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The mood disorders, major depression (MD) and bipolar disorder (BD), have a high
lifetime prevalence in the human population and accordingly generate huge costs for
health care. Efficient, rapidly acting, and side-effect-free pharmaceuticals are hitherto not
available, and therefore, the identification of new therapeutic targets is an imperative task
for (pre)clinical research. Such a target may be the purinergic P2X7 receptor (P2X7R),
which is localized in the central nervous system (CNS) at microglial and neuroglial cells
mediating neuroinflammation. MD and BD are due to neuroinflammation caused in
the first line by the release of the pro-inflammatory cytokine interleukin-1β (IL-1β) from
the microglia. IL-1β in turn induces the secretion of corticotropin-releasing hormone
(CRH) and in consequence the secretion of adrenocorticotropic hormone (ACTH) and
cortisol, which together with a plethora of further cytokines/chemokines lead to mood
disorders. A number of biochemical/molecular biological measurements including the
use of P2X7R- or IL-1β-deficient mice confirmed this chain of events. More recent
studies showed that a decrease in the astrocytic release of ATP in the prefrontal cortex
and hippocampus is a major cause of mood disorders. It is an attractive hypothesis
that compensatory increases in P2X7Rs in these areas of the brain are the immediate
actuators of MD and BD. Hence, blood-brain barrier-permeable P2X7R antagonists may
be promising therapeutic tools to improve depressive disorders in humans.

Keywords: P2X7 receptor, mood disorders, hippocampus, microglia, astroglia

INTRODUCTION

The mood disorder major depression (MD) is characterized by extreme sadness, depressed mood,
and loss of interest that persist for at least 2 weeks and interferes with the individual’s social
functioning (Harvey et al., 2007; Deussing and Arzt, 2018; Wei et al., 2018; Ribeiro et al., 2019).
During bipolar disorder (BD), the mood state cycles between high (mania) and low (depression)
episodes. MD and BD arise from complex interactions between genetic, developmental, and
environmental factors (Koenig et al., 2011; Sullivan et al., 2012). The lifetime prevalence estimates
for MD vary from 11% to 14% with females having an approximately 2-fold higher disease risk than
males (Deussing and Arzt, 2018).
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In view of the serious limitations these mood disorders
impose upon the life quality of patients and because of their
relatively frequent occurrence in the human population, it
is of eminent importance to find good curative strategies to
combat them. Presently, reuptake inhibitors of monoamines
[noradrenaline, dopamine, and 5-hydroxytryptamine (5-HT)]
are in the forefront of considerations, although significant
drawbacks have to be taken into account: (1) the clinical
improvement is achieved only after weeks of treatment; (2) there
are multiple side effects; and (3) a substantial group of patients is
resistant to therapy (Kulkarni andDhir, 2009; Deussing and Arzt,
2018). Therefore, intensive search for alternative therapeutic
targets and tools is a compelling necessity.

PURINERGIC P2X7 RECEPTOR

Ionotropic P2X7 receptors (P2X7Rs) are members of the P2X
purinoceptor family, which were cloned and characterized in
1996 (Surprenant et al., 1996; North, 2002; Burnstock and
Knight, 2004). Three properties of the P2X7R are distinguishing
characteristics: (1) it is activated by high concentrations of ATP
in the millimolar range, clearly surmounting concentrations
needed to activate other P2X receptors (P2XRs), which are
stimulated by ATP concentrations in the micromolar range; (2) it
is a ligand-gated cationic channel, allowing the inward passage of
Na+ and Ca2+ and the outward passage of K+ through the cell
membrane. However, its repetitive or longer-lasting activation
by ATP results in the opening of membrane pores permeable
to large organic cations such as the fluorescent dye YO-PRO,
which otherwise do not pass the cell membrane; and (3) the
P2X7R consists of three subunits (large extracellular loop, two
transmembrane regions, and N- and C-terminal ends) forming
a receptor, but each subunit has a much longer C-terminus than
that of the other P2XRs.

A particularly intensively discussed issue is the transition
of the cationic channel to a large membrane pore, because it
appears to be essential for cytokine production and secretion
(Illes et al., 2019; Martin et al., 2019). Originally, it was suggested
based on equilibrium potential (Vrev) measurements with the
whole-cell patch-clamp technique that the ion conducting
pathway shows progressive dilation (Virginio et al., 1999).
However, this suggestion was recently refuted, because the shift
in Vrev in a medium in which the counterion of intracellular K+

was NMDG+ instead of Na+, emerged due to time-dependent
alterations in the concentration of intracellular ions rather than
channel dilation (Li et al., 2015). Moreover, during long-lasting
activation of P2X7Rs, the single-channel current amplitude
and the permeation characteristics remained constant (Pippel
et al., 2017). Although convincing evidence indicates that pore
opening is due to the recruitment of an accessory protein, the
pannexin-1 channel (Panx-1; Pelegrin and Surprenant, 2006;
Gulbransen et al., 2012; Shoji et al., 2014; Chen et al., 2017),
the observation that, for example, the P2X7R pore formation
is retained in Panx-1−/− cells supports the opposite notion
(Hanley et al., 2012).

