongly indicates
the principal mechanism underlying autophagic dysfunction
in AD may be the disruption of substrate proteolysis within
the autolysosome.

On the other hand, works done by others suggests that APP
metabolites may also accumulate in cells through inhibition of
autophagy before fusion with lysosome, such as genetic deletion
of ATG7 or ATG5, which indicating that AD-like pathology
may arise by perturbation at any step along the autophagy-
lysosome pathway (Tian et al., 2011). In addition, autophagy
plays an important role in Aβ metabolism. First, autophagy is
believed to be another major Aβ clearance pathway (Nilsson and
Saido, 2014) along with Aβ degradation enzymes (Miners et al.,
2008). Second, under physiological conditions, the autophagy-
lysosome pathway is important for the degradation of Aβ;
whereas under pathological condition or during the process

of aging, it is demonstrated the autophagy-lysosome system is
a novel pathway for the production of Aβ (Yu et al., 2005).
Third, the secretion of Aβ is also mediated by autophagy. Recent
findings demonstrate that extracellular release of Aβ through
the autophagy pathway. Genetic deletion of essential autophagy
component leads to inhibition of Aβ secretion and reduced
intracellular accumulation of Aβ, which further exacerbated
neurodegeneration (Nilsson et al., 2013). In return, Aβ could
also regulate autophagy. In neurons, Aβ could directly induce
autophagy (Hung et al., 2009), disrupt autolysosomal membrane
physical integrity, and impair substrate degradation in the
lysosome (Ling et al., 2009). It seems that a pro-survival role is
played initially by neuronal autophagy induced by Aβ42, which
is switched to a pro-death role in a time-dependent manner.

AUTOPHAGY MODULATION FOR AD
THERAPY

Promoting Autophagy Induction
By integrating many signaling cascades in the cell, the
mammalian target of rapamycin (mTOR) is a well-established
key pathway that senses nutrient and regulates cell metabolism
(Noda and Ohsumi, 1998; Corradetti and Guan, 2006; Pei
and Hugon, 2008). Genetic reduction of mTOR signaling in
Tg2576 mice brain enhanced autophagy induction (Figure 1)
and restored normal hippocampal gene expression signature,
and results in a reduced deposit of Aβ and alleviated memory
deficits (Caccamo et al., 2014). Signaling through mTOR
regulates tau homeostasis (Tang et al., 2013). Pharmacologically
reducing mTOR signaling with rapamycin ameliorated tau
pathology (Caccamo et al., 2013). Long-term inhibition of
mTOR by rapamycin or latrepirdine also prevents AD-like
cognitive deficits and lowers Aβ42 level, reduces amyloid
plaques and tau NFTs (McGowan et al., 2005; Caccamo et al.,

FIGURE 1 | Potential targets for Alzheimer’s disease (AD) treatment through the modulating of autophagy. Promoting autophagy induction (A) was originally
proposed as an obvious solution to reduce amyloid-β (Aβ) aggregates and tau neurofibrillary tangles (NFTs) in the AD brain. It is now realized that the efficiency is
context-dependent. Regulating autophagosome-lysosome fusion (B) and enhancing lysosomal function (C) captured more attention recently. Attempts were made
to stabilize retrograde transportation of the autophagosomes (D). Combination therapy is also under active investigation currently. Little green dots indicate molecular
motor dynein/dynactin.
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2010; Spilman et al., 2010; Majumder et al., 2011). Yet it is
noteworthy that the mTOR pathway itself is involved in many
other critical cellular functions such as gene translation and
cell growth. Toxic side-effects on patients can be induced by
long-term inhibition of the mTOR pathway. So, rapamycin is
not an ideal drug candidate to be considered for long-term
use. Novel specific autophagy inducer is urgently needed for
the field. In APP transgenic mice, administration of lentiviral
vectors expressing beclin1 lead to induction of autophagy, and
reduced both extracellular and intracellular amyloid pathology
(Pickford et al., 2008). A point mutation (F121A) reduces
the interaction between beclin1 and its endogenous inhibitor
Bcl2, B-cell lymphoma 2. Knocking-in of beclin1F121A in
mice leads to constitutively active autophagy in multiple
tissues including brain, even without any autophagy-inducing
manipulation. In AD mouse models, beclin1F121A-mediated
hyperactive autophagy significantly reduces the accumulation
of amyloid, and prevents the decline of cognition, and
restores the survival rate (Rocchi et al., 2017). Using a gene
therapy strategy, Caccamo et al. (2017) showed that cognitive
deficits in APP/PS1 mice were rescued by increasing brain
p62 expression. Genetic-based approaches may provide more
precisely targeted AD therapy. Stimulation of autophagy also
reduces neurodegeneration in a mouse model of human
tauopathy (Schaeffer et al., 2012).

