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Spaced training is robustly superior to massed training, which is a well-documented
phenomenon in humans and animals. However, the mechanisms underlying the
spacing effect still remain unclear. We have reported previously that spacing training
exerts memory-enhancing effects by inhibiting forgetting via decreasing hippocampal
Rac1 activity. Here, using contextual fear conditioning in rat, we found that spaced but
not massed training increased hippocampal 5-HT2A receptors’ expression. Furthermore,
hippocampal administration of 5-HT2A receptor antagonist MDL11939 before spaced
training blocked the enhanced memory, while hippocampal administration of 5-HT2A
receptor agonist TCB-2 before massed training promoted the memory. Moreover,
MDL11939 activated hippocampal Rac1, while TCB-2 decreased hippocampal
Rac1 activity in naïve rats. These results indicated the possibility of interaction between
5-HT2A receptors and Rac1, which was demonstrated by co-immunoprecipitation
experiments. Our study first demonstrates that activation of hippocampal 5-HT2A is
a mechanism underlying the spacing effect, and forgetting related molecular Rac1 is
engaged in this process through interacting with 5-HT2A receptors, which suggest a
promising strategy to modulate abnormal learning in cognitive disorders.

Keywords: spacing effect, 5-HT2A receptor, Rac1, hippocampus, contextual fear memory

INTRODUCTION

Spaced training is more effective than massed training in producing long-term memory,
which was first discovered by Ebbinghaus (1885) and called it the spacing effect. The
spacing effect is highly conserved among species (Mauelshagen et al., 1998; Beck et al., 2000;
Philips et al., 2013). Several molecules such as MAPK, CREB, and protein phosphatase 1
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have been reported to modulate the spacing effect (Genoux
et al., 2002; Pagani et al., 2009; Naqib et al., 2012; Smolen
et al., 2016). Our previous study shows that spacing training
improves contextual fear memory by inhibiting hippocampal
Rac1 activity in rats (Jiang et al., 2016b). Further understanding
themechanisms underlying the spacing effect will provide insight
into the modulation of learning and memory.

Serotonin (5-hydroxtryptamine, 5-HT) is a monoamine
neurotransmitter widely distributed throughout the central
nervous system, which is involved in learning and memory
(Meneses and Liy-Salmeron, 2012; Meneses, 2013). There are at
least 14 5-HT receptors divided into seven families (Pytliak et al.,
2011), among which 5-HT2A receptors are highly expressed
in the brain regions essential for learning and memory such
as the hippocampus (Xu and Pandey, 2000; Meneses, 2002;
Williams et al., 2002; Varnäs et al., 2004; Zhang and Stackman,
2015), which is required for the formation and retrieval of
contextual fear memory (Phillips and LeDoux, 1992; Sanders
et al., 2003). A previous study shows that activation of 5-HT2A
receptors in the basolateral amygdala improves the acquisition
of conditioned defeat (Clinard et al., 2015). Administration
of 5-HT2A receptor agonist TCB-2 is also found to facilitate
consolidation and extinction of fear memory (Zhang et al.,
2013). Although these results support the view that activation
of 5-HT2A receptor may enhance memory, whether 5-HT2A
receptors improve memory by regulating the spacing effect is
still unknown.

Rac1, a small GTPase, can regulate the forgetting of
memory (Shuai et al., 2010; Liu et al., 2018) and synaptic
plasticity (Martinez and Tejada-Simon, 2011; Golden et al.,
2013). Our recent investigations report that activation of
hippocampal Rac1 promotes the forgetting of contextual fear
memory in spaced learning rats, while inhibition of hippocampal
Rac1 activity prevents the forgetting of contextual fear memory
in massed learning rats (Jiang et al., 2016b). Furthermore, we
find that regulation of hippocampal Rac1 activity can also
alter the effects of massed and spaced extinction training
(Jiang et al., 2016a). These results indicate that hippocampal
Rac1 participates in the spacing effect. It is noted that
stimulation of 5-HT2A receptors can activate Rac1 via TGase
in vitro (Dai Y. et al., 2008), which indicates a possibility of
interaction between 5-HT2A receptors and Rac1. Furthermore,
hippocampal 5-HT transporters are downregulated in forgetting
of associative memory (Tellez et al., 2012). However, it is
unknown whether Rac1-dependent forgetting is involved in the
mechanisms of memory enhancement induced by the 5-HT2A
receptor activation.