The P2X7R C-terminal tail constitutes about 40% of the
whole protein, and its deletion or massive truncation prevents

effects mediated by receptor activation such as dye uptake
and membrane blebbing (generation of exosomes) but also
alters channel kinetics (Kopp et al., 2019). In addition, the
C-terminus was implicated in regulating signaling pathway
activation, protein–protein interactions, and posttranslational
modification (Costa-Junior et al., 2011).

P2X7Rs are major drivers of inflammation (Di Virgilio et al.,
2017; Burnstock and Knight, 2018; Savio et al., 2018). Secretion
of several pro-inflammatory cytokines and chemokines depends
on the activation of P2X7Rs by large concentrations of ATP
outpouring from damaged central nervous system (CNS) cells.
The preferential location of P2X7Rs in the CNS is on the
microglia, the resident macrophages of the brain (Bhattacharya
and Jones, 2018). Microglia are equipped with a battery of pattern
recognition receptors that stereotypically detect pathogen-
associated molecules (PAMPs) such as lipopolysaccharide
(LPS) from bacterial infection or danger-associated molecular
patterns (DAMPs), such as ATP (Figure 1; Shao et al.,
2015; Young and Górecki, 2018; Illes et al., 2019; Martin
et al., 2019). Activation of microglia stimulates the release of
interleukin-1β (IL-1β) in a two-step process: the first being the
stimulation of toll-like receptor 4 (TLR4) by LPS, leading to
accumulation of cytoplasmic pro-IL-1β, and the second being the
ATP-dependent stimulation of P2X7Rs, promoting nucleotide-
binding, leucine-rich repeat, pyrin domain containing 3 (NLRP3)
inflammasome-mediated caspase-1 activation and secretion of
IL-1β (Perregaux and Gabel, 1998; Ferrari et al., 2006). Caspase-1
generates IL-1β from pro-IL-1β by enzymatic degradation. It is
important to note that the decrease of intracellular K+ is a major
stimulus for P2X7R-dependent NLRP3 inflammasome activation
(Muñoz-Planillo et al., 2013; Di Virgilio et al., 2017, 2018).

IL-1β is co-produced/secreted with other pro-inflammatory
cytokines such as IL-6 and IL-18 as well as tumor necrosis factor-
α (TNF-α). A convincing argument for the idea that P2X7R
activation provides the signal that leads tomaturation and release
of IL-1β and initiation of the cytokine cascade stemmed from
experiments showing that P2X7R−/− cells or animals primed
with LPS failed to produce IL-1β on the application/injection of
ATP (Solle et al., 2001).

The majority of the fully sequenced mammalian genomes
include representatives of all vertebrate P2X genes, including
P2X4, which in humans is located on chromosome 12 in close
proximity to P2X7 (Suurväli et al., 2017). The overlapping
expression of P2X4 and P2X7Rs has been documented in
macrophages and microglia (Dubyak, 2007; Suurväli et al., 2017).
The reason for the co-expression may be the involvement of
both receptors in inflammatory processes (de Rivero Vaccari
et al., 2012; Hung et al., 2013; Sakaki et al., 2013). Originally,
it has been assumed that subunits of P2X4 and P2X7Rs
form the heteromeric complex P2X4/P2X7 (Guo et al., 2007),
although more recent data lend support to the existence
of independent receptors tightly interacting with each other
(Nicke, 2008; Antonio et al., 2011). The agonist binding
affinities largely differ between P2X7 and P2X4 receptors
(P2X4Rs); while the former one is activated by millimolar
ATP concentrations, the latter one responds to ATP in the
micromolar range (Kaczmarek-Hájek et al., 2012). Hence, non-
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FIGURE 1 | Secretion of interleukin-1β (IL-1β) from microglial cells via involvement of the nucleotide-binding, leucine-rich repeat, pyrin domain containing 3 (NLRP3)
inflammasome. Pathogen-associated molecular patterns [PAMPs; e.g., bacterial lipopolysaccharide (LPS)] act on toll-like receptor-4 (TLR4) and cause its
phosphorylation. In consequence, in the cell nucleus, NF-κB is activated, which promotes the synthesis of the NLRP3 inflammasome and pro-IL-1β, both
accumulating in the cytosol in their inactive forms. The activation of NLRP3 is primarily due to a decrease of the intracellular K+ concentration ([K+]i), initiated by the
stimulation of P2X7Rs by high local concentrations of the molecule ATP, which is considered to be a danger-associated molecular pattern (DAMP). P2X7Rs allow the
inward flux of Na+/Ca2+ and in exchange the outward flux of K+, leading to a fall in [K+]i. The opening of two-pore domain potassium channels (2KP) may also lead
to an impoverishment in cytoplasmic K+. A further stimulus for NLRP3 activation is the outward flux of Cl− through chloride intracellular channels (CLICs). TLR4,
P2X7Rs, 2KP channels, and CLIC are all located in the cell membrane of the microglia. A sensor for the fall in [K+]i is the NEC7 serine/threonine kinase. NEC7 is able
to form a complex with NLRP3, which is still inactive, but after constitution of a still larger multimeric complex with apoptosis-associated speck-like protein (ASC)
recruits pro-caspase-1 (pro-Casp-1). In consequence, pro-Casp-1 in a complex with NLRP3 and ASC is cleaved to Casp-1, which then by its activated form
a-Casp-1 degrades pro-IL-1β to IL-1β. Then, IL-1β leaves the cell by a number of mechanisms to the extracellular space and exerts its effects as a
neuroinflammatory cytokine. K+ ↓, decrease of the K+ concentration. Artwork by Dr. Hayan Yin.

