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Small non-coding vault RNAs (vtRNAs) have been described as a component of
the vault complex, a hollow-and-barrel-shaped ribonucleoprotein complex found in
most eukaryotes. It has been suggested that the function of vtRNAs might not be
limited to simply maintaining the structure of the vault complex. Despite the increasing
research on vtRNAs, little is known about their physiological functions. Recently, we
have shown that murine vtRNA (mvtRNA) up-regulates synaptogenesis by activating
the mitogen activated protein kinase (MAPK) signaling pathway. mvtRNA binds to
and activates mitogen activated protein kinase 1 (MEK1), and thereby enhances
MEK1-mediated extracellular signal-regulated kinase activation. Here, we introduce the
regulatory mechanism of MAPK signaling in synaptogenesis by vtRNAs and discuss the
possibility as a novel molecular basis for synapse formation.
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INTRODUCTION

Non-coding RNAs (ncRNAs) function at the RNA level without being translated into proteins.
Representative ncRNAs include ribosomal RNAs and transfer RNAs that are involved in protein
synthesis. In recent years, ncRNAs have been reported to regulate many physiological processes,
including transcription, translation, RNA processing, and chromatin regulation, and to contribute
to protein stability and subcellular localization (Huttenhofer et al., 2005; Amaral et al., 2008;
Tuck and Tollervey, 2011; Gebetsberger and Polacek, 2013; Sabin et al., 2013). Among various
ncRNAs, small non-coding vault RNAs (vtRNAs) were first described as components of the giant
ribonucleoprotein complex, the vault complex. The vault complex is composed of vtRNA and
multiple copies of protein molecules, including major vault protein (MVP), and is ubiquitously
present in most eukaryotes. There are multiple vtRNA paralogs, and the number varies from species
to species: four expressed in humans, i.e., hvtRNA1-1, hvtRNA1-2, hvtRNA1-3, and hvtRNA2-1,
and one expressed in mice, i.e., mouse vtRNA (mvtRNA). Previous reports have suggested that
vtRNAs have different physiological functions beyond maintaining structural integrity of the vault
protein complex (Nandy et al., 2009; Li et al., 2015; Horos et al., 2019).
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Establishment of axon/dendrite polarity is an important
step in neuronal differentiation (Barnes and Polleux, 2009;
Yogev and Shen, 2017). Autism spectrum disorders (ASD), a
group of high-prevalence neurodevelopmental disorders, are
known to share common cellular/molecular characteristics,
including abnormal morphology of synaptic connections, which
result in synaptic dysfunction (Mohammad-Rezazadeh et al.,
2016). Intracellular signaling, including protein kinases, play
a pivotal role in synapse formation and regulation. Among
such kinases, the mitogen activated protein kinase (MAPK)
signaling pathway that leads to activation of extracellular
signal-regulated kinase (ERK) plays an important role in
local protein synthesis in dendrites, in the formation and
stabilization of dendritic spines, and in the regulation of synaptic
plasticity in the brain (Mao and Wang, 2016; Miningou and
Blackwell, 2020). Unfortunately, however, their exact regulatory
mechanisms remain unclear.

Recently, we showed that mvtRNA promotes synapse
formation by activating the MAPK signaling pathway (Wakatsuki
et al., 2021a,b). mvtRNA enhances ERK activation by binding to
and activating MAPK kinase (MEK). Here we introduce the new
role of vtRNAs and discuss their previously unknown roles for
synapse formation.

MECHANISM OF REGULATION OF
SYNAPSE FORMATION BY VAULT RNAs

Aurora-A was originally reported as a kinase that regulates cell
division. Subsequently, Aurora-A was also found in non-dividing
neurons and has recently been reported to play an important
role in the regulation of neuronal morphological differentiation,
including neurite outgrowth and polarity formation (Khazaei
and Puschel, 2009; Mori et al., 2009; Pollarolo et al., 2011).
To clarify the details of Aurora-A dependent processes in
neurons, we screened substrates for Aurora-A kinase activity in
neurons and found MVP as a prime candidate (Wakatsuki et al.,
2021b). We found that the expression level of MVP expression
in the brain and the degree of Aurora-A-MVP interaction in
the postsynaptic region increase with development and remain
stable in maturity. Based on these findings, we considered the
possibility that intracellular signals of the Aurora-A-MVP axis
are involved in synapse formation and decided to investigate this
mechanism in detail.