We therefore hypothesize that hippocampal 5-HT2A
receptors may be involved in the spacing effect. In the
present study, we first investigated the expression patterns
of hippocampal 5-HT2A receptors separately in spaced and
massed training groups in the contextual fear conditioning and
then used pharmacological approaches to activate or inhibit
hippocampal 5-HT2A receptors to modulate the spacing effect.
Furthermore, we also investigated whether Rac1-dependent
forgetting is engaged in the effect of 5-HT2A receptors on
the spacing effect. We investigated these questions by using a

combination of immunoblotting, immunohistochemical assays,
and Co-immunoprecipitation and behavioral tests.

MATERIALS AND METHODS

Animals
Male Sprague–Dawley rats (inbred strain, Animal House Center,
Kunming General Hospital, Kunming) weighing 200–250 g were
group-housed (five per cage) in a thermoregulated environment
with a 12 h light/dark cycle and lights on at 8:00 am. Rats were
given ad libitum access to water and food. All experiments were
carried out between 09:00 and 17:00. Experimental protocols
were approved by the animal ethics committee of Kunming
Institute of Zoology, Chinese Academy of Sciences.

Contextual Fear Conditioning
The animals were placed into chambers (30× 24× 21 cm3, MED
Associates, St. Albans, VT, USA) for a 2 min free exploration to
establish baseline freezing, and then rats received five footshocks
(0.8 mA, 1 s duration). The five trials were presented at different
inter-trial intervals (ITIs): 12 s (massed training) and 122 s
(spaced training; Jiang et al., 2016b). Rats were removed from the
conditioning chamber and returned to their home cages 12 min
later. Twenty-four hours after training, contextual memory was
tested for 5 min. Freezing was tracked and analyzed using Video
Freeze Software (Med Associates). Percent freezing time to each
ITI was presented to measure the strength of fear memory.
In the massed training group, due to the short ITI (12 s)
and rats always jumping immediately after suffering footshock,
freezing time can only be scored at the baseline and after the
fifth footshock.

Cannula Implantation and Drug Infusion
Under phenobarbital sodium anesthesia, bilateral guide cannulas
were implanted in the CA1 area of the dorsal hippocampus using
the stereotaxic coordinates: anteroposterior (AP) −3.5 mm,
mediolateral (ML) ± 2.5 mm, and dorsoventral (DV) −2.5 mm,
according to the atlas of Paxinos and Watson (1998). The guide
cannulas were fixed to the skull with dental acrylic. The rats were
allowed to recover from surgery for 7 days. Immediately before
fear conditioning, 5-HT2A antagonist MLD11939 (17 mmol,
1 µl/side, Tocris Bioscience) was dissolved in saline with 1%
acetic acid and 10% sodium hydroxide (pH = 5.5; Clinard et al.,
2015) and injected into the bilateral hippocampus of the spaced
training group. Forty minutes before fear conditioning, 5-HT2A
agonist TCB-2 (40 mmol, 1 µl/side, Tocris Bioscience) was
dissolved in saline with 10%DMSO and injected into the bilateral
hippocampus of the massed training group. All vehicle groups
received the same volume of the vehicle. The microinjectors were
left in place for an additional 1 min after infusion to allow the
solution to diffuse away from the cannula tip.