cell-lytic micromolar ATP release cannot directly stimulate
P2X7Rs but easily activates its more sensitive partner, the
P2X4R, thereby modifying the function of the P2X4–P2X7R
multiprotein complex.

ASSOCIATION OF P2X7 GENE
POLYMORPHISM AND MOOD DISORDERS

Linkage studies suggested that variations of the chromosome
12q24,31 containing candidate genes for the P2X7R and
calmodulin-dependent protein kinase b (CaMKKb) may be
associated with MD and BD. It has been repeatedly reported that
the nonsynonymous single-nucleotide polymorphism (NS-SNP)
rs2230912 coding for Gln460Arg-P2X7R is associated with MD
(McQuillin et al., 2009; Soronen et al., 2011; Sperlágh and
Illes, 2014). However, in the meantime this association has
been questioned. Although further studies have supported the
possible role of this NS-SNP in mood disorders (Halmai et al.,
2013; Vereczkei et al., 2019), other authors failed to detect
any association (Green et al., 2009; Grigoroiu-Serbanescu et al.,
2009). Two recent meta-analyses also yielded divergent results,
one of them confirming (Czamara et al., 2018) and the other one

refuting (Feng et al., 2014) the hypothesis on the causal role of
the NS-SNP rs2230912 in MD and BD. Eventually, this led the
Psychiatric Genomics Consortium to deny the P2RX7 gene as a
genetic risk factor formood disorders in large-scale genome-wide
association studies (Mühleisen et al., 2014; Wray et al., 2018).

When various P2RX7 single-nucleotide polymorphism were
investigated by electrophysiology/dye uptake studies either in
native cells or in HEK293 cells transfected with the respective
plasmids, several gain-of-function or loss-of-function allelic
mutations were identified (Gu et al., 2001; Roger et al.,
2010; Sun et al., 2010). Surprisingly, the ATP-induced inward
current was the same through the wild-type (WT) receptor
and the Gln460Arg polymorphic receptor (Roger et al., 2010),
leading to the suggestion that a haplotype block may explain
the lack of the expected decrease of ATP effects (Sluyter
et al., 2010). This riddle was dissolved by Aprile-Garcia et al.
(2016) who reported that although the variant per se is not
compromised in its function, co-expression of WT P2X7R
with the Gln460Arg-P2X7R results in inhibition of calcium
influx, channel current, and intracellular signaling. Moreover,
co-immunoprecipitation and FRET studies demonstrated that
the Gln460Arg-P2X7R variant physically interacts with the WT
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P2X7R. The same group of authors found that humanized
mice co-expressing both P2X7R variants showed alterations in
their sleep quality resembling signs of a prodromal MD state
(Metzger et al., 2017a).

In conclusion, the evidence for an association of the SNP
rs2230912 as an etiologic factor for hereditary mood disorders is
far from being equivocal, although its role in P2X7R involvement
cannot be excluded either (see above controversial results of
epidemiological studies).

THE P2X7R TRIGGERS
NEUROINFLAMMATION AND
SUBSEQUENT MOOD DISORDERS

Activation of the inflammasome, which precipitates the release
of pro-inflammatory cytokines, and activation and migration
of microglia and reactive astrogliosis are key regulators of
the neuroinflammatory response (Beamer et al., 2016; Liu and
Quan, 2018). IL-1β is a master regulator of inflammatory
reactions, capable of activating innate immunity by inducing the
expression of inflammatory cytokines and chemokines, eliciting
leukocyte infiltration into the inflammatory loci, increasing the
phagocytic and bactericidal activity of immune cells, enhancing
the activity of the complement system, and facilitating the
activation of the adaptive immune responses (Dinarello, 2009;
Liu and Quan, 2018).

Stress exposure is considered to be the main environmental
factor instigating mood disorders in humans, and all animal
models of MD are based on exposure to inescapable stress
(Ribeiro et al., 2019). Psychological and metabolic stress
could induce adrenocorticotropic hormone (ACTH) and
glucocorticoid secretion in mice, which were reduced in IL-1
knockouts (KOs) or transgenic animals overexpressing brain
IL-1ra, a naturally occurring IL-1 antagonist (Goshen et al.,
2003; Liu and Quan, 2018). Intracerebral administration of
IL-1 induces corticotropin-releasing hormone (CRH) release
in rats (Barbanel et al., 1990), and psychological stress causes
brain IL-1 expression (Gadek-Michalska and Bugajski, 2010).
Thus, brain IL-1 could mediate physiological responses to
stress by stimulating the production of the immunosuppressive
glucocorticoid hormone cortisol from the adrenal medulla
(Liu and Quan, 2018). In perfect correlation with this idea,
IL-1ra suppresses stress-induced depression in animal models
(Koo and Duman, 2009; Maes et al., 2012). Consequently,
disturbances of the main neuroendocrine stress response
system, the hypothalamic–pituitary–adrenal axis including
the main initiator CRH and effector glucocorticoids, have
been suggested to cause depression (de Kloet et al., 2005;
Deussing and Arzt, 2018).