It has been suggested that MVP interacts with ERK and
functions as a scaffold to regulate its signaling (Kolli et al.,
2004; Kim et al., 2006; Berger et al., 2009). As mentioned
above, the MAPK signaling pathway plays an important role
in the regulation of synaptogenesis. Consistent with this, we
were able to confirm the presence of activated ERK in the
postsynaptic region purified from mouse brain. To investigate
the relationship between synaptogenesis through the Aurora-A-
MVP pathway and ERK activity, we performed overexpression
of Aurora-A or its constitutively active mutant together with
MVP in primary cultured cortical neurons, and found that
the enhancement of the Aurora-A-MVP signal increased ERK
activity and synaptogenesis in neurites. Conversely, knockdown

of the mvp gene by RNA interference (RNAi) decreased
ERK activity and synaptic formation. We also confirmed the
functionality of the increased synapses in response to the
Aurora-A-MVP signaling by an increase of FM dye uptake into
synaptic vesicles and glutamate-stimulated intracellular calcium
ion concentrations. These results indicate that enhancement of
the Aurora-A-MVP pathway promotes functional synaptogenesis
(Wakatsuki et al., 2021b).

It has been suggested that the vault complex is transported
through the neurite by a fast transporter (Herrmann et al., 1999;
Li et al., 1999). The vault complex binds to several mRNAs that
are translated in dendrites, such as tissue plasminogen activator
and protein tyrosine phosphatase non-receptor type 5 (Paspalas
et al., 2008). These reports strongly suggest that the vault
complex serves as an mRNA transporter to neurites. Aurora-
A activated in response to neuronal activity has been reported
to positively regulate such local translation by phosphorylating
cytoplasmic polyadenylation element (CPE) binding protein.
The phosphorylated CPE binding protein binds to the CPE-
binding sequence of mRNAs in neurites in response to neuronal
activity in order to polyadenylate the mRNA and facilitate
translation (Huang et al., 2003; Martin, 2004). As mentioned
above, knockdown of the mvp gene by RNAi decreased Aurora-
A expression levels and local translational activity in neurites.
These results suggest that the vault complex may function as a
transporter for both mRNAs translated in dendrites and Aurora-
A, which are both involved in the regulation of local translation.
In fact, the vault complex was found to bind to the dendritic
transport motor protein KIF5 (Hirokawa, 2006; Wakatsuki et al.,
2021b), suggesting that the vault complex is transported in
dendrites as cargo of KIF5.

The vault complex is not a stable structure and is known to
change shape dynamically (Kickhoefer et al., 1998). To correlate
the activity of Aurora-A with the structural integrity of the Vault
complex, we examined the biochemical behavior of the vault
complex in neurons overexpressing a constitutively active form
of Aurora-A. The fully assembled vault complex can be separated
from incomplete/dissociated ones by high-speed centrifugation
(Berger et al., 2009). Using this method, we predicted that
overexpression of a constitutively active form of Aurora-A
would destabilize the assembled structure of the vault complex.
Furthermore, we found that mvtRNA is released from the vault
complex, when the vault structure is destabilized. To understand
the function of released mvtRNA, we examined how it affected
ERK activity-dependent synaptogenesis. In neurites with RNAi-
mediated downregulation of mvp or antisense oligonucleotide-
mediated downregulation of mvtRNA, we observed reduced ERK
activation, local translation and synaptic formation (Wakatsuki
et al., 2021b). These results suggest that mvtRNA acts on ERK
activity to potentiate local translation in neurites and positively
regulate synaptogenesis (Figure 1).

So how does mvtRNA control ERK activity? Although there
are not many reports dealing with physiological roles of vtRNA
thus far, several have suggested that vtRNAs directly bind to
their target proteins to regulate their functions (Koromilas
et al., 1992; Meurs et al., 1993). In our analysis, we found
that mvtRNA binds to MEK, thereby enhancing its ability
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FIGURE 1 | vtRNA functions as a putative riboregulator of synaptogenesis. vtRNA is transported to the distal regions of the neurites as part of the vault complex.
vtRNA is released from the vault complex in the neurite by a mitotic kinase Aurora-A-dependent phosphorylation of MVP, a major protein component of the vault
complex. vtRNA functions as a putative riboregulator of synaptogenesis. vtRNA binds to and activates MEK1, thereby enhancing MEK1-mediated ERK activation in
neurites. Activation of ERK signaling promotes local translation of synaptic proteins, which accelerates synapse formation.

