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Since neurons have long neurites including axons, it is crucial for the axons to transport
many intracellular substances such as proteins and mitochondria in order to maintain
their morphology and function. In addition, mRNAs have also been shown to be
transported within axons. RNA-binding proteins form complexes with mRNAs, and
regulate transport of the mRNAs to axons, as well as locally translate them into proteins.
Local translation of mRNAs actively occurs during the development and damage of
neurons, and plays an important role in axon elongation, regeneration, and synapse
formation. In recent years, it has been reported that impaired axonal transport and local
translation of mRNAs may be involved in the pathogenesis of some neurodegenerative
diseases. In this review, we discuss the significance of mRNA axonal transport and
their local translation in amyotrophic lateral sclerosis/frontotemporal dementia, spinal
muscular atrophy, Alzheimer’s disease, and fragile X syndrome.

Keywords: axonal transport, local translation, mRNA, amyotrophic lateral sclerosis, frontotemporal dementia,
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INTRODUCTION

Neurodegenerative diseases chronically affect neurons in a specific network of the central or
peripheral nervous system. Aging is one of the risk factors for the occurrence of these diseases, and
the number of patients is increasing year by year with the increasing elderly population (Heemels,
2016). The detailed etiology of these diseases is still undetermined, and there are currently no
curative therapeutics. Therefore, it is extremely important to clarify the pathogenic mechanism
of these diseases, and to develop new treatment strategies based on identified mechanisms.

It has been suggested that in some of these neurodegenerative diseases, the function of neurons
is impaired due to abnormal aggregation/deposition of the causative proteins inside or outside
the neurons. For example, in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia
(FTD), changes in the localization of transactive responsive-DNA binding protein 43 (TDP-43)
(Arai et al., 2006; Neumann et al., 2006) and fused in sarcoma (FUS) (Kwiatkowski et al., 2009;
Vance et al., 2009), as well as formation of inclusion bodies containing these proteins are seen in
neurons. It is also known that in some ALS/FTD cases, mRNA and abnormally translated dipeptide
repeat protein by repeat-associated non-ATG translation are deposited in neurons due to abnormal
expansion of the hexanucleotide repeat sequence in the untranslated region of the C9orf72 gene
(DeJesus-Hernandez et al., 2011; Renton et al., 2011; Mori et al., 2013). Alzheimer’s disease is
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characterized by the formation of amyloid plaques from
extracellular accumulation of amyloid β and neurofibrillary
tangles due to aggregation of tau protein in neurons (Serý et al.,
2013).

In other neurodegenerative diseases, the pathogenic
mechanism is assumed to be due to functional decline or
loss of the causative gene. In spinal muscular atrophy (SMA),
deletion or missense mutations of the survival of motor neuron
1 (SMN1) gene causes loss of functional SMN protein, resulting
in damage of motor neurons (Fallini et al., 2012). In fragile X
syndrome (FXS), abnormal trinucleotide repeat expansion in the
untranslated region of the fragile X mental retardation 1 (FMR1)
gene reduces fragile X mental retardation protein (FMRP)
production, resulting in autism spectrum-like symptoms
(Maurin et al., 2014).

In all of these diseases, it is speculated that impaired axonal
transport in neurons, especially axonal transport of mRNAs and
local translation in axons, are involved in the pathogenesis.
Transport and translation of mRNAs in axons are thought to play
an important role in maintaining the viability of neurons (Khalil
et al., 2018). This review outlines the physiological significance
of axonal transport of mRNAs, and explains the pathogenic
mechanism of neurodegenerative diseases due to its disruption
by providing examples of typical diseases.