As outlined previously, the primary function of P2X7Rs in
the CNS is to initiate (neuro)inflammation. Therefore, it was
deduced that the receptor might cause MD and BD, which
are reportedly accompanied by neuroimmunological alterations
(Bhattacharya and Jones, 2018). The chain of events may be the
following: stress causes a massive outflow of ATP in the brain
stimulating P2X7Rs, which on their behalf trigger the release

of IL-1β. Then, IL-1β induces the secretion of CRH and the
consecutive production of ACTH/glucocorticoids, resulting in
mood disorders. In fact, acute restraint stress rapidly increases
extracellular ATP, the inflammatory cytokine IL-1β, and the
active form of the NLRP3 inflammasome in the hippocampus of
rodents (Iwata et al., 2016).

Acute and chronic stress may induce in rodent models
depressive-like behavior, which can be used to investigate
antidepressive pharmaceuticals (Figure 2). In contrast to
the acute stress models shown in this figure, unpredictable
chronic mild stress (UCMS) is delivered for prolonged
periods of 8–12 weeks and includes once daily, for example,
immobilization, food deprivation, light/dark phase reversal,
hot environment, and cage shaking. This procedure leads
to depressive-like behavior as measured by reduced sucrose
consumption and prolonged immobility in the tail suspension
test (TST) and forced swim test (FST) in rodents (Zhang
et al., 2015; Su et al., 2017; Wang et al., 2018; Feng
et al., 2019). UCMS also resulted in higher protein levels
of NLRP3, caspase-1, and IL-1β in the hippocampus of
stress-exposed mice (Zhang et al., 2015) and rats (Wang
et al., 2018; Feng et al., 2019). Pharmacological blockade
of NLRP3 (Zhang et al., 2015) or its genetic deletion (Su
et al., 2017) decreased the level of inflammatory mediators
and counteracted the symptoms of depressive-like behavior.
Microglia has been shown to be essential for these effects,
because chronic minocycline treatment known to block the
activation of microglia inhibited the following engagement of
the NLRP3 inflammasome and the ensuing increased release
of inflammatory mediators (Wang et al., 2018). Further,
the inflammasome inhibitor Ac-Tyr-Val-Ala-Asp-chloromethyl
ketone blocked the behavioral alterations and the production
of inflammatory mediators caused by systemic injection of
LPS to mice (Zhu et al., 2017). Chronic treatment with
the standard antidepressant drug fluoxetine suppressed all
symptoms induced by UCMS in rodents (Pan et al., 2014;
Du et al., 2016). There is a multitude of review articles
available which give further insight to the causal relationship
between inflammasome activation and MD (Alcocer-Gómez
et al., 2016; Kaufmann et al., 2017; Franklin et al., 2018;
Herman and Pasinetti, 2018).

The role of P2X7Rs as essential activators of NLRP3 was
also convincingly demonstrated by showing that UCMS elevates
hippocampal P2X7R levels (Tan et al., 2017). The selective P2X7R
antagonist Brilliant Blue G (BBG) attenuated the increase of
immobility time in TST and FST in mice after activation of the
inflammasome by LPS (Ma et al., 2014). Similarly, BBG reversed
the behavioral deterioration induced by UCMS in mice (Farooq
et al., 2018), and clemastine, a nonselective antagonist of P2X7Rs,
counteracted the prolonged duration of immobility in TST
(Su et al., 2018).