On the other side, conflicting data arose from recent
studies in AD models suggest that as a generalized treatment
strategy for AD, the applicability of induction of autophagy
is questionable. Aberrant induction of autophagy may actually
lead to elevated Aβ production, as accumulated autophagic
vesicles containing active γ-secretase machinery (Yu et al., 2005;
Boland et al., 2008). More and more studies support the notion
that the effect of autophagy modulation is context-dependent.
Autophagy induction is not always beneficial. Research has
shown that a major reservoir for Aβ production in AD brain
may be autophagosomes (Yu et al., 2005). Induction of new
autophagosome formation but not accompanied by a parallel
autophagic flux increase may actually lead to increased Aβ

production and catabolic contents leaking from AVs (Nixon,
2007). When considering autophagy modulation as a therapy,
what is the autophagy defect, when to intervene, and how
long/how strong for the modulation, all these should be taken
into account. For instance, it has been reported that Aβ42-
induced cell death can be alleviated through inhibition but
not stimulation of autophagy (Ling et al., 2009; Wang et al.,
2010). So, it appears that the benefit of enhanced induction
of autophagy is context-dependent although basal autophagy is
required for neuronal survival. This is further demonstrated by
the findings that induction of autophagy after the formation of
mature tangles and plaques had no effect on cognitive deficits
or other AD-like pathology, whereas increasing autophagy
induction before the development of AD-like pathology reduced
the levels of soluble tau, Aβ and amyloid plaques in 3xTg-
AD mice (Majumder et al., 2011). In addition, conflicting
results on the role of autophagy modulation may partially
arise from the differences in models. Furthermore, systematic
research is necessary for detailed examining the levels of

autophagic activity in different cells (neuron vs. glia) in AD as
discussed below.

In addition, the accumulation of insoluble Aβ42 over
time may be the direct cause of the development of
autophagic dysfunction (Steele and Gandy, 2013). In
support of this hypothesis, a recent report showed that no
conversion to autophagic/lysosomal failure was observed when
TgCRND8mice were treated with scyllo-inositol, an endogenous
inositol stereoisomer that is known to inhibit Aβ42 aggregation
and fibril formation before the onset of autophagic/lysosomal
failure. In contrast, immature AVs and autophagic/lysosomal
substrates were significantly accumulated in vehicle-treated
TgCRND8 littermates (Lai and McLaurin, 2012).

Enhancing Lysosomal Function
Recent studies point to impaired lysosomal proteolytic function
as the origin of auto-lysosome malfunction in AD pathogenesis
(Yang et al., 2011b). Genetic ablation of cystatin B, an
endogenous inhibitor of lysosomal cysteine proteases, in the
TgCRND8 AD mouse model with clear defect in proteolytic
clearance of autophagic substrates, significantly elevated the
lysosomal activity (Figure 1), which leads to enhanced clearance
of the autophagic substrates, and obvious alleviation of memory
deficits and amyloid pathologies in the animals (Yang et al.,
2011a, 2014). Pharmacological compounds with such effects
would greatly facilitate research effort in this therapeutic
direction (Yang et al., 2017).

Combination Therapy
Theoretically, it would provide more benefit by simultaneously
using two pharmacological autophagy-inducers that act
through different regulatory pathways. Indeed, by using the
mTOR-independent autophagy enhancer trehalose or lithium
and the mTOR-dependent autophagy enhancer rapamycin in
combination upregulates autophagy to a greater extent and
leads to quicker clearing of protein aggregates than using each
alone (Sarkar et al., 2005, 2008). Moreover, using two drugs
in combination may enable reduction of the dose of each
treatment when compared with either treatment alone, which
might greatly reduce the likelihood of adverse effects. In such
a scenario, it might be a promising intervention strategy to
moderately increase autophagy induction in combination with
methods to promote the successful completion of autophagic
degradation. However, it is still a big challenge to target the
defective lysosomal proteolysis and the autophagy induction at
the same time.