PHYSIOLOGICAL ROLE OF MRNA
TRANSPORT IN NEURONAL AXONS

Neurons have neurites consisting of axons and dendrites, which
are morphological features characterizing neurons apart from
other cells. At the tip of the axon, a growth cone exists during
the development of neurons. After maturation, a pre-synapse
structure is made to form synapses with other neurons or
effector receptors to support to mutual communication. In
order to maintain its morphology and function, neurons
constantly transport proteins involved in cytoskeleton and
synapse formation or essential intracellular substances, such as
mitochondria to neurites (Hirokawa et al., 2009). The transport
is actively carried out during neurogenesis and regeneration
after neuronal injury for axonal elongation/branching and
formation of growth cones/synapses. In addition, the
transport is also necessary to maintain normal functions
in mature neurons.

In recent years, it has been shown that mRNAs are
also transported to axons and locally translated onsite into
proteins to maintain axonal morphology and function (Holt
et al., 2019). Two types of axonal transport are known: fast
axonal transport (50–400 mm/day) and slow axonal transport
(<8 mm/day). Generally, organelles such as mitochondria are
carried by fast axonal transport, whereas cytoskeletal proteins
and some soluble proteins are moved via slow transport
(Maday et al., 2014). However, even the fast axonal transport
is not sufficient for neuronal functions, including synaptic
neogenesis or remodeling during long-term potentiation, axonal
regeneration after neuronal injury. To enable immediate protein
supply at the axon terminal, mRNAs may need to be transported

and stored in axons in advance, then locally translated into
proteins when necessary.

It is known that factors necessary for protein translation,
such as ribosomes, tRNAs, and translation initiation factors
are all localized within axons (Kar et al., 2013), and that
these translation apparatuses work together to perform local
translation. When brain-derived neurotrophic factor (BDNF) or
netrin-1, which promotes axon elongation, growth cone and
synapse formation, and remodeling, is applied to the axons of
cultured neurons, local protein synthesis increases, suggesting
that local translation is an important factor in these phenomena
(Cagnetta et al., 2018). BDNF binds to its receptor, tropomyosin-
related kinase B (TrkB) and activates various intracellular
signaling cascades to release mRNAs from RNA granules and
promote their local translation (Leal et al., 2014). Deleted in
colorectal carcinoma (DCC), a receptor for netrin-1, binds to
translation initiation factors and ribosomes directly inside cells,
and then promotes local translation in axons by signaling netrin-
1 (Tcherkezian et al., 2010).

Ribosomes in axons were originally considered to be
transported from cell bodies in neurons or other cells, such
as glial cells, after being assembled in the nucleolus (Court
et al., 2008). However, it has recently been reported that
some ribosomes are assembled in axons in order to maintain
their function, from locally translated components such as
ribosome proteins as described later (Shigeoka et al., 2019;
Nagano et al., 2020). It is thought that neurons have a
translation control mechanism specialized for axons, other than
the one in cell bodies.

Vesicles, such as endosomes and lysosomes, and mitochondria
are crucial to maintain local translation in axons. RNA granules
are transferred to axons on lysosomes tethered by annexin
A11 (ANXA11), an RNA granule-associated phosphoinositide-
binding protein (Liao et al., 2019). Mitochondria are recruited to
branching sites of axons following translational machinery to
provide energy supply for local translation (Spillane et al., 2013).
Furthermore, late endosomes regulate overall protein synthesis in
axons by association with both RNA granules and ribosomes, and
by controlling mitochondrial function through translation of the
related mRNAs (Cioni et al., 2019).

SIGNIFICANCE OF AXONAL
DEGENERATION IN
NEURODEGENERATIVE DISEASES

It is controversial which is more critical for triggering neuronal
cell death in neurodegenerative diseases: changes in neuronal
cell bodies (neuronopathy) or changes in axons (axonopathy).
Nonetheless, there are many reports that indicate changes in
axons or synapses occur during the early stage of the diseases.
In ALS and SMA, morphological and functional abnormalities
of the neuromuscular junctions between lower motor neurons
and skeletal muscles, are detected in model mice that have
not yet developed motor symptoms, as well as in patients with
mild symptoms (Fallini et al., 2012; Moloney et al., 2014). In
Alzheimer’s disease (AD), abnormally aggregated Aβ oligomers
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inside and outside of neurons have been shown to suppress
long-term potentiation at synapses or alter the synaptic structure
(Viola and Klein, 2015). In addition, changes suggestive of
impaired axonal transport, such as axonal swelling and tau
deposition in axons, have been observed in pre-symptomatic
model mice and early symptomatic patients (Stokin et al., 2005).