Another piece of evidence for the participation of
P2X7Rs in depressive-like behavior was supplied by
the use of KO animals. P2RX7−/− mice exhibited an
antidepressant-like profile in TST and FST; this effect was
not accompanied by changes in spontaneous locomotor
activity (Basso et al., 2009). In these animals, decreased
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FIGURE 2 | Some relevant tests to measure depressive-like behavior in rodents induced by stressors. These tests are employed to quantify the extent of “learned
helplessness” of rats/mice, and thereby, with the necessary precaution, they are supposed to model major depression (MD) in humans. In consequence, they are
routinely used to determine the effectiveness of antidepressant pharmacological agents. (A) Tail suspension test (TST). Mice are suspended by their tails with tape, in
such a position that they cannot escape or hold on to nearby surfaces. Then, the sum of the time periods is measured during which they stop escape reactions; that
is, they become immobile. This time period is considered to be a measure of the depressive-like behavior. The duration of the test is maximized usually at 6 min, in
order to avoid unnecessary suffering of the animals. Because the weight of rats is much larger than that of mice, rats are not considered to be an appropriate rodent
species for this test method. (B) Forced swim test (FST). Mice or rats are put into a tank containing water whose temperature is kept at about 23◦C. The dimensions
of the tank and the depth of water are such that the animals are forced to swim as an escape reaction. Swimming is stopped when the animal notices that it cannot
escape and starts to float on the surface of the water. The length of the immobile periods is measured during a maximum of 6 min and is considered to be a measure
of the degree of depressive-like behavior. (C) Inescapable foot shock test (IFST). The electric foot shock paradigm includes acute or chronic exposures of shocks of
varying intensity and duration on an electrified grid floor in a foot shock apparatus. In contrast to the scheme shown, the mice or rat is not able to escape from the
chamber where it is subjected to electric shocks to the other chamber where there is no comparable painful stimulation. Animals generally do not habituate to foot
shocks in comparison to other stressors, including loud noise, bright light, and hot and cold temperatures. (D) Sucrose consumption test (SCT). The two-bottle
choice procedure for assessing sucrose preference is a useful test to investigate anhedonia (i.e., inability to feel pleasure) in laboratory rodents. It allows for a
comparison between the preference for sucrose solution in drinking water and that for water only. This preference is measured by volume and/or weight of liquid
consumed daily, which is then converted to a percent sucrose solution consumed compared to a water only baseline period. As a result of the anhedonia induced by
inescapable foot shock, the preference for choosing a sucrose solution decreases in mice or rats. It is important to verify the results of all these tests with separate
behavioral tests that measure overall activity such as the open-field test. Moreover, TST, FST, and IFST/SCT should be used in combination to minimize false
positivity, and it should be kept in mind that depressive-like behavior in laboratory rodents is not identical with the clinical state of MD in human beings (see above).
Artwork by Ms. Lumei Huang.

behavioral despair in FST, reduced immobility in TST,
and attenuated amphetamine-induced hyperactivity were
detected, indicating an antidepressant phenotype (Sperlágh
et al., 2012; Csölle et al., 2013a,b). In addition, several

potential mechanisms were identified for these mice such
as elevated basal production of brain-derived neurotrophic
factor (BDNF), enhanced neurogenesis, and increased
5-HT bioavailability in the hippocampus (Csölle et al.,
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2013b). In contrast to these findings, equivalent levels of
immobility were observed in P2RX7−/− and WT mice
on the first exposure to forced swim, but much greater
immobility was seen in the WT animals on second and
third exposures (Boucher et al., 2011). An explanation
for this discrepancy may be that the FST was recently
questioned to be an adequate model of despair or helplessness
(Molendijk and de Kloet, 2019).

Another factor of insecurity inherent to the P2X7R-
deficient mice is that with the two types used routinely for
experimentation, some splice variants of the P2RX7 gene escape
inactivation (Bartlett et al., 2014; Sperlágh and Illes, 2014).
Experiments with a recently generated conditional humanized
P2X7R-deficient mouse, supposed to be devoid of active splice
variants of the receptor, could be helpful in this respect
(Metzger et al., 2017b).

A further argument for the involvement of P2X7Rs in the
etiology of MD is supplied by studies which show that inhibition
or genetic abrasion of the P2X7R–Panx-1 pore complex
suppresses spreading depolarization and neuroinflammation in
mice (Chen et al., 2017). This is in perfect agreement with
findings that Cx43- and Panx-1-based channels participate in
the induction of neuroinflammation and cerebral neuropathies
(Sarrouilhe et al., 2017; for further considerations on the role
of connexins/pannexins in MD, see the section ‘‘Inhibited
Astrocytic ATP Release in the Pre-frontal Cortex’’).

MICROGLIAL AND ASTROGLIAL
FUNCTIONS; CELL DEATH AND
PROLIFERATION BY P2X7 RECEPTORS

Microglia are the resident immunocytes of the CNS; unlike other
tissue macrophages, they persist for the life of the organism
with negligible turnover rates at steady state (Tay et al., 2016;
Anderson and Vetter, 2019). Microglia are instrumental in
the maintenance of biochemical homeostasis, neuronal circuit
maturation during development, and experience-dependent
remodeling of neuronal circuits in the adult brain (Szepesi
et al., 2018; Anderson and Vetter, 2019; Illes et al., 2019).
The cellular processes of quiescent or ‘‘resting’’ microglia are
highly mobile (extension and withdrawal) by scanning the
environment for disruptions of brain homeostasis (Davalos
et al., 2005). When microglia detect danger signals, they rapidly
become activated by shortening their processes, eventually being
transformed to amoeboidmicroglia, which produces a number of
cytokines, chemokines, and growth factors, as well as developing
phagocytotic activity (Kettenmann et al., 2011).

