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Parkinson’s disease (PD) is a neurodegenerative disease that is generally thought to
be caused by multiple factors, including environmental and genetic factors. Emerging
evidence suggests that intestinal disturbances, such as constipation, are common non-
motor symptoms of PD. Gut inflammation may be closely associated with pathogenesis
in PD. This review aims to discuss the cross-talk between gut inflammation and PD
pathology initiation and progression. Firstly, we will highlight the studies demonstrating
how gut inflammation is related to PD. Secondly, we will analyze how gut inflammation
spreads from the gastro-intestine to the brain. Here, we will mainly discuss the
neural pathway of pathologic α-syn and the systemic inflammatory routes. Thereafter,
we will address how alterations in the brain subsequently lead to dopaminergic
neuron degeneration, in which oxidative stress, glutamate excitotoxicity, T cell driven
inflammation and cyclooxygenase-2 (COX-2) are involved. We conclude a model of
PD triggered by gut inflammation, which provides a new angle to understand the
mechanisms of the disease.

Keywords: gut inflammation, Parkinson’s disease, α-synuclein, oxidative stress, cyclooxygenase-2, glutamate
excitotoxicity, T-cell

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease that is characterized by the degeneration
of dopaminergic neurons in the substantia nigra pars compacta (SNpc) (Hostiuc et al., 2016) and
the presence of Lewy bodies (LBs) (Engelhardt, 2017), in which the primary protein component is
misfolded and aggregated α-synuclein (α-syn) (Spillantini et al., 1998). PD patients typically exhibit
motor symptoms, such as tremor, stiffness, unstable posture, and slowness of movement (Jankovic,
2008), which are accompanied, and often preceded by a series of non-motor symptoms, such as
intestinal dysfunction (Mukherjee et al., 2016), sleep disorders (Partinen, 1997; Ciric et al., 2018),
depression (Taylor et al., 1986) and cognitive impairment (Starkstein et al., 1989). Among these
non-motor symptoms, intestinal dysfunction has been paid special attention to, not only because it
often appears prior to the motor symptoms (Suzuki et al., 2019), but also because α-syn aggregates
have been detected in the gastrointestinal tract years before the motor-symptom onset (Cersosimo,
2015; Stokholm et al., 2016; Kim et al., 2017; Lu et al., 2017). LBs present in the gastrointestinal tract
were first described in 1986 by Qualman et al. (1984) in which LBs were detected in the esophagus
and colon in 2 PD patients with dysphagia. Since then, more reports reinforced the discoveries
of pathological α-syn in the ENS (Wakabayashi et al., 1988, 1990; Braak et al., 2006). Braak et al.
(2003) postulated that LBs were first localized in the dorsal motor nucleus of the vagus (DMNV)
and then spread to the upper brain regions, which inspired more researches on the time course of
the presence of LBs in the gut and brain. Stokholm et al. (2016) found that phosphorylated α-syn
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positive profiles were seen in 22 of 39 (56%) prodromal PD
subjects and 30 of 67 (45%) prodromal tissue blocks, which were
significantly higher compared to control subjects. Rota et al.
(2019) found that the gastrointestinal α-syn pathology precedes
in the CNS at least by 6 month in human-A53T α-syn transgenic
mice. These evidences consolidate the view that PD patients and
animal models of PD are characterized by enteric α-syn pathology
at the early stages of the disease. Therefore, it has been proposed
that PD may be initiated from the gut (Braak et al., 2004).

Crohn’s disease (CD) and ulcerative colitis (UC) are the
two main inflammatory bowel diseases (IBD) with UC mainly
affecting the colon and rectum, and CD impacting the small
and large intestine (Baumgart and Carding, 2007; Baumgart and
Sandborn, 2007). Coincidentally, IBD shares some features with
PD, including a negative correlation with smoking (Hernán et al.,
2001, 2002; James, 2003; Breckenridge et al., 2016; Kridin et al.,
2018; Salih et al., 2018; Wang et al., 2018) and several shared
risk genes, such as LRRK2 (Miyake et al., 2010; Hui et al.,
2018) and CARD15 (Bialecka et al., 2007). Interestingly, Devos
et al. (2013) reported the inflammatory responses in the gut
since the early stages of PD, by analyzing the ascending colonic
biopsies of PD patients, they found that the pro-inflammatory
cytokines (TNF-α, IF-γ, IL-6, and IL-1β) and glia markers GFAP
and Sox-10 were significantly elevated, and some of them (IL-
6, IL-1β, and Sox-10) were negatively correlated with disease
duration. Cote et al. (2011) treated MYD 88 knockout mice
with MPTP intraperitoneal administration, they found that
MYD 88 knockout mice protected against MPTP induced TH-
immunoreactive neuron degeneration in the myenteric plexus
of distal ileum, although they detected no macrophage density
changes compared with MPTP treated WT mice, the MYD 88
knockout mice exhibited a predominant pro-repair phenotype.
Moreover, Cote et al. (2015) found clear presence of M1
monocytes and increased IL-1βand IL-6 in the gut, while in the
partial depletion of M1 monocytes the mice protected against
MPTP induced TH expression in the gut but not in the striatum,
in the meanwhile the microglia activation showed no difference
in microglia activation in the brain. In addition, several studies
have reported the causal relationship between IBD and PD
in recent years (Lin et al., 2016; Fujioka et al., 2017; Wan
et al., 2018; Zhu et al., 2019). Here, we analyzed the recent
studies on the relationship between PD and intestinal disorders,
and highlighted the potential underlying mechanisms of gut
inflammation triggering PD.