MRNA TRANSPORT AND LOCAL
TRANSLATION IN AXONS IN
NEURODEGENERATIVE DISEASES

As mentioned above, local translation in axons plays an
important role in maintaining a healthy state of neurons.
Therefore, it is presumed that if the local translation is disrupted,
the function and viability of neurons will be impaired. In
fact, several neurodegenerative diseases have been suggested to
impair the local translation function, and are considered to be
involved in the pathophysiology of various neurodegenerative
disease models. In the following, we review dysfunctions of local
translation in some typical neurodegenerative diseases.

Amyotrophic Lateral
Sclerosis/Frontotemporal Dementia
Amyotrophic lateral sclerosis is an intractable disease in which
impairment of upper and lower motor neurons cause muscle
weakness and atrophy of skeletal muscles throughout the
body. FTD is accompanied with personality changes, behavioral
abnormalities, aphasia, etc., due to degeneration of cerebral
cortical neurons in the frontal and temporal lobes. Mutations of
causative genes, especially those of RNA-binding proteins, have
been identified in some cases of these diseases, including TDP-
43 (TARDBP), FUS, heterogeneous nuclear ribonucleoprotein A1
(hnRNPA1), hnRNPA2/B1. As a frequent mutation in ALS/FTD,
abnormal expansion of the GGGGCC repeat sequence in the
untranslated region of the C9orf72 gene is also observed
(Mejzini et al., 2019).

In addition to the cases caused by these gene mutations, many
sporadic ALS/FTD cases of unknown genetic factors show TDP-
43 disappearance from the nuclei and abnormal depositions in
the cytoplasm of neurons, indicating that these diseases form a
common pathological spectrum in terms of TDP-43 pathology
(Arai et al., 2006; Neumann et al., 2006). Similar localization
abnormalities are also observed in other RNA-binding proteins
such as FUS (Kwiatkowski et al., 2009; Vance et al., 2009). These
phenomena imply that disturbance of RNA metabolism due to
functional abnormality of RNA-binding proteins is involved in
the pathogenesis of ALS/FTD.

Physiologically, TDP-43 and FUS are mainly localized in the
nucleus and control gene translation and splicing of transcribed
pre-mRNAs. In addition, these proteins shuttle between the
nucleus and cytoplasm to regulate export out of the nucleus,
transfer into the cytoplasm, and translation of mature mRNAs
(Ederle and Dormann, 2017).

mRNAs can form granular structures in the cytoplasm
called RNA granules in association with RNA-binding proteins

(Khalil et al., 2018). mRNAs are transferred to a required site in
RNA granules where translation is suppressed, and when protein
synthesis is needed, they are released from the RNA granules and
incorporated into translation machinery, such as ribosomes. RNA
granules consist of: stress granules that temporarily suppress the
translation of mRNAs during stress such as starvation, P-bodies
that work to degrade mRNAs, and neuronal RNA granules
that transport mRNAs to neurites such as axons and dendrites
(Anderson and Kedersha, 2009). These RNA granules contain
common RNA-binding proteins and are supposed to have similar
structures to each other. A single RNA granule includes multiple
RNA-binding proteins to incorporate specific mRNA having an
affinity for these proteins.