to phosphorylate ERK (Wakatsuki et al., 2021b). Extensive
knowledge has been accumulated about the relationship between
molecular structure and MEK activity; and the changes in
molecular structure during the MEK activating process have
been investigated in detail. When MEK is inactive, the activation
loop (AL) interacts with residues outside the kinase domain
(e.g., negative regulatory region) and is tightly wrapped in a
catalytic pocket to maintain low MEK basal activity (Ordan
et al., 2018). There are two serine residues in the AL that
are important for MEK activity control. Their phosphorylation
by a MEK activating kinase such as Raf kinase changes the
structure and activates MEK (Figure 2A; Morrison and Davis,
2003). Thus, MEK activity is considered to be altered not
only by modification of kinase domain residues but also by
structural changes in the AL. This may suggest the possibility
that mvtRNA binding to MEK alters its molecular structure
and enhances its activity (Figure 2B). However, because MEK
lacks previously known RNA-binding motifs, it is not possible at
this time to determine the mode of binding of both molecules.
In the future, it will be necessary to clarify the binding
mode between mvtRNA and MEK by methods such as the
high-throughput sequencing of RNAs isolated by cross-linking
immunoprecipitation.

Some of the recent reports suggest that the involvement of
vtRNA1-1 in the regulation of ERK pathway may be complexed.
Bracher et al. (2020) demonstrated that vtRNA1-1 loss leads
to increased activation of ERK pathway in human cancer
cells. Since vtRNA1-1-null conditions were used there, it is
not clear whether vtRNA1-1 could inactivate ERK pathway in
some contexts, but this report certainly suggests that different

physiological/pathological conditions in different cell types
add further complexity to the vtRNA-mediated regulation of
subcellular signaling.

REGULATION OF LOCAL TRANSLATION
IN DENDRITES AND SYNAPTOGENESIS
BY NON-CODING RNAs

There are four vtRNA genes (hvtRNA1-1, hvtRNA1-2, hvtRNA1-
3, and hvtRNA2-1) in the human genome. There are not
much data on how the different nucleotide sequences of these
variants influence their functions. hvtRNA2-1 differs widely
from other hvtRNA1 variants except for two identical sequence
blocks for Pol III transcription (Nandy et al., 2009; Stadler
et al., 2009). It was previously reported that hvtRNA2-1 has no
physical contact with the vault complex (Lee et al., 2011). Our
results also showed that hvtRNA1-1 promotes synapse formation,
whereas hvtRNA2-1 does not (Wakatsuki et al., 2021a). Amort
et al. (2015) reported that in an Epstein-Barr virus-induced
apoptosis model, the protective effect of only hvtRNA1-1 in the
hvtRNA paralog requires a centrally located sequence, but the
detailed mechanism has not yet been elucidated. Analysis of the
nucleotide sequence required for the variant-specific functions
of vtRNAs exemplified in these reports may lead to mechanistic
understanding of the molecular basis of the variant-specific
functions of vtRNAs.

Translation of proteins consists of several steps, including
initiation and elongation. The initiation reaction is complex
and closely regulated by multiple initiation factors, called the

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 September 2021 | Volume 14 | Article 748721

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-14-748721 September 22, 2021 Time: 13:48 # 4

Wakatsuki and Araki Regulation of Synaptogenesis by vtRNA

FIGURE 2 | vtRNA functions as a regulator of MEK activity. (A) MEK1 is a core component of the MAP kinase signaling pathway, playing a key role in transmitting
signals from active Ras to ERK. MEK1 is activated when it is dually phosphorylated by an upstream kinase such as Raf on two specific serine residues within its
activation sequence. (B) Human MEK1 encodes a protein kinase of 393 amino acids. The docking domain (DD) for ERK1 and ERK2 is shown in red and the
amino-terminal negative regulatory region (NRR) is shown in green. The kinase catalytic domain is shown in blue and includes the activation loop (AL) with specified
sites for activating phosphorylation by Raf kinase. vtRNA appears to inhibit the interaction of the AL with the catalytic domain, and thereby enhances the kinase
activity of MEK1 (see text for details).

elongation initiation factors (eIFs; Sonenberg and Hinnebusch,
2009; Jackson et al., 2010). mTOR activity regulates the precise
initiation of translation by phosphorylating eIF either directly
or through the S6 kinase. CaMK2A is known to regulate the
translational elongation. This kinase activation is initiated in
response to neurotransmitter binding to cell surface receptors.
For example, mTORC1 activity is regulated by PI3K-AKT and
ERK, which are activated by NMDA receptors, etc. (Sosanya
et al., 2013). Since the vault complex and Aurora-A are present
at excitatory glutamatergic synapses, Aurora-A activity may be
regulated via glutamate receptors (Figure 1). Interestingly, we
observed that mvtRNA regulates ERK activity but has little effect
on AKT activity (Wakatsuki et al., 2021b). These results suggest
that vtRNAs may be involved in specific subcellular signaling
elicited by neurotransmitter receptors. In the future, it will be
necessary to clarify the synapse formation mechanism regulated
by the Aurora-A-Vault complex in comparison with other kinase
signaling pathways.