Microglia establish close contact with both neurons
(Eyo and Wu, 2013) and astrocytes (Jha et al., 2019),
supplementing the ‘‘tripartite synapse’’ (see below) with
a microglial component (‘‘quadripartite synapse’’; Schafer
et al., 2013; Illes et al., 2019). An important regulator of this
interaction is ATP/ADP, which is released from neurons
and astrocytes/microglia by exocytotic and non-exocytotic
mechanisms (Calovi et al., 2019). Microglia possess a range
of P2Y receptors (P2YRs). P2Y1 receptors (P2Y1Rs) steer

microglial migration (De Simone et al., 2010), P2Y6 receptors
(P2Y6Rs) regulate microglial phagocytosis (Koizumi et al.,
2007), and P2Y12 receptors (P2Y12Rs) are responsible for
chemoattraction of microglial branches to the site of ATP
accumulation (Ohsawa et al., 2010).

P2X7, the archetypical macrophage/microglial receptor,
mediates two diametrically opposite functions of microglia such
as, firstly, proliferation, most likely via calcium signaling (Monif
et al., 2010, 2016), and, secondly, necrosis/apoptosis via the
generation of transmembrane pores and activation of the caspase
enzymatic cascade (Bartlett et al., 2014; He et al., 2017). Whereas
microglial phagocytosis of bacteria and cellular debris is under
the regulation of ATP/ADP, P2X7 has been shown to be a
scavenger receptor for apoptotic cells even in the absence of its
ligand ATP (Gu et al., 2011).

Astrocytes to a large extent define synaptic connectivity.
Indirect effects are exerted by changes in astrocytic functions
due to modifications in K+ uptake and redistribution; Cl− and
water fluxes; Na+/K+, Na+/Ca2+, or Na+/HCO3

− exchange;
neurotransmitter uptake; etc (Verkhratsky et al., 2017; Mederos
et al., 2018; Illes et al., 2019). Astrocytes also directly modify
synaptic transmission, because they contact and partially
ensheathe synapses with their perisynaptic processes (Allen
and Eroglu, 2017). Astrocytes may release ‘‘gliotransmitters’’
[e.g., glutamate, γ-aminobutyric acid (GABA), and ATP] by
an exocytotic mechanism modulating neuronal functions; the
structural basis for this effect is the ‘‘tripartite synapse,’’ which
consists of the presynaptic elements, the postsynaptic/dendritic
structures, and the astrocytic processes terminating at the
synapse (Araque et al., 1999; Halassa and Haydon, 2010;
Illes et al., 2019). More recently, the tripartite synapse
hypothesis has evolved into the idea of an ‘‘astroglial cradle’’
summarizing all aspects of the synapse function not only those
mediated by neurotransmitters (Verkhratsky and Nedergaard,
2018). In addition, astrocytes may also deliver ATP/ADP
into the extracellular space by non-exocytotic mechanisms
via, for example, connexin hemichannels, pannexin channels,
maxi-anion channels, and volume-regulated anion channels,
contributing to the exocytotic release (Cheung et al., 2014;
Dahl, 2015).

For a couple of years, it was doubted whether astrocytes
possess the prototypic microglial P2X7R (see, e.g., Jabs et al.,
2007); however, more recently convincing functional evidence
corroborated this notion (Duan et al., 2003; Oliveira et al., 2011;
Illes et al., 2012, 2017). Immunohistochemical investigations
in the nucleus accumbens of rats showed that after stab
wound injury, P2X7R immunoreactivity was observed in glial
fibrillary acidic protein (GFAP)-positive astrocytes (Franke
et al., 2001). Similar findings were reported for the cerebral
cortex of spontaneously hypertensive rats, where the occlusion
of the medial cerebral artery led to the upregulation of
P2X7Rs in the penumbra surrounding the necrotic region
(Franke et al., 2004). Thus, it was concluded that P2X7Rs
induce proliferation of astrocytes upon their stimulation by
ATP possibly released from the nearby, massively damaged
CNS tissue (Franke et al., 2012; Franke and Illes, 2014;
Martin et al., 2019).
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INHIBITED ASTROCYTIC ATP RELEASE IN
THE PREFRONTAL CORTEX AND
HIPPOCAMPUS IS A POSSIBLE LINK TO
MOOD DISORDERS

After having discussed the role of P2X7Rs in MD and BD,
we turn our attention to a possible role of astrocytes in the
pathogenesis of mood disorders by their impeded release of
ATP. Numerous lines of evidence support the contention that
modification of astrocytic functions or decreased density of
astrocytes in the frontolimbic and hippocampal regions is
associated with depression (Rajkowska and Stockmeier, 2013;
Peng et al., 2015; Rial et al., 2016). Astrocytes are integrated
into networks where individual cells communicate with each
other via gap junctions. Connexins, mainly represented
by Cx43, provide the molecular basis for gap junction
channels, connecting the cytoplasm of adjacent glial cells
(Theis and Giaume, 2012; Verkhratsky and Nedergaard,
2018; Illes et al., 2019). These channels allow direct exchange
of a variety of small molecules of less than about 1 kDa,
including ions (most importantly Ca2+), energy metabolites,
neurotransmitters, and signaling molecules coordinating
metabolic and functional activities of connected cells
(Pannasch and Rouach, 2013; Cheung et al., 2014). In addition,
unopposed connexin hemichannels and Panx-1 channels are
conduits for ATP release from astrocytes (Huang et al., 2012;
Beckel et al., 2014).