Transactive responsive-DNA binding protein 43 and FUS are
constituents of stress granules, which regulate the translation
of mRNAs (Aulas and Vande Velde, 2015). In addition, these
proteins also form neuronal RNA granules and are involved in
the transport of mRNAs to axons (Alami et al., 2014; López-
Erauskin et al., 2018). Both TDP-43 and FUS have a highly
hydrophobic amino acid sequence region called low complexity
domain (LCD), and multiple molecules of RNA-binding proteins
associate with this region to form a non-membranous structure
called a liquid droplet. It generates surfaced vesicles and
contributes to the formation of RNA granules. Most of the
TARDBP and FUS gene mutations found in familial ALS/FTD are
distributed in the LCD of TDP-43, and in the nuclear localization
signal (NLS) site required for nuclear localization of FUS. These
mutations are thought to be involved in diseases by changing
the intracellular localization and enhancing aggregation of the
proteins. Mutant TDP-43 and FUS show disturbance of stress
granule dynamics (Aulas and Vande Velde, 2015). In addition,
neuronal RNA granules containing TDP-43 dynamically change
in morphology and assembly in axons, and the number of mature
granules decreases by inhibition of hydrophobic binding (Gopal
et al., 2017). It has also been reported that in mutant TDP-43
the neuronal RNA granules formed are unstable, and anterograde
axonal transport is reduced (Alami et al., 2014).

Previous reports have identified some molecules to be TDP-
43-dependent for axonal transport. For instance, neurofilament-
L (NEFL) and microtubule associated protein 1B (MAP1B)
mRNAs are reported to be transported to axons by TDP-43
(Godena et al., 2011; Alami et al., 2014). Drosophila lacking
the TDP-43 gene show abnormal synaptic structure due to a
decrease in MAP1B protein at synapses (Coyne et al., 2014).
FUS transports FOSB mRNA in axons, dysregulation of which
causes abnormal axonal branching (Akiyama et al., 2019). It
has also been shown that TDP-43 and FUS transport mRNAs
to neurites by binding to a three-dimensional structure called
G-quadruplex (Ishiguro et al., 2016; Imperatore et al., 2020). In
order to survey target mRNAs for axonal transport by TDP-43,
we screened mRNAs downregulated in axons by RNAi-mediated
TDP-43 down-regulation, and identified mRNAs of translation-
related factors including multiple cytoplasmic ribosomal proteins
and some translation elongation factors as a major targets of
TDP-43-dependent axonal transport (Nagano et al., 2020).

Ribosomal proteins compose ribosomes, which are
intracellular apparatuses that together with ribosomal RNA
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translate proteins from mRNAs. mRNAs of translation-related
proteins, including different subunits of ribosomal proteins, are
abundant in neuronal axons (Bigler et al., 2017; Rotem et al.,
2017), suggesting that the axonal transport of the mRNAs has
functional significance. Ribosomal protein mRNAs have been
shown to be translated in axons and to play an important role
in axonal ribosome assembly (Shigeoka et al., 2019; Nagano
et al., 2020). From the results above, it is conceivable that
the impairment of axonal protein translation by decreased
axonal transport of ribosomal protein mRNAs may lead to the
degeneration of motor neurons in ALD/FTD. Furthermore,
we have found that the RNA-binding protein La, which is a
known antigen of autoantibodies detected in systemic lupus
erythematosus and Sjögren’s syndrome (Maraia et al., 2017),
is co-localized with TDP-43 and ribosomal protein mRNA in
axons. A detailed analysis of the regulatory mechanism of local
translation by TDP-43 and La is anticipated.

Recent reports have shown findings similar to our study.
Ribosomal protein mRNAs have been identified as mRNAs with
decreased stability in fibroblasts and iPS cell-derived motor
neurons in sporadic and C9orf72 mutated ALS patients (Tank
et al., 2018). Briese et al. (2020) showed that mRNAs of
translation-related proteins including ribosomal proteins are
identified as targets for TDP-43-dependent axonal transport in
motor neurons, and TDP-43 regulates their local translation.
Other reports also showed that mice overexpressing TDP-43
localized in the cytoplasm or mutant FUS have a decrease
in overall protein translation in neurons including axons,
postulating their involvement in the pathogenesis of ALS/FTD
(López-Erauskin et al., 2018; Charif et al., 2020).