RELATIONSHIP BETWEEN GUT
INFLAMMATION AND PD

In the earlier years, most of the findings were supportive of a
relationship between PD and IBD. Lin et al. (2016) demonstrated
that IBD was associated with an increased incidence of PD,
especially in CD, in a retrospective clinical cohort from 2000
to 2011. In a Danish nationwide cohort study (1977–2014),
Villumsen et al. (2019) also found that patients with IBD had
a 22% increased risk of developing PD, compared to non-IBD
individuals. However, the increased risk of PD was significantly

higher in the patients with UC, but not significantly different
among patients with CD. These findings were questioned by
Weimers et al. (2018), however, after a thorough re-examination,
the same conclusions were drawn (Villumsen et al., 2018). In
contrast to these favorable reports, some studies have challenged
the view on the association between PD and IBD. Fujioka et al.
(2017) identified only 2 patients with CD among 876 PD patients,
which was comparable to the incidence in the general population.
Moreover, PD was even inversely associated with either CD or
UC, in some of the newly diagnosed PD cases (Camacho-Soto
et al., 2018). Although Weimers et al. (2019) found that IBD was
associated with a higher risk of PD, the correlation appeared to be
caused by a surveillance bias (Weimers et al., 2018).

In a systematic review and meta-analysis, Wan et al. (2018)
found that IBD patients did not show increased risk of PD,
however, a subgroup analysis showed a significant difference
in the more aged patients (>60 years old). Zhu et al. (2019)
suggested that both CD and UC patients have an increased risk
of PD compared to the control subjects. To date, although no
consensus has been reached, among all of the researches, the most
recent data implied that IBD exacerbates PD (Peter et al., 2018).
However, the underlying mechanisms on how IBD could trigger
PD pathogenesis are still unclear.

EVIDENCE OF GUT INFLAMMATION
SPREADING TO THE BRAIN

As we hypothesized, gut inflammation was able to trigger
PD symptoms, the three key factors, (1) the initiator from
gut inflammation, (2) the pathways, and (3) the subsequent
effects of gut inflammation in the brain must be analyzed step
by step. In the gut the inflammatory response induces the
disrupted intestinal mucosal barrier, resulting in the exposure to
microbiota. Thus, the enteric nervous system, immune system,
and microbiota interplayed, which is considered to be a mutually
integrated interaction network (Yoo and Mazmanian, 2017).
Then, the products or stimulation of these comprehensive
interactions can spread to the brain, which may summarize as
the microbiota-immune-neuro gut-brain axis. Considering that
pathologic α-syn was reported as triggers of PD, we analyzed
the inflammatory response and microbiota induced α-syn
pathology in the gut. In addition, the inflammatory response
itself was also estimated as the pathological process. Therefore,
for the pathways, we will mainly introduce (1) the systemic
inflammatory routes that spread proinflammatory factors and (2)
the pathologic α-syn propagation pathway.