In this regard, as it coordinately activates lysosomal biogenesis
as well as genes required for autophagosome formation, it seems
that transcription factor EB (TFEB) fulfills both of these criteria
(Cortes and La Spada, 2019). With its efficacy has already
been showed under several neurological conditions, including
lysosomal storage disorders (Song et al., 2013), Huntington’s
disease (HD; Vodicka et al., 2016) and Parkinson’s disease (PD;
Decressac et al., 2013), it is expected that in the AD context
similar benefits may also be achieved. Actually, a study published
recently provides the first evidence that TFEB may indeed be
beneficial for AD treatment (Xiao et al., 2015). On the other
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hand, pharmacological treatments which improve the catalytic
performance of lysosomal enzymes and simultaneously reducing
the burden of auto-lysosomal pathway would be another way to
tackle the problem of AVs clearance slowdown and disturbed
lysosomal function, as exampled by the study of Yang et al. (2017;
Figure 1).

Other Strategies
Alternatively, interventions aiming at reducing the burden to
the inappropriate functioning autolysosomal compartments hold
some potential as well. For example, preventing Aβ production
and oligomerization along with lowering cholesterol may all
prove beneficial. In an AD model, it has been demonstrated
that 2-hydroxypropyl-beta-cyclodextrin, a cholesterol-lowering
drug, is indeed emerging as a potential useful pharmacological
tool (Ren et al., 2016). As for Aβ, a recent work implies that
useful selective inhibitors of Aβ production could be developed
from peptides that disrupt the physical interaction between the
APP and PS1 (Das et al., 2003). Finally, as growing evidence
suggests that restoring proper endosomal trafficking (recycling)
may have a similar effect, another potential strategy to tackle
this issue is to develop specific pharmacological modulators of
these processes. Two recent studies provided the first proof of
concept test through developing pharmacological stabilizer of the
retromer sorting complex for AD treatment (Mecozzi et al., 2014;
Young et al., 2018).

DISTURBED AUTOPHAGY IN GLIAL CELLS
IN AD

Astrocytes, microglia, and oligodendrocytes are important
components involved in the AD pathogenesis (Dzamba et al.,
2016). Under normal conditions, they perform supporting
and surveillance functions to neurons in the central nervous
system. Engulfing and phagocytosis of extracellular ‘‘garbage’’
like Aβ is vital for neuronal homeostasis. Studies showed that
autophagy in glial cells also played a key role in cleaning
the microenvironments around neurons (Xue et al., 2014;
Pomilio et al., 2016). Disturbing basal autophagy process in
glia leads to gliosis and neuroinflammation, which contribute
significantly to the development and progression of AD (Herrup
et al., 2013; She et al., 2018). Autophagy in glial cells should
be taken into account when targeting this process for the
treatment of AD.

CONCLUSIONS AND FUTURE
DIRECTIONS

The auto-lysosomal function is clearly impaired in AD, which
contributes to the accumulation of Aβ plaques and tau NFTs, the
two most significant hallmarks of AD. Specific diagnostic
methods are urgently needed for accurately identifying
and quantifying the autophagic dysfunction in vivo in AD.
Currently, the ‘‘gold standard’’ for monitoring autophagy
in tissue is direct observation under transmission electron
microscopy. It has also been widely used to assess autophagy
by Immunohistochemical staining and immunoblotting against
autophagy-specific biomarkers such as LC3 (Klionsky et al.,
2016). Other approaches include forced expression of GFP-LC3
to detect AVs under the microscope as fluorescent dots, and
the use of weakly basic dyes which accumulate in the acidic
autophagosome-lysosome compartments (Klionsky et al., 2016).
Till now, there is no method to monitor autophagy activity
in vivo in a real-time manner.

For a deeper understanding of the dysfunction of autophagic
in AD and for the successful development of therapeutic
strategies based on autophagy modulation, it is also very
critical to exploring biomarkers that can be applied widely in
clinical settings to assess the therapeutic efficiency of autophagy
modulation (Chiong, 2018). In addition, as evidence against the
druggability of autophagy pathway in the late-stage of the disease,
more studies should aim to consider preventive or intervention
trials in the early stage of AD (Steele et al., 2013).
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