Approximately half of FTD cases do not show TDP-
43 pathology, but instead such cases tau shows abnormal
phosphorylation (Šimić et al., 2016). Also, mutations in the tau
(MAPT) gene have been identified in juvenile FTD (Hutton
et al., 1998). Tau binds to cytoskeletal protein microtubules
and contributes to the morphology maintenance of neurons
including axons. Abnormally phosphorylated tau undergoes
structural changes that reduce its binding to microtubules, and
form aggregates and deposits in somatodendritic or axonal
compartments (Combs et al., 2019). Microtubules serve as
tracks for axonal transport via motor proteins such as kinesin.
Therefore, in tauopathy, it is possible that axonal transport of
various molecules, including mRNAs, is impaired, which likely
disrupts local translation.

Spinal Muscular Atrophy
Spinal muscular atrophy is a hereditary disorder that causes
degeneration of lower motor neurons (Bharucha-Goebel and
Kaufmann, 2017). It is classified into types I thru IV according
to the age of onset; and the earlier the onset is, the more serious
motor symptoms manifest. Pathologically, a decrease in motor
neuron axons and morphological changes in the neuromuscular
junction are observed at an early stage (Ling et al., 2012;
Courtney et al., 2019), and axonal degeneration plays a central
role in disease progression. In most SMA cases, deletion of the
SMN1 gene destabilizes its translation product SMN, causing a
deficiency in SMN protein expression (Fallini et al., 2012). SMN2

gene is a paralog of SMN1 gene, and SMN2 differs from SMN1
by only five nucleotides at the 3′ end of the gene. Most SMN2
transcripts are spliced to skip exon 7 due to a single nucleotide
change from SMN1 in the exon. By that, only about 10% are
the full-length transcript to produce a stable protein. The copy
number of the SMN2 gene varies between patients. Most severe
type I patients have only 1 or 2 copies of SMN2; and the symptoms
become milder with an increase of SMN2 copy number because
the SMN2 gene transcript can help supplement the deficiency of
SMN protein to some extent (Calucho et al., 2018).

Survival of motor neuron is ubiquitously expressed
throughout the body, but SMA has a particularly profound
effect on lower motor neurons. SMN is mostly located in the
nucleus and together with gem-associated proteins (Gemins)
assembles small nuclear ribonucleoproteins (snRNP) (Fallini
et al., 2012) and forms a complex called spliceosome, which
executes pre-mRNA splicing (Pellizzoni, 2007). SMN is also
localized in axons (Todd et al., 2010) and regulates axonal
transport of mRNAs, as well as their translation by interacting
with cytoskeletal proteins and RNA-binding proteins (Fallini
et al., 2012). SMN binds to actin-binding proteins profilins, and
modulates actin polymerization (Giesemann et al., 1999; Sharma
et al., 2005). SMN in axons forms a ribonucleoprotein complex
with components different from snRNP, suggesting that SMN
have a function independent of splicing regulation in snRNP
(Fallini et al., 2011). HuD, the neuron-specific RNA-binding
protein assembled into RNA granules, controls axonal transport
of mRNAs and axon elongation in cooperation with SMN (Akten
et al., 2011; Hao le et al., 2017). In addition, it has been reported
that axons have a short isoform different from the canonical
SMN which acts on polarity formation in neurons (Pletto et al.,
2018). The dysfunction of the molecules may define specific
changes in motor neurons due to SMN1 expression deficiency.

Localization of β-actin (ACTB) mRNA is reduced in axons of
SMN-deficient motor neurons (Rossoll et al., 2003). β-actin is a
major skeletal protein that acts on morphological maintenance
and dynamics of growth cones and synapses. In addition
to axonal targeting of ACTB mRNA, SMN also regulates its
local translation in growth cones, which is known to be
impaired in SMN-deficient motor neurons (Rossoll et al., 2003;
Rathod et al., 2012).