The Crosstalk Among Microbiota,
Inflammatory Response and
Pathological α-Syn in the Enteric
Microenvironment
Although researches have demonstrated that anti-inflammatory
treatment is effective to ease PD symptoms (Gagne and Power,
2010; Thome et al., 2015, 2016), there is a lack of evidence of
gut inflammation induced pathologic α-syn directly. However,
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increased inflammation in the gut, can increase gut permeability,
thereby leaking intruders from the gut lumen, such as microbiota
and their metabolites, may trigger aggregation of α-syn (Chorell
et al., 2015; Bhattacharyya et al., 2019). Interestingly, the dysbiosis
in PD is widely reported (Scheperjans et al., 2015; Cassani
et al., 2015) and the fecal microbiota transplant is proven
to ease symptoms of PD (Ananthaswamy, 2011), suggesting
an important role of microbiota in the initiation of PD.
A growing body of evidence highlight the potential role of
microbiota inducing pathologic α-syn (Fitzgerald et al., 2019).
The first proposed mechanism is conceived from the gut
lumen harbors Escherichia coli which can produce Curli, an
extracellular bacterial amyloid protein. In a study conducted
by Chen et al. (2016) rats exposed to curli-producing bacteria
displayed increased neuronal α-syn deposition in both gut and
brain compared to rats exposed to either mutant bacteria unable
to synthesize curli, or to vehicle alone. They also found that
α-syn-expressing Caenorhabditis elegans fed on curli-producing
bacteria expressed enhanced α-syn aggregation (Chen et al.,
2016). The key element of Curli, CsgA, contains amyloidogenic
peptide repeat motifs shared by human and yeast prions (Cherny
et al., 2005; Evans et al., 2015), indicating that the α-syn
deposition induced by curli may result from the cross-seeding
effects between with α-syn and CsgA in the gut (Chen et al.,
2016). Besides, the chaperon-like proteins CsgC and CsgE
encoded by the Curli operon are also found to modulate α-syn
amyloid formation (Chorell et al., 2015). Another mechanism
is that α-syn aggregation could be induced by lipid structure
in lipopolysaccharide (LPS) (Bussell and Eliezer, 2003), one of
the triggers of PD (Qin et al., 2007), which is mainly in the
outer membrane of gram-negative bacteria. By semi-quantitative
analysis using nuclear magnetic resonance (NMR), Bussell and
Eliezer (2003) proved that unbroken helical α-syn structure
adopted an unusual, slightly unwound, α11/3 helix conformation
to bind the lipid surface, indicating that α-syn can bind to
the lipid structure of LPS. More substantial evidence supports
this theory. Kim et al. (2016) found that α-syn monomers
after being incubated with LPS, showed a strong thioflavin T
fluorescence. When these α-syn fibrils were injected into the
striatum of mice (C57BL/6J), phosphorylated-α-syn pathology
was found throughout the brains, including the striatum, SNpc,
amygdala, and auditory cortex (Kim et al., 2016), demonstrating
that LPS induced α-syn fibrils are toxic. Besides, in the study
of Bhattacharyya et al. (2019) LPS was found to modulate
the overall aggregation kinetics of α-syn in a concentration-
dependent manner.

The microbiota is also involved in the inflammatory responses
(Hooper et al., 2012). It was reported that Bacteroides fragilis,
can induce colitis through the activation of STAT3 and Th17
response (Wu et al., 2004) via the NF-κB pathway, which leads
to an increase of IL-8 production by intestinal epithelial cells
(Wu et al., 2009). Prindiville et al. (2000) described that 19.3%
of IBD patients with active disease have enterotoxigenic B. fragilis
in their stool specimen, while control subjects did not show this
subset of bacteria. However, the changes of Bacteroides in PD is
still of controversy: Hasegawa et al. (2015) reported a decrease
in PD patients, while Keshavarzian et al. (2015) reported an

increase. The inconsistent reports may result from the different
stages of the patients. In a 2-year follow-up study, Minato
et al. (2017) reported that the deteriorated group (worsening of
UPDRS I scores) had lower counts of Bifidobacterium, B. fragilis,
than the stable group at year 0 but not at year 2. Besides, the
intestinal inflammation was reported to promote the overgrowth
of Enterobacteriaceae (Lupp et al., 2007; Zeng et al., 2016),
of which the E. coli strains is able to induce IL-1β through
NLR family pyrin domain containing 3 (NLRP3) -dependent
mechanism in PD patients (De la Fuente et al., 2014). Moreover,
the Prevotellaceae that reported to be decreased in both intestinal
inflammation and PD, is also involved in the inflammation.
Prevotellaceae is one of main source of short chain fatty acids
(SCFAs), which is reported to provide primary energy for
intestinal epithelial cells to maintain the stability of the intestinal
barrier, contribute to the development of colonic regulatory
T (Treg) cells to limit local inflammation and engage the G
protein-coupled receptor GPR43 on neutrophils to diminish their
infiltration into tissues (Maslowski et al., 2009; Smith et al., 2013;
Morrison and Preston, 2016).