Immunohistochemical Staining
Rats were euthanized with Euthasol euthanasia solution and
transcardially perfused with ice-cold 4% paraformaldehyde in
0.1 M phosphate-buffered saline (PBS). Brains were postfixed
for 4 h at 4◦C and cryoprotected in 30% sucrose in 0.1 M
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PBS. Serial coronal sections throughout the hippocampus
were cut at a 40 µm thickness using a cryostat and
stored in PBS. The sections were incubated with blocking
buffer (5% bovine serum albumin, 0.3% Triton X-100
and PBS) for 1 h followed by overnight incubation with
mouse anti-5-HT2A receptor antibody (1:500, Cat. PC176,
Millipore) at 4◦C. The sections were rinsed and transferred
to Cy3-conjugated anti-Rabbit immunoglobulin G (IgG;
1:500, Cat. 111-165-144, Jackson ImmunoResearch) for 2 h
at room temperature. The sections were examined using
a confocal laser-scanning microscope (FV-1000, Olympus,
Tokyo, Japan).

Immunohistochemistry Data Analysis
Immunohistochemical staining of 5-HT2a receptor was
quantified by pixel density. The CA1 area was the ROI for
intensity analysis set. Images were corrected for variability in
staining by calibrating based on highest and lowest (backgroud)
density of staining between experimental groups. The back
ground intensity was based on the optic intensity of vascular
lumen in the section. Two coronal brain sections per animal
were quantified at two different Bregma levels (−3.24 mm,
−3.36 mm), and quantitative analyses were obtained at
200×magnification.

Rac1 Activity Assay
The active form of Rac1 was bound to GTP, which was
determined using a Rac1 pull-down activation assay for Rac1-
GTP. Briefly, hippocampal tissues were homogenized in Mg2+

lysis buffer in the presence of protease and phosphatase
inhibitors and centrifuged at 12,000× g for 15 min at 4◦C. After
preclearing the protein with A/G agarose beads (20 µl, Cat.
30301, Neweast), GTP-bound Rac1 was immunoprecipitated
from the cell lysates using an anti-active Rac1 monoclonal
antibody (1 µl, Cat. 26903, Neweast). Rac1-GTP as well as total
Rac1 in the lysates, was examined by western blotting using a
rabbit anti-Rac polyclonal antibody (1:300, Cat. 26005, Neweast).

Co-immunoprecipitation Assay
Rat hippocampus was frozen in liquid nitrogen and homogenized
in radio immunoprecipitation assay (RIPA) lysis buffer
(Cat. P0013K, Beyotime) added with 1 mM PMSF, which
immunoprecipitated with/without 2 µl anti-Rac1 antibody (Cat.
26903, Neweast) and 20 µl A/G agarose beads (20 µl, Cat. 30301,
Neweast) or 2 µl nonspecific IgG antibodies (Cat. 2026, Santa
Cruz). The co-immunoprecipitated proteins were identified by
western blotting using a mouse anti-5-HT2A receptor antibody
(1:2,000, Cat. MABN1595, Millipore).

Western Blot Analyses
Rat hippocampus was frozen in liquid nitrogen and homogenized
in RIPA buffer (Beyotime Biotech) added with 1 mmol PMSF.
Samples were mixed (3:1) with the 4× SDS loading buffer
[250 mmol Tris-Hcl, pH 6.8, 20% β-mercaptoethanol, 4% SDS,
0.004% bromophenol blue (wt/vol), 40% (vol/vol) glycerol],
and denatured by boiling for 5 min at 100◦C. Each sample
was run on a SDS-PAGE (Bio-Rad) and transferred to a
PVDF membrane. Blots were blocked at room temperature

with block buffer (Cat. 820473, Millipore). For western analysis,
we used rabbit polyclonal 5-HT2A receptor antibody (1:2,000,
Cat. PC176, Millipore) and mouse monoclonal Rac1 antibody
(1:300, Cat. 26003, New East), and mouse monoclonal GAPDH
antibody (1:20,000, Cat. KC-5G5, Aksomics). Immunoreactivity
was detected using luminata crescendo western HRP substrate
(Cat. WBLUF0500, Millipore). The intensities of the detected
bands in the western blots were quantified using ImageJ software.