Growth-associated protein 43 (GAP43) mRNA is also
transported and translated in axons under the control of SMN
(Fallini et al., 2016). GAP43 is highly expressed in growth
cones and binds to phospholipids in the cell membrane. This
protein signals to maintain cytoskeletal morphology (Hartl and
Schneider, 2019). Axonal transport of GAP43 and ACTB mRNAs
influence each other, and their local translation affects axon
elongation and branching, respectively (Donnelly et al., 2013).

Candidate plasticity-related gene 15 (CPG15) is highly
expressed in developing spinal motor neurons, and promotes
axon branching and neuromuscular junction formation. CPG15
mRNA is transported to axons with the assistance of SMN and
translated locally. Overexpression of CPG15 mRNA rescues SMN
deficiency motor axon defects, indicating that localization of
CPG15 mRNA in axons is an important determinant of axon
architecture (Akten et al., 2011).
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There are other RNA-binding proteins as well, which
function in conjunction with SMN. Heterogeneous nuclear
ribonucleoprotein R (hnRNP R) binds to both ACTB mRNA
and SMN (Glinka et al., 2010). Furthermore, HuD is involved
in axonal transport of GAP43 and CPG15 mRNAs (Akten et al.,
2011; Hao le et al., 2017). These RNA-binding proteins are
thought to regulate the axonal transport and translation of target
mRNAs in cooperation with SMN.

Decreased expression of SMN has been shown to result
in reduced overall translation in growth cones (Fallini et al.,
2016). This may suggest that the axonal transport and local
translation of mRNA regulated by SMN are involved not only
in the above-mentioned mRNAs, but also in the metabolic
regulation of many mRNAs, or that mRNAs that directly affect
the translation function.

Other Neurodegenerative Diseases
Alzheimer’s disease causes memory deficits, behavioral changes,
and personality changes due to cognitive impairment, and is
the most common causative disease of dementia. Pathologically,
amyloid β (Aβ) is produced by processing from amyloid
precursor protein (APP) and extracellularly deposited as amyloid
plaques. These plaques and hyperphosphorylated tau which is
characterized by intracellular accumulation as neurofibrillary
tangles are hallmarks of the disease (Serý et al., 2013). One
of the Aβ isoforms, Aβ1−42, has the most potent aggregating
property. Mutations in APP, presenilin 1 (PSEN1) and PSEN2
genes have been identified in familial AD patients, and these
mutations are responsible for increased processing of Aβ1−42
(Selkoe and Hardy, 2016).

Brain-derived neurotrophic factor mRNA and BDNF protein
are reduced in the brains of AD patients and model mice
(Tanila, 2017). In vitro, Aβ reduces BDNF signaling by
inhibiting the proteolytic production of BDNF from pro-BDNF

(Zheng et al., 2010), and by suppressing the retrograde axonal
transport of the BDNF-TrkB complex (Poon et al., 2013).

On the other hand, local treatment of Aβ1−42 on axons
has been shown to increase translation from some of the
mRNAs within axons (Baleriola et al., 2014). Among them,
the transcription factor ATF4 mRNA is locally translated in
axons, and then ATF4 protein is retrogradely transported into
the nucleus to increase the expression of C/EBP homologous
protein (CHOP), a key molecule of the unfolded protein
response pathway, thereby causing neurodegeneration. ATF4
mRNA and protein are both increased in axons of brain lesions in
patients with AD, supporting the notion obtained from cultured
neuron experiments.

Furthermore, tau binds to TIA1, one of the RNA-binding
proteins in stress granules, and in doing so controls the
formation of stress granules and regulates protein translation.
Conversely, TIA1 promotes tau aggregation and neurotoxicity
(Vanderweyde et al., 2016). In addition, increased expression
of G3BP1 and IMP1, which are RNA-binding proteins that
bind to MAPT mRNA, change the isoform expression pattern
of MAPT mRNA and protein, increase the formation of
neuronal RNA granules, and promote axonal elongation
(Moschner et al., 2014).

It is also known that TDP-43 pathology exists in 20–50% of AD
patients (Chang et al., 2016). Although it is not yet clear how this
change is involved in the pathogenesis of AD, it is quite possible
that the dysfunction of TDP-43 is modifying the AD pathology by
impairing local translation in neurons with a mechanism similar
to ALS/FTD disease models.