Neural Pathway of Pathologic α-Syn
Spreading
After intensive examination of tissues from the peripheral
nervous system and the brain, Braak and his colleagues proposed
that the α-syn pathologies may be initiated from the olfactory
system and low brain stem, which is connected to the peripheral
tissues, such as the gut, via the vagal nerve. Pathological studies
with postmortem tissues from the brain and the peripheral tissues
suggest that pathological α-syn nucleation and aggregation may
occur in the enteric neurons of the gastrointestinal tract and
can propagate from the gut to the brain (Braak et al., 2003).
According to this hypothesis, LBs may first be initiated in the gut
(Braak et al., 2006) and then spread via the vagal nerves to the
DMNV, locus coeruleus (LC), substantia nigra (SN) and cortex in
sequence (Braak et al., 2003). We and others have provided direct
evidence of this route (Holmqvist et al., 2014; Uemura et al.,
2018). We injected a human PD brain lysate containing different
forms of α-syn or different aggregated forms of recombinant
α-syn into the intestinal wall of Sprague Dawley rats and found
that the exogenously delivered human α-syn could be rapidly
transported via the vagal nerve and reach the DMNV in the
brainstem in a time-dependent manner (Holmqvist et al., 2014).
Uemura et al. (2018) found phosphorylated α-syn-positive LB-
like aggregates in the DMNV 45 days after α-syn preformed
fibrils (PFFs) were injected into the mouse gastric wall. Although
these studies did not examine whether the pathological a-syn in
the DMNV were of exogenous or endogenous origin, they could
support a prion-like spreading of a-syn whereby α-syn replicates
through a mechanism of self-propagating conformation and
assembles into filaments, which can act as a seed to recruit the
soluble form of the protein and enhance filament load through
the seed extension (Goedert et al., 2010; Hansen and Li, 2012).
Very recently, Kim et al. (2019) further reinforced the evidence
for gut-to-the-brain α-syn pathology spread (Kim et al., 2019).
After injecting α-syn PFFs into the muscular layer of the mouse
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duodenum and pylorus, the authors detected phosphorylated
α-syn in DMNV, LC, SNpc and up to upper brain regions (Kim
et al., 2019). More importantly they observed dopaminergic
degeneration and motor and non-motor behavioral deficits in
response to α-syn PFF injections in the gut (Kim et al., 2019).
Vagotomy, which interrupts the spreading of α-syn PFFs from
the gut the brain, alleviated the severity of morphological
and behavioral alterations (Kim et al., 2019). Interestingly, no
pathology was observed when the recipient mice are in α-syn
knock-out background (Kim et al., 2019). This study provides
strong evidence that α-syn pathology can be spread from the gut
to the brain via the route of the vagal nerve, can induce neuronal
degeneration, and can cause respective neuronal dysfunction and
behavioral defects.

SYSTEMIC INFLAMMATORY ROUTES

Not only can pathological α-syn induced by intestinal inflamma-
tion be transmitted to the brain, but also the inflammatory
response itself in the gut can influence the brain. The
inflammatory response in the gut may affect the brain through
two routes, the neuroimmune pathway and the humoral pathway.

Neuroimmune Pathway
The neuroimmune pathway of gut inflammation transmitting to
brain is mainly conducted by the vagal nerve. It was reported
that vagotomized mice and rats presented attenuated social
exploration and depression in social investigation induced by
intraperitoneal injection of recombinant rat IL-1β (Bluthe et al.,
1996a,b). Besides, vagal nerve stimulation could decrease the
inflammatory response and improve survival in experimental
sepsis, hemorrhagic shock, ischemia reperfusion injury, and other
conditions of cytokine excess (Borovikova et al., 2000; Johnston
and Webster, 2009; Huffman et al., 2019).

Up to now, the specific mechanisms of the neuroimmune
pathway are not clear, but some studies have suggested that
the vagal nerve plays a dual role in inflammatory regulation
both through its afferent and the efferent fibers (Bonaz et al.,
2017). The vagal afferents target the hypothalamic-pituitary-
adrenal (HPA) axis. Vagal afferents activate neurons from the
A2 noradrenergic group in the nucleus tractus solitarius (NTS).
These neurons project to the parvo-cellular paraventricular
nucleus of the hypothalamus (PVH), where the corticotrophin-
releasing factor (CRF) neurons are stimulated to release CRF,
which in turn induces the pituitary to release adrenocorticotropic
hormone (Bonaz et al., 2016). Adrenocorticotropic hormone then
stimulates the adrenal glands to release glucocorticoid, which
plays a role in the inhibition of peripheral inflammation (Bonaz
et al., 2017). In addition, Lubbers et al. (2010) showed that
activating cholecystokinin-1 receptors on vagal afferents can also
regulate inflammation. The vagal efferents are involved in the
cholinergic anti-inflammatory pathway. This pathway regulates
systemic inflammation through the release of acetylcholine (Ach)
by the vagal nerve (Zhai et al., 2017). The details of this pathway
remain obscure, but studies have showed that a subunit of the
α7 nicotinic Ach receptor (α7nAchR), one of the Ach receptors,

is expressed on macrophages, and the α7nAchR-agonist, GTS,
is able to restrain systemic inflammation (Wang et al., 2003;
Cai et al., 2009).

Humoral Pathway
Humoral pathways of gut inflammation spreading to brain
are mainly involved in the leakage of the Blood–Brain Barrier
(BBB), which can be divided into disruptive and non-disruptive
approaches, respectively, reflecting the physical conditions of the
BBB (Varatharaj and Galea, 2017).