Data Analysis and Statistics
All data were expressed as means ± standard error
(mean ± SEM). Data were analyzed by unpaired t-test or
repeated analysis of variance, and between-group comparisons
were made by one-way ANOVA followed by the least significant
difference (LSD) test. Levene’s test of equality of variance was
used to test the equality of variance (SPSS 16.0). Significance
level was set at p < 0.05.

RESULTS

Spaced Training Produces Stronger Fear
Memory and Increases 5-HT2A Receptor
Expression in the Hippocampus
Our previous study shows that spaced training enhances
contextual fear memory. Rats received five footshocks with
ITI of 12 s in the massed training group and 122 s in the
spaced training group and 600 s in the long-spaced training
group, and we found that the spaced and the long-spaced
group presented higher freezing scores. Here, we used similar
protocol as in the previous study (Figure 1A). Twenty-four hours
following fear conditioning, the memory performance of the
spaced training group (122 s) was significantly higher compared
with the massed group (12 s; unpaired t-test, t = 5.478, p< 0.001,
n = 10, Figure 1B).

Next, we measured the expression of 5-HT2A receptors in
the hippocampus separately at 30 min (0.5 h), 1 h, and 6 h
after contextual fear conditioning. We found that the levels
of 5-HT2A receptors in the hippocampus were significantly
different among the groups (one-way ANOVA, F(6,21) = 4.844,
p < 0.05, n = 4). Two-way ANOVA disclosed no significant
group and time effects on the expression of 5-HT2A receptors
(group × time effect: F = 0.791, p = 0.469). The level of
hippocampal 5-HT2A receptors increased significantly in the
spaced group at 0.5 h (p < 0.001), 1 h (p < 0.01), and 6 h
(p < 0.05) after contextual fear training, while there were no
significant alterations in the massed group at 0.5 h, 1 h, and 6 h
time points (Figure 1C). Immunofluorescence staining showed
that 5-HT2A receptors appeared to be preferentially localized to
soma and dendrites. There were significant differences among
groups (F(2,9) = 11.920, p < 0.05, n = 4). Thirty minutes
after fear conditioning, the pixel density of 5-HT2A receptors’
positive staining in the CA1 area was significantly enhanced
in the spaced group (p < 0.01, Figure 1D) but not in the
massed group (Figure 1E) compared with naive group. These
results demonstrated that the spacing but not massed training
increased the expression of hippocampal 5-HT2A receptors in
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FIGURE 1 | Spaced training enhances hippocampal 5-HT2A receptor expression and contextual fear memory. (A) Diagram for experimental procedures. (B) The
spaced training group (122 s) showed a heightened contextual fear memory compared with the massed training group (12 s) at 24 h after training (n = 10 for each
group). (C) Western blotting analysis showed that spaced but not massed training increased hippocampal 5-HT2A receptor expression at 30 min (0.5 h), 1 h, and
6 h after contextual fear conditioning compared with the naïve group (n = 4 for each group). (D) The 5-HT2A receptor positive staining in the hippocampal CA1 area
significantly increased in the spaced but not in the massed group at 0.5 h after contextual fear conditioning [p < 0.05, (E)]. Scale bar = 50 µm. (E) Bar graph of (D;
n = 4 for each group). All results were presented as mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

contextual fear conditioning, which indicated that the activation
of hippocampal 5-HT2A receptors may be involved in the
spacing effect.

Inhibition of Hippocampal 5-HT2A
Receptors Blocks While Activation
of Hippocampal 5-HT2A Receptors
Promotes the Spacing Effect in Contextual
Fear Conditioning
We aimed to confirm whether the activation of hippocampal
5-HT2A receptors are involved in the spacing effect in
contextual conditioning. First, we infused 5-HT2A receptor
antagonist MDL119939 (17 mmol, 1 µl/side, MDL) into
the bilateral hippocampus immediately before spaced training
(Figure 2A1); the injection sites were confirmed by postmortem
examination (Figure 2B). Twenty-four hours after contextual
fear conditioning, freezing score was significantly decreased in
the MDL group compared with the vehicle group (unpaired

t-test, t = 3.741, p < 0.01, n = 8, Figure 2C). These
results indicated that the spacing training exerts memory
enhancement effects through the activation of hippocampal
5-HT2A receptors.