Rats exposed to chronic unpredictable stress exhibited deficits
in the sucrose preference test, which signals anhedonic behavior,
a core symptom of depression. In the prefrontal cortex of
these animals, the diffusion of gap junction channel-permeable
dyes as well as the expression of Cx43 is decreased (Sun
et al., 2010; Xia et al., 2018). The infusion into the prefrontal
cortex of both the gap junction blocker carbenoxolone and the
Cx43 mimetic, antagonistic peptide Gap27 caused anhedonia.
Similarly, exposure to chronic unpredictable stress of rats also
caused a decrease in the expression of prefrontal cortical
connexins, while long-lasting treatment with antidepressants
with unrelated structure and mode of action invariably increased
the expression of connexins (Ren et al., 2018).

In the case of the blockade of connexins, it is unclear whether
the gap junction property or the outflow of various neuroactive
substances, for example, ATP through (hemi)channels, has been
inhibited in the above experiments. However, Panx-1 works
only as a channel, and therefore, its blockade in the medial
prefrontal cortex by carbenoxolone, 40Panx, and mefloquine
appeared to be due to impaired release of an astrocytic signaling
molecule (Ni et al., 2018). This molecule may be ATP, because
the mefloquine-induced depressive-like behavior was prevented
by preconditioning with ATP.

However, opposite results have also been published. Dye
uptake experiments in hippocampal slices demonstrated that
acute restraint stress, known to instigate depressive-like
behavior, induced opening of both Cx43 and Panx-1
channels (Orellana et al., 2015). Moreover, incubation of
cultured astrocytes with seven antidepressants inhibited

Cx43 channels with different efficacies depending on their
therapeutic potencies (Jeanson et al., 2015). An explanation
for these divergent results may be that conclusions were
drawn based on investigations carried out on different
organizational structures (cell culture/brain slice vs. whole
animal) and different areas of the brain (hippocampus vs.
prefrontal cortex).

When mice susceptible or non-susceptible to social defeat
were compared to each other, the brains of the susceptible mice
contained lower ATP levels than those of the non-susceptible
ones (Cao et al., 2013). Further, FST also caused ATP
deficiency in the brain and decreased the ATP content in the
microdialysates of their prefrontal cortices. The infusion of
ATP into the lateral ventricle of the mouse brain decreased the
duration of immobility in the FST. Inositol 1,4,5-trisphosphate
(IP3) triggers the release of Ca2+ from the endoplasmic
reticulum which is a prerequisite for the exocytotic release
of ATP. In consequence, IP3 receptor type 2 KO mice
exhibited lower ATP release from astrocytes compared with
their WT counterparts, as well as a depressive-like phenotype.
Comparably, the astrocytic, vesicular release of ATPwas blocked,
when in mice, a dominant negative domain of vesicular soluble
N-ethylmaleimide-sensitive fusion protein attachment protein
receptor (SNARE) was selectively overexpressed in astrocytes.
These transgenic animals also exhibited depressive-like behaviors
(Halassa and Haydon, 2010).

Conventional KO and conditioned astrocytic KO of the
calcium homeostasis modulator 2 channel (Calhm2) initiated
depression-like behaviors in mice (TST and FST), indicating that
this channel is the exit pathway for the release of ATP (Jun et al.,
2018). In partial disagreement with these findings, the effect of
the antidepressant drug fluoxetine has been shown to increase
ATP exocytosis (Kinoshita et al., 2018). In consequence, the
authors of this latter study concluded that the astrocytic release
of ATP involved in depression operates by vesicular exocytosis
rather than by Calhm2 opening.

Thus, ample evidence supports the notion that an impaired
ATP release from prefronto-cortical astrocytes is the primary
reason for depressive-like behavior and probably also MD.
However, there is disagreement on whether this damage may
be confined to connexin/pannexin hemichannels, the Ca2+-
dependent exocytotic machinery, or Calhm2 channels as exit
pathways for ATP. In view of the already discussed idea
that hyperreactivity of microglial/astrocytic P2X7Rs is causally
involved in the pathogenesis of MD/BD, it is quite attractive
to hypothesize that the decreased ATP concentration in the
prefrontal cortex (and hippocampus) leads to upregulation of
P2X7Rs in this area of the brain.

P2X7R ANTAGONISTS AS POSSIBLE
THERAPEUTIC AGENTS TO TREAT MOOD
DISORDERS

Because P2X7Rs mediate peripheral and central inflammation,
a number of pharmaceutical companies developed ligands for
this target, and some of them advanced P2X7R antagonistic
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compounds even to clinical trials. A major advantage of a
P2X7R antagonistic drug would be that the receptor is stimulated
only by pathologically high extracellular concentrations of
ATP; thus, its blockade will not interfere with effects due
to the more physiological release of smaller quantities of
ATP (Illes et al., 2019). Although, against expectations,
P2X7R antagonists did not produce a beneficial effect on
rheumatoid arthritis (Keystone et al., 2012; Stock et al.,
2012), they improved symptoms in patients with moderate-
to-severe Crohn’s disease (Eser et al., 2015). Nonetheless,
the development of such compounds for both therapeutic
indications was terminated by Pfizer and Astra-Zeneca (Rech
et al., 2016; Young and Górecki, 2018), in the case of Crohn’s
disease probably also because of insufficient safety margins
(Bhattacharya and Biber, 2016).