Disruptive BBB change is usually evident in the structural
alterations, and can be detected using inserted tracers (Varatharaj
and Galea, 2017). A considerable number of reports have shown
that the BBB is damaged in PD patients (Pisani et al., 2012;
Gray and Woulfe, 2015). In addition, 60% of LPS induced
PD models exhibited disrupted BBB (Varatharaj and Galea,
2017). In the event that the blood-brain barrier is damaged,
proinflammatory cytokines and immune cells such as T cells
(Engelhardt and Ransohoff, 2012) and mast cells (Jones et al.,
2019) from peripheral inflammation are able to enter the brain.

Non-disruptive BBB changes usually occur at a molecular
level, and are not visible in histological architecture (Varatharaj
and Galea, 2017). The changes can be mediated by special
transporters (Xaio et al., 2001; Osburg et al., 2002; Hartz
et al., 2006; Pan et al., 2008; Jaeger et al., 2009; Wittmann
et al., 2015), cytokines (Herkenham et al., 1998; Skelly et al.,
2013), prostaglandins (PGs) (Vasilache et al., 2015) and cellular
transmigration (Bohatschek et al., 2001; Wang et al., 2008; Banks
et al., 2012). In addition, substances can also enter the brain
through the areas that lack the BBB, such as the circumventricular
organs (Ferrari and Tarelli, 2011). Therefore, proinflammatory
cytokines such as IL-1α, IL-1β, IL-6, TNF-α, etc., can enter the
brain and activate microglia or astrocytes to induce inflammatory
response (Vallieres and Rivest, 1997; Osburg et al., 2002; Sato
et al., 2012; Neniskyte et al., 2014).

SUBSEQUENT EFFECTS OF GUT
INFLAMMATION IN THE BRAIN

Pathological α-syn, which could be triggered by intestinal
bacterial components, is the main component of LB, whose
neurotoxicity is related to its structure and post-translational
modification, such as phosphorylation at Ser129 (Arawaka
et al., 2017) and nitration (He et al., 2019). These pathological
proteins, on the one hand, recruit normal α-syn and disrupt
its physiological functions; on the other hand, their toxicity can
act as environmental stress to increase inflammation, oxidative
stress, and interfere with other physiological effects (Xu et al.,
2013; Zhang et al., 2017). Another subsequent effect is that
the immune cells and proinflammatory cytokines in the brain
can cause additional release of inflammatory and neurotoxic
molecules, contributing to chronic neuroinflammation and
neuronal death (Ferrari and Tarelli, 2011; Tufekci et al., 2012).
The underlying mechanisms of these subsequent effects inducing
neurodegeneration are unclear, however, they may be involved in
a series of molecular mechanisms.
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It should be emphasized that the pro-inflammation
and pathological α-syn propagation may not work alone,
they are interrelated both in the brain and the gut. For
example, marmosets with colitis show significantly increased
phosphorylated α-syn in the colonic myenteric ganglia (Resnikoff
et al., 2019). In the brain, fibrillar α-syn is found to produce
pro-inflammatory mediators, such as IL-1β. IL-1β via the
activation of the microglial NLRP3 inflammasome (Codolo
et al., 2013; Gordon et al., 2018). α-Syn is also found to activate
pro-inflammatory TLR4 pathways in astrocytes (Rannikko
et al., 2015) and disrupt the anti-inflammation of Dopamine D2
receptor (Du et al., 2018). In contrast, in a study conducted by
Horvath et al. (2018) pro-inflammatory factor S100A9 is also
reported to induce α-syn aggregation.

Oxidative Stress
Oxidative stress occurs when excessive oxygen free radicals are
produced within cells. When the concentration of these active
substances is not controlled by internal defense mechanisms,
such as antioxidants or oxygen free radical removal enzymes,
protein lipids, and DNA are oxidized causing damage (Gagné,
2014). Studies have shown that the production of high levels
of reactive oxygen species (ROS) and reactive nitrogen species
(RNS) and the reduction of antioxidant substances lead to
neuronal cell death in neurodegenerative diseases (Farooqui and
Farooqui, 2009; Melo et al., 2011).

Oxidative stress in the brain is usually found along
with inflammatory responses such as activated immune cells,
cytokines and other inflammatory mediators (Leszek et al., 2016).
These inflammatory responses activate microglia, then microglial
activation with gliosis results in an oxidative burst, which releases
ROS, including superoxide anion (O2

−), hydrogen peroxide
(H2O2), the highly reactive hydroxyl radical (HO·) and RNS such
as nitric oxide (NO) into the environment (Tufekci et al., 2012).
In addition, NO can react with O2

−, producing peroxynitrite
(ONOO−), which is a powerful oxidant and may decompose to
form HO· (Melo et al., 2011).