Next, we injected the 5-HT2A receptor agonist TCB-2
(40 mM, 1 µl/side) into the bilateral hippocampus 40 min
beforemassed training (Figure 2A2). The learning curves showed
that TCB-2 had no effect on learning. Twenty-four hours after
contextual fear conditioning, freezing score was significantly
higher in the TCB-2 group compared with the vehicle group
(unpaired t-test, t = 6.242, p < 0.001, n = 9, Figure 2D). These
results demonstrated that activation of hippocampal 5-HT2A
receptors enhanced memory in the massed training rats.

In summary, inhibition of hippocampal 5-HT2A receptors
blocked memory enhancement in spaced training, while
activation of hippocampal 5-HT2A receptors enhanced memory
in massed training, which indicated that the activation of
hippocampal 5-HT2A receptors were engaged in the spacing
effect in contextual fear conditioning.
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FIGURE 2 | Inhibition of hippocampal 5-HT2A receptors blocked the
spacing effect, while activation of hippocampal 5-HT2A receptors promoted
the spacing effect. (A1,A2) Diagram for experimental procedures. (B)
Representative Nissl staining confirming the implantation sites of the guide
cannulas. (C) Hippocampal administration of 5-HT2A receptor antagonist
MDL11939 blocked the enhanced fear memory in the spaced training (n = 8).
(D) Hippocampal administration of 5-HT2A receptor agonist TCB-2 enhanced
fear memory in the massed training (n = 9). All results were presented as
mean ± SEM, ∗∗p < 0.01, ∗∗∗p < 0.001.

Inhibition of 5-HT2A Receptors Activates
Rac1, While Activation of 5-HT2A
Receptors Inhibits Rac1 Activity in the
Hippocampus
Our previous study indicated that hippocampal Rac1 activity
regulated the spacing effect in the contextual fear conditioning.
The above results showed that hippocampal 5-HT2A receptors
also regulated the spacing effect. Moreover, evidence in vitro
shows that stimulation of 5-HT2A receptors can alter the
activity of Rac1. Thus, we next aimed to investigate whether
Rac1-dependent forgetting is engaged in the effect of 5-HT2A
receptors on the spacing effect. The 5-HT2A receptor antagonist
MLD11939 (17 mmol, 1 µl/side) was administrated into the
bilateral hippocampus of the naive rats; 15 min or 30 min
later, the rats were sacrificed and hippocampal Rac1 activity
was detected (Figure 3A). In a preliminary experiment rats
were sacrificed 40 or 100 min later, but the activation of
hippocampal Rac1 was not detected (S F2). Results showed that
there were significant differences among groups (F(2,9) = 9.698,
p < 0.01, n = 4). MLD11939 slightly activated Rac1 15 min
later and significantly promoted Rac1-GTP 30 min (p < 0.01)
later (Figure 3C). Next, the 5-HT2A receptor agonist TCB-2
(40 mM, 1 µl/side) was administrated into the bilateral
hippocampus of the naive rats, and hippocampal Rac1 activity
was detected 40 min or 100 min after administration. The
levels of Rac1-GTP were significantly different among groups
(F(2,9) = 38.329, p < 0.001, n = 4, Figure 3B). TCB-2 significantly
inhibited hippocampal Rac1 activity 40 min after administration
(p < 0.001) compared with the vehicle group, and this inhibition
disappeared 100 min after TCB-2 administration (Figure 3D).