It can be derived from the available literature as discussed in
our review that P2X7Rs may be promising targets to treat MD
and BD (Bhattacharya, 2018; Wei et al., 2018). However, the
following three difficulties are major obstacles in developing new
P2X7R antagonists for the treatment of mood disorders: (1) a
number of P2X7R antagonists act in rodent receptor orthologs
but not in human receptor orthologs when investigated under
in vitro conditions (Bhattacharya and Biber, 2016); (2) the disease
can be modeled by depressive-like states induced by applying
acute or chronic inescapable stress to rodents; however, it is
most likely that there is no perfect analogy with the human
disease (Ribeiro et al., 2019); and (3) P2X7R antagonists have
to pass the blood-brain barrier in order to exert effects in
the CNS.

The majority of compounds disclosed in the last decade are
human-specific P2X7R antagonists with no or weak rodent
activity but suffer from lack of robust CNS permeability.
However, numerous blood-brain barrier-permeable P2X7R
antagonists have been developed by Abbott, Astra-Zeneca,
GlaxoSmithKline, and especially Janssen more recently
(Bhattacharya, 2018; Wei et al., 2018). The Janssen compounds
JNJ-47965567 (Bhattacharya et al., 2013) and JNJ-42253432
(Lord et al., 2014) demonstrated activity in rodent and human
P2X7Rs, had good rat pharmacokinetic profiles, and had
excellent brain penetration, when dosed subcutaneously.

CONCLUSIONS AND PERSPECTIVES

A tight causal relationship of P2X7Rs with mood
disorders is imperatively suggested by their involvement in
neuroinflammation and the subsequent modulation/damage
of neuronal circuits in mood-relevant areas of the brain.
Functional changes in long-term synaptic potentiation (LTP)
in the lateral habenula have been observed in rats exposed
to inescapable stressors leading to learned helplessness (Li
et al., 2011; Park et al., 2017). Similarly, in models of learned
helplessness, the expression of synapse-related genes decreased,
indicating the loss of synaptic structures. The morphological
alterations were manifest as a decrease in spine synapse density
in the CA1, CA3, and dentate gyrus of the hippocampus
(Hajszan et al., 2009) and were absent in P2X7R-deficient mice
(Otrokócsi et al., 2017).

BOX 1 | Microglial cellular effectors modulating neuronal functions

• Resting (ramified) microglia constantly scan their environment for
exogenous and endogenous signals indicating a threat to the neuronal
homeostasis. They detect PAMPs such as LPS from bacterial infection or
DAMPs, such as ATP. DAMPs initiate the transformation of ramified microglia
after withdrawal of their cellular processes to microglia with a rounded surface.

• In activated microglia, the assembly/activation of the inflammasome
converts pro-caspase-1 to caspase-1, which in turn cleaves the biologically
inactive pro-IL-1β to IL-1β. Caspase-1 also activates the apoptotic caspase
enzyme cascade to induce programmed cell death (apoptosis). After LPS
priming, P2X7Rs largely boost the inflammatory cytokine response executed
in the first line by IL-1β, but also by IL-6 and TNF-α.

• Microglial P2X7Rs are termed “suicide receptors” because their activation
causes necrosis/cell death.

• Activated microglia release proteases as well as reactive oxygen and
nitrogen species into their cellular environment. In addition, they secrete
diacylglycerol lipase responsible for endocannabinoid production. These
microglia also release ATP and probably also glutamate by vesicular exocytotic
mechanisms.

• ATP through activation of microglial P2X7Rs releases extracellular vesicles
from the plasma membrane (microvesicles and exosomes), inducing a robust
inflammatory reaction in glial cells.

• Activated microglia also acquires phagocytotic properties, thereby
eliminating not only cellular debris or pathogenic bacteria but also surplus
neurons during development and thereby shaping adult neuronal circuits by
phagocytosis or synaptic stripping.

In short, neuroinflammation triggered by inescapable
stressors activates microglial cells outpouring
cytokines/chemokines, proteases, reactive oxygen, and
nitrogen species which damage neurons in the prefrontal
cortex and hippocampus (Box 1). Microglia also acquires
phagocytotic properties, thereby shaping adult neuronal
circuits by phagocytosis and synaptic stripping. The classical
DAMP ATP initiates the transformation of ramified microglia
to microglia with a rounded surface. P2X7Rs have a key
role in microglial activation causing via multiple signal
transduction pathways functional/morphological changes
leading to depressive-like reactions in animals and possible also
in humans.

In view of good blood-brain barrier-permeable P2X7R
antagonists at our disposal and the intensive research activities
carried out in academic and pharmaceutical institutions, there
is strong hope that newly synthesized and clinically tested drugs
of this family will be soon available as potent and side-effect-
free antidepressants.
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