Pathological α-syn is also reported to be involved in causing
oxidative stress in a large number of reports (Esteves et al.,
2009; Renella et al., 2014; Deas et al., 2016; Perfeito et al., 2017;
Russo et al., 2019). Oxidative stress-induced toxicity depends on
the structures of α-syn. Deas et al. (2016) found that although
both oligomeric and fibrillar α-syn can induce free radicals, only
oligomeric forms of a-syn cause neurotoxicity and endogenous
glutathione reduction. They also found that oligomer-induced
ROS depends on the presence of metal ions, because the addition
of metal chelators can block oligomer-induced ROS and reduce
neuronal death (Deas et al., 2016). Interestingly, α-syn also
mediates oxidative stress caused by metal ions: down-regulation
of the α-syn protein significantly increases cell viability and
reduced oxidative stress in maltose-aluminated cells (Saberzadeh
et al., 2016). Therefore, the oxidative stress induced by metal ions
or α-syn, is probably the result of the two co-factors.

Glutamate Excitotoxicity
Glutamate is the main cognitive neurotransmitter in the brain,
inducing an excitatory response when binding to its receptors

(Dong et al., 2009). In order to maintain a high signal-to-
noise ratio outside the synapse, the extracellular concentration of
glutamate is required to be very low. The overspill of glutamate
and excessive activation of glutamate receptors can lead to
neuronal dysfunction and cell death, known as excitatory toxicity
(Dong et al., 2009).

Pathological α-syn has been shown to affect all of the
glutamate receptors: N-methyl-D-aspartic acid (NMDA),
α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)
and kainic acid (KA) receptors (Dong et al., 2009). Firstly,
prolonged exposure to α-syn oligomers are reported to increase
basal synaptic transmission through NMDA receptor activation,
triggering enhanced contribution of calcium-permeable
AMPA receptors (Diogenes et al., 2012). Secondly, nanomolar
concentrations of large α-syn oligomers, formed by incubating
α-syn with organic solvent and Fe (3+) ions, altered both pre-
and post-synaptic mechanisms of AMPA-receptor-mediated
synaptic transmission (Huls et al., 2011). Furthermore, Chang
et al. (2012) found that melatonin attenuates KA-induced
neurotoxicity through the reduction of KA-increased α-syn
aggregation, which indicates that KA-induced neurotoxicity may
be mediated by α-syn aggregation. Thus, pathological α-syn may
lead to the activation of ionotropic receptors, contributing to
glutamate excitotoxicity.

It has also been widely demonstrated that inflammation
can induce glutamate excitatory toxicity. Firstly, monocyte-
derived macrophages and activated microglia are able to induce
glutamate excitotoxicity, which may result from their function
of extruding glutamate into the extra synaptic space in exchange
for cystine via the cystine/glutamate exchanger (Xc) – transporter
(Kigerl et al., 2012). Secondly, the astrocyte function of clearing,
buffering and containing glutamate abilities can be decreased by
inflammatory factors, such as TNF-α, IL-1β, and IF-γ (Haroon
and Miller, 2017; Haroon et al., 2018). In addition, immune
activation can increase glutamate-like molecular, quinolinic acid,
which (1) over excites the NMDA receptor, (2) inhibits glutamine
synthetase, a critical enzyme in the glutamate-glutamine cycle in
astrocytes, keeping the stable glutamate level and (3) promotes
glutamate release (Guillemin, 2012).

T-Cell Driven Inflammation
The central nervous system was thought to be isolated from
the adaptive immune system for a long period of time (Carson
et al., 2006). However, Louveau et al. (2015) discovered the
lymphatic system in the brain of mice, which were verified
in monkeys and humans thereafter (Absinta et al., 2017). In
addition, inflammatory factors from peripheral inflammation,
such as IL-1β, TNF-α can also act on the blood–brain barrier to
allow peripheral lymphocytes to enter the brain.