FIGURE 3 | Inhibition of hippocampal 5-HT2A receptors activates
Rac1 activity, activation of hippocampal 5-HT2A receptors inhibits
Rac1 activity. (A,B) Diagrams of experimental procedures. (C) Hippocampal
administration of 5-HT2A receptor antagonist MDL11939 increased
Rac1 activity 30 min after administration. (D) Hippocampal administration of
5-HT2A receptor agonist TCB-2 inhibited Rac1 activity 40 min after
administration. n = 4 for each group. All results were presented as
mean ± SEM, ∗p < 0.05.

These results demonstrated that Rac1-dependent forgetting was
engaged in the effect of 5-HT2A receptors on the spacing effect.

Hippocampal 5-HT2A Receptors Interact
With Rac1
The above result showed that Rac1-dependent forgetting was
engaged in the effect of 5-HT2A receptors on the spacing effect;
we wanted to further investigate whether 5-HT2A receptors
interact with Rac1. We used an immunoprecipitated protein
with anti-Rac1 antibody from the hippocampus of contextual
fear learning rats and detected 5-HT2A receptor. As shown in
Figure 4, 5-HT2A receptor was tested in Rac1 pull-down protein.
The result demonstrated that there were interactions between
Rac1 and 5-HT2A receptors. We also detected a weak positive
band around 21 KD in the Rac1 lane after staining for 5-HT2A,
which may be the Rac1-5-HT2A receptor compounds.

DISCUSSION

In the present study, we demonstrate that the activation of
hippocampal 5-HT2A receptors is involved in the spacing
effect in contextual fear conditioning, and Rac1-dependent
forgetting is engaged in the effect of 5-HT2A receptors
on the spacing effect. We further demonstrate that there
is an interaction between hippocampal 5-HT2A receptors
and Rac1. To our knowledge, we first provide evidence
that activation of hippocampal 5-HT2A is a mechanism
underlying the spacing effect and forgetting related molecular
Rac1 engaged in this process through interacting with
5-HT2A receptors.

5-HT2A receptors belonging to the GPCR family are widely
distributed in the neocortex, amygdala, and hippocampus
of rats, primates, and humans (Jakab and Goldman-Rakic,
1998). Central 5-HT2A receptors exert diverse physiological,
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FIGURE 4 | Co-immunoprecipitation (IP) assays demonstrated the
interactions between hippocampal 5-HT2A receptors and Rac1. Rac1 was
pulled down using anti-Rac1 antibody; 5-HT2A receptors were measured on
immunoblots. Bands at 53 kDa were detected in input and Rac1 pull-down
lane, which were not detected in the immunoglobulin G (IgG) lane, and a
weak positive band around 21 kD was detected in the Rac1 lane.

behavioral, psychological functions including emotional memory
(Zhang and Stackman, 2015). Studies have demonstrated that
5-HT2A receptors play an important role in fear learning.
Intra-peritoneal injection of 5-HT2A receptor agonist TCB-2
following fear conditioning enhanced fear memory in mice
(Zhang et al., 2013). Administration of 5-HT2A receptor
antagonist MDL11939 into the basolateral amygdala impaired,
while 5-HT2A receptor agonist TCB-2 promoted the acquisition
of conditioned defeat in Syrian hamsters (Clinard et al., 2015).
These studies implicate that the activation of central 5-HT2A
receptors enhances fear memory. However, the signaling
pathways downstream from 5-HT2A receptors remain unclear.
The present study found that Rac1 is a novel downstream target
of 5-HT2A receptors.

Rac1 is a member of the Rho family of small GTPases, which
play a crucial role in synapse plasticity (Oh et al., 2010) and
learning and memory (Diana et al., 2007; Gao et al., 2015).
Our previous study found that hippocampal Rac1 activity was
inhibited in the spacing training group (Jiang et al., 2016b). In
the previous study, rats received five footshocks with 12 s ITI
in the massed group, and 122 s ITI in the spaced group and
600 s ITI in the long-spaced group. Spaced but not massed
training inhibited hippocampal Rac1 activity and enhanced
contextual fear memory. Consistent with this result, activation of
hippocampal Rac1 by Rac1 activator weakened the fear memory
in spaced training rats while inhibition of hippocampal Rac1 by
Rac1 inhibitor promoted fear memory in massed training
rats. Here we found that 5-HT2A receptors also regulated the
spacing effect, and Rac1-dependent forgetting was engaged in
the 5-HT2A effect on the spacing effect through interactions
between 5-HT2A receptors and Rac1. Previous study showed
that stimulation of 5-HT2A receptors activated Rac1 via TGase
in vitro (Dai Y. et al., 2008). Contrary to this result, we found
that stimulation of hippocampal 5-HT2A receptors inhibited