Fragile X syndrome is a disease that causes various physical
abnormalities, intellectual disability, and psychiatric symptoms.
Abnormal expansion of the CGG repeat sequence in the 5′
untranslated region of the FMR1 gene causes methylation of
the promoter of the gene, which decreases the expression of the

FIGURE 1 | Pathogenetic model of neurodegenerative diseases. Decrease in transport/translation of cytoskeleton-related mRNAs results in inhibiting maintenance of
structural integrity of axons, especially of growth cone or synapses, leading neuronal dysfunction and degeneration. Decrease of transport/translation of
translation-related (e.g., ribosomal protein mRNAs) mRNAs or many target mRNAs causes dysregulation of overall protein synthesis in axons, which leads neuronal
dysfunction and degeneration.
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FMRP at the transcription level for emergence of the disease
(Hagerman et al., 2017).

Fragile X mental retardation protein is an RNA-binding
protein having a ribonucleoprotein K homology (KH) domain
and an arginine–glycine–glycine repeat (RGG) domain, which
function to suppress the overall translation of proteins via
binding to the RGG domain to G-quadruplexes of mRNAs
(Schaeffer et al., 2001), or binding to ribosomes between large and
small subunits (Chen et al., 2014).

The mechanism of translation suppression by FMRP has
been vigorously investigated primarily in dendrites, specifically
in postsynaptic spines (Thelen and Kye, 2020; Lu et al., 2021).
However, FMRP is also present in axons and forms a complex
with molecules involved in RNA interference (RNAi) such as
Dicer, and suppresses the expression of RHOA mRNA in distal
axons, which causes collapse of growth cones (Hengst et al.,
2006). It has also been shown that FMRP transports MAP1B
and calmodulin (CALM1) mRNA into axons, and regulates
their local translation via microRNA to act on axon elongation
(Wang et al., 2015).

General View
As we overviewed here, different RNA-binding or RNA-
assembly protein abnormalities are reported to be associated
with neurodegenerative disorders, and the corresponding target
mRNAs have been identified in each of the proteins. Notably,
many of the target mRNAs are cytoskeleton-related protein
transcripts that reside in growth cones and synapses. These
data suggest that axonal transport and local translation of these
mRNAs are important for the morphological and functional
formation and maintenance of growth cones and synapses.
Dysfunction of the transport and translation of these mRNAs
causes degeneration of axon terminals, which disconnects the
neural network to cause symptoms of each disease (Figure 1).

Impairment of such functions may also gradually affect neuronal
viability, resulting in chronically progressive neurodegeneration.
Furthermore, TUBA4A and NEFH are listed as the causative
genes of some ALS cases (Al-Chalabi et al., 1999; Smith et al.,
2014), which also indicates the importance of cytoskeletal
proteins in the pathogenesis of the disease.

The integrity of ribosomes in axons to maintain local
protein synthesis capability may also be a critical factor for
maintaining neuronal health. As we discussed above, RNA-
binding and RNA-assembling proteins can regulate transport
and translation of many different mRNAs in axons, rather than
limited specific targets. In addition to our finding that TDP-43
targets translation-related mRNAs for axonal transport, change
of overall translation efficiency is detected in axons as a result of
TDP-43, FUS, and SMN dysfunction (Rossoll et al., 2003; López-
Erauskin et al., 2018; Nagano et al., 2020). Protein synthesizing
activity in axons and synapses is indispensable not only for rapid
neuronal responses, but also for maintaining structural integrity
and electrical conductivity of axons (Figure 1).

CONCLUSION

Axonal transport and local translation of mRNAs play an
important role in maintaining the survival of neurons, and
their failure to do so is greatly involved in the development of
many neurodegenerative diseases. By improving the function of
mRNA metabolism in axons, it will be possible to develop new
therapeutic strategies for these neurodegenerative diseases.
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