It is well established that, T cells, especially the CD4+ T-cells,
are involved in PD. Brochard et al. (2009) found a significant
increase of T-cells but not B-cells in post-mortem brains of
PD patients. Later, they identified that lacking CD4+ cells,
but not CD8+ cells, led to an attenuated response to MPTP-
induced dopaminergic cell death in mice (Brochard et al., 2009).
Additionally, Reynolds et al. (2010) identified that the subsets of
CD4+ cells, T-helper-1 (Th1) and T-helper-17 (Th17), are the
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main causers of MPTP-induced cell death. The mechanism by
which gut inflammation causes PD through CD4+ T-cells can be
seen. First of all, peptides derived from two regions of α-syn (the
Tyr 39 and phosphorylated Ser129 region) can act as antigenic
epitopes (Sulzer et al., 2017). Therefore, pathological α-syn can
be captured at the lymph node, and be presented to CD4+
T-cells by antigen presenting cells (APCs) (Campos-Acuña et al.,
2019). If naïve CD4+ cells are activated, they transform into their
subtypes: Th1 and Th17. When the BBB is damaged, Th1 and
Th17 infiltrate the brain, where the microglia act as local APCs,
presenting α-syn antigen via MHC II, polarizing CD4+ T-cells
to the Th1 and Th17 subtypes (Campos-Acuña et al., 2019). The
Th1 and Th17 cells produce a large number of inflammatory
factors, such as, TNF, IFN-γ, IL-1, IL-2, and IL-21 (Kaiko et al.,
2008), which in turn re-stimulate glial cells (M1 microglia) to
produce large amounts of glutamate, inflammatory factors, ROS
and RNS (Gonzalez et al., 2015), thereafter recruiting leukocytes
from the blood and exaggerating more inflammatory reactions
(Mosley et al., 2012).

COX-2
Cyclooxygenase-2 (COX-2), also known as prostaglandin-
endoperoxide synthase 2, is one of the three cyclooxygenases
(COX-1, COX-2, and COX-3) (Teismann, 2012) that primarily
induces the synthesis of prostaglandins from arachidonic acid
(Kirkby et al., 2016). COX-2 is mainly detected in distal
dendrites and dendritic spines, especially in excitatory neurons
(Kaufmann et al., 1997). In general, COX-2 is not detected in
dopaminergic structures such as the SN and striatum (Teismann
et al., 2003). However, in PD patients and MPTP-induced mouse
models, the immunopositive reaction of COX-2 in dopaminergic
neurons is intense (Teismann et al., 2003). Therefore, there

exists a high possibility that COX-2 may be related with
dopaminergic neuron death.

The mechanisms through which COX-2 damages neurons
may be through two mechanisms. (1) The first one is via
oxidative stress. Arachidonic acid can be converted to PGH2
in two steps. Firstly, arachidonic acid reacts with 2O2 to form
the prostaglandin G2 (PGG2). Secondly, PGG2 is converted by
the cyclooxygenases to form prostaglandin H2 (PGH2) (Smith
et al., 2000). The second step of COX-2 induction reacts far
more rapidly than COX-1, however, the COX-1 reaction involves
the reduction of two electrons of superoxide substrate, while
about 40% of the COX-2 conversion just reduces one electron
of superoxide substrate (Teismann, 2012). In this situation, the
leaked electrons can react with oxygen to produce reactive oxygen
species (Teismann, 2012). (2) Another possible cause of COX-2
induced neuron death is the crosstalk between cytokines and PGs,
one of COX-2’s metabolized products (Yao and Narumiya, 2019).
Traditionally, PGs are mostly reported to have an inhibitory
effect on acute inflammation (Narumiya and Furuyashiki, 2011).
However, the expression of COX-2 are widely found in chronic
inflammation, such as IBD (Wallace, 2001), rheumatoid arthritis
(Mikos, 1976; Jasani and Bach, 1979; Svendsen et al., 1985; Fattahi
and Mirshafiey, 2012; Kirkby et al., 2016), and multiple sclerosis
(Mirshafiey and Jadidi-Niaragh, 2010). Based on this, studies
found that PGs can crosstalk with cytokines and amplify the
cytokines’ effects. On the one hand, PGs induce expression of
relevant cytokine receptors, which is typically observed in Th1
cell differentiation and Th17 cell expansion (Yao et al., 2009); on
the other hand, PGs and cytokines synergistically activate NF-
κB to induce expression of inflammation-related genes, including
chemokines and COX-2 itself (Yao and Narumiya, 2019). These
signals amplify chronic immune inflammation and exacerbate

TABLE 1 | Summary of intestinal function and inflammatory alterations in Parkinson’s disease (PD) animal models of intranigral injection of 6-OHDA or LPS.

Model (species) Functional evidence Inflammatory evidence References

Bilateral intranigral injection of
6-OHDA (rat)

Delayed gastric empty; Impaired gastric motility; Zheng et al., 2011

Delayed gastric empty; Impaired gastric motility; Zheng et al., 2014

Delayed gastric empty and intestinal transport;
decreased fecal pellets and content

Feng et al., 2019

Unilateral intranigral injection of
6-ohda (rat)

Delayed gastric empty; Toti and Travagli, 2014

Delayed gastric empty; Constipation Vegezzi et al., 2014

Decreased weigh and water Content of fecal matter; Zhu et al., 2012

Impaired colonic transit; Fornai et al., 2016

Impaired colonic transit; GFAP↑(colon); TNF-α↑(colon);
IL-1β↑(colon); Eosinophils↑ (colon); Mast
cells↑ (colon)