Rac1 activity, vice versa, inhibition of 5-HT2A receptors activated
Rac1. The difference between our study and a previous studymay
be attributed to different models and 5-HT2A receptor agonist
used. Dai Y. et al. (2008) used DOI, a 5-HT2A/2C receptor
agonist in culture, while we used TCB-2, a 5-HT2A receptor
agonist in the rat’s hippocampus. The Rho GTPases are activated
by guanine nucleotide exchange (GEF) and deactivated by
GTPase activating proteins. Kalirin-7 is a brain-specific GEF
for the small GTPase Rac. Jones et al. (2009) found that the
5-HT2A receptor rapidly altered spine morphology through
kaliren-7 signaling in the cortical pyramidal neurons. Here we
found that hippocampal 5-HT2A receptors were upregulated
30 min after spaced training, and 5-HT2A receptor antagonist
MDL11939 significantly activated Rac1 30 min but not 15 min
after administration. The inhibition of hippocampal 5-HT2A
receptorsmay induce the activation of Kalirin-7 and then activate
Rac1, which needs to be investigated in future work.

The hippocampus is an important brain region involved
in contextual fear memory, which receives dense serotonergic
input from the raphe nuclei (Ihara et al., 1988). 5-HT is
a modulatory neurotransmitter that plays a key role in the
etiology of fear disorders (Bocchio et al., 2016). Dysregulation
of the serotonergic system is a pathophysiological mechanism of
stress-associated psychiatric disorders (Murrough et al., 2011).
Several studies from our lab have shown that central 5-HT
modulates anxiety and fear memory (Dai J. X. et al., 2008; Yu
et al., 2015; Song et al., 2016). Central 5-HT deficient mice
present less anxiety and enhancement of contextual fear memory
(Dai J. X. et al., 2008). However, the present study showed
that inhibition of hippocampal 5-HT2A receptors weakened
but not enhanced contextual fear memory. The difference
between these results may be interpreted as central 5-HT
deficiency affects all types of 5-HT receptors and multiple
brain areas in previous study, while this study only focused
on the hippocampal 5-HT2A receptors. Cai et al. (2013) found
that promoting accumulation of endogenous 5-HT potentiated
fEPSPs in the CA1 area. Our previous study found that chronic
administration of 5-HT reuptake inhibitor fluoxetine promoted
the maturation of new-born neurons in the hippocampus
(Jiang et al., 2014). These results indicated that activation of
5-HT system may enhance memory by modulating synaptic
plasticity and new-born neurons. The present study showed
that the activity of hippocampal 5-HT2A receptors modulated
the spacing effect and Rac1 activity in contextual fear memory.
Furthermore, we also demonstrated that 5-HT2A receptors
interacted with Rac1. Our study provides a novel mechanism
underlying the spacing effect in contextual fear conditioning.
However, here we only investigated the regulation of 5-HT2A
receptors altered hippocampal Rac1 activity in naïve rats but
not in the contextual fear conditioning rats, which needs to be
compared in future work.

CONCLUSION

In summary, our study first demonstrates that activation
of hippocampal 5-HT2A is a mechanism underlying the
spacing effect, and forgetting related to molecular Rac1 is
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engaged in this process through interacting with 5-HT2A
receptors. These results suggest that modulation of hippocampal
5-HT2A receptor-Rac1 pathway may be a promising therapeutic
target for abnormal learning such as post-traumatic stress
disorder (PTSD).
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