Pellegrini et al., 2017

Colonic relaxation defect; Decreased intraluminal
pressure; Decreased frequency of peristalsis

Colucci et al., 2012

TNF↑ (colon); IL-1β↑ (colon); Eosinophils↑
(colon); Mast cells↑ (colon)

Pellegrini et al., 2016

Bilateral intranigral injection of
LPS (rat)

Impaired gastric motility Zheng et al., 2013
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FIGURE 1 | Possible pathways involved in gut inflammation induced neuron death in the brain. Gut inflammation may increase intestinal permeability, allowing the
leakage of bacteria and their metabolites which may trigger pathologic α-syn aggregation and pro-inflammatory cytokine production and release in the ENS.
Pathologic α-syn is propagated to the brain via the vagal nerve, and inflammatory cytokines are transported to the brain through the humoral pathway or stimulate
the vagal nerve to produce pro-inflammatory factors in the brain. Pro-inflammatory cytokines and synucleinopathies in the brain may induce neuronal injury and
death, which in turn enhance more severe inflammatory responses.

neuronal death. In addition, the overexpression of COX-2 in
dopaminergic neurons also plays a role in α-syn accumulation
(Bartels and Leenders, 2010).

THE REACTION OF CENTRAL
NEUROINFLAMMATION IN GUT

Among the various pre-clinic PD animal models, the intranigral
injections of 6-OHDA or LPS directly act on the nigra-striatal
system, thus, they could be used to elucidate the effect of
nigral-striatal degeneration on the gut, comparing to the
peripheral administration which may affect the gut first
or at the same time. In the 6-OHDA induced PD model,
gastrointestinal dysfunctions have widely been reported (see
Table 1), such as delayed gastric empty (Zheng et al., 2011,
2014; Toti and Travagli, 2014; Vegezzi et al., 2014; Feng
et al., 2019), impaired gastric motility (Zheng et al., 2011,

2014; Vegezzi et al., 2014; Feng et al., 2019), impaired colonic
transit (Fornai et al., 2016; Pellegrini et al., 2017), decreased
weight and water content of the feces (Zhu et al., 2012),
colonic relaxation defect (Colucci et al., 2012), decreased
intraluminal pressure (Colucci et al., 2012), decreased frequency
of peristalsis (Colucci et al., 2012). In addition, in the studies
of Pellegrini et al., inflammatory evidence is also presented
in the model of intranigral injection of 6-OHDA, such as
the increased GFAP, TNFα, IL-1β, eosinophils and mast cell
in colon. In addition, in the study of intranigral injection
of LPS, the impaired gastric motility is also observed.
Further, in a study conducted by Ulusoy et al. (2017) the
pathological α-syn was transported from the brain to the
stomach. Therefore, the central neuroinflammation and
nigrostriatal degeneration could, in turn, spread to the
ENS and contribute to exacerbated intestinal inflammatory
responses and gastrointestinal dysfunction via brain-to-the-gut
descending pathways, thus generating a positive loop that
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could drive the chronicization of the ongoing central and
peripheral neuroinflammatory and neurodegenerative processes
and contribute to gut motor dysfunctions.

CONCLUSION

Based on the analyses above, we summarize the potential
association of intestinal inflammation in PD pathogenesis, as
shown in Figure 1. Increased intestinal permeability caused by
gut inflammation induces the leakage of flora and its metabolites
into the body (Berg, 1995; Camilleri et al., 2012; Mu et al.,
2017), stimulating the production of pathologic α-syn or pro-
inflammatory cytokines (Chen et al., 2016; Kim et al., 2016;
Fukui, 2017). Pathologic α-syn can be spread to the brain via the
vagal nerve and pro-inflammatory cytokines and immune cells
transmit to the brain through the humoral system. In addition,
the leakage of flora and its metabolites from gut lumen can
also activate immune cells, such as T cells. These immune cells
can infiltrate into the brain via the disrupted BBB caused by
the pro-inflammatory cytokines. In the brain, the two factors,
pathologic α-syn and pro-inflammatory cytokines and immune
cells enhance the dysfunction and degeneration of dopaminergic
neurons. They, together with tissue debris or diseased proteins
released from lysed cells, trigger the cascade and feedback loop
of inflammation, including microglial activation, and neuronal
dysfunction and cell death.

Of note, although a large body of evidence has implied
the relationship between PD and gut inflammation, details on
how the process takes place are still largely unknown. Further
investigations are required to clarify the mechanisms of the
mutual transformation between intestinal inflammation, micro-
biota and pathological α-syn or other PD-related pathogens.

Overall, we have briefly addressed the mechanisms on how
gut inflammation is transmitted to the brain and how it causes
damage in the brain. We hope that this will provide some clues
for further studies in this interesting field of research.
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