Few reports have shown that ncRNAs act locally and are
directly involved in the regulation of neuron-specific events
such as synaptogenesis. Among ncRNAs, miRNAs are specifically
concentrated at dendrites and synapses, and it has been
suggested that mature miRNAs may be generated at synapses
from miRNA precursors (Kosik, 2006; Bicker et al., 2013).
Translation of several different mRNAs is regulated by a
group of miRNAs specifically present at synapses. One of the
abundant miRNAs in dendrites, miR-26a regulates microtubule
assembly via inhibition of Map2 mRNA translation in response
to synaptic activation (Kye et al., 2007). Brain-specific miR-
134 inhibits mRNA translation of LIMK1, which promotes
dendritic spine formation at silent synapses (Schratt et al.,
2006; Bicker et al., 2014). Thus, miRNAs regulate synaptogenesis

through mRNA-targeted translational control, a mechanism
quite different from that of vtRNA.

REGULATION OF KINASE ACTIVITY BY
NON-CODING RNAs

Some ncRNAs act directly on kinases to regulate their activity.
For example, neighbor of BRCA1 gene 2 is a long-chain ncRNA
that is induced by cellular energy depletion and binds to the
kinase domain of AMPK to increase its activity (Liu et al., 2016).
LINK-A, identified as a long-chain ncRNA with a high affinity
for the plasma membrane, binds to both the phosphatidylinositol
3,4,5-trisphosphate and the pleckstrin homology domain of AKT,
and promotes their interaction to up-regulate AKT activity (Lin
et al., 2017). In these examples, long-chain ncRNAs have been
shown to bind directly to kinases, but it is not well understood
how the ncRNA binding affects the activity of the kinases. With
regard to vtRNAs, it has been reported that hvtRNA2-1 directly
acts on protein kinase RNA-activated (PKR) to regulate its
activity (García et al., 2007). PKR is a known interferon-induced,
double-stranded RNA (dsRNA)-domain kinase and plays an
important role in cellular proliferation and apoptosis (Gal-Ben-
Ari et al., 2018). Previous reports suggest that PKR is a tumor
suppressor (Koromilas et al., 1992; Meurs et al., 1993). Inhibition
of hvtRNA2-1 activates PKR and its downstream pathways,
resulting in impaired cellular proliferation. Therefore, hvtRNA2-
1 is thought to be a PKR regulator, and its tumor-suppressive
effect has attracted attention. Because PKR has a distinct RNA-
binding motif and is primarily a kinase activated by dsRNA,
hvtRNA2-1 may regulate PKR activity in a way similar to that
by dsRNA. Our results show that MEK is a RNA-binding protein
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whose kinase activity is regulated by mvtRNA, even though
MEK lacks a typical RNA-binding motif. Recent studies have
identified the RNA-binding capacity of many proteins which have
not previously been identified as RNA-binding proteins (Hentze
et al., 2018). While MEK does not have a typical RNA-binding
motif, mvtRNA may also directly bind to MEK to regulate its
activity. It is necessary to clarify how the mvtRNA binding affects
the molecular structure of MEK or alters the affinity of MEK to
ERK to activate MAPK signaling.

CONCLUSION AND FUTURE
DIRECTIONS

Our recent findings reveal a novel regulatory mechanism
of synapse formation by the small non-coding vtRNA. Our
results suggest that phosphorylation of MVP by Aurora-
A activity triggers the release of mvtRNA from the vault
complex. Remaining questions include detailed mechanisms by
which Aurora-A dependent phosphorylation of MVP affects
the structure of the vault protein complex, and by which
vtRNA regulates MEK activity. For the former, we have thus far
identified several serine residues in MVP whose phosphorylation
prevents vault complex formation (unpublished observations).
It is important to clarify how the phosphorylation of these
serine residues affects the molecular structure of MVP and
the release of vtRNAs from the vault complex to uncover
the entire mechanism. No definitive experimental evidence has
yet been obtained to show where the Aurora-A-vault complex
regulates the MAPK signaling in the neurite. Knowing where
the interaction between mvtRNA and MEK1 occurs in dendrites
is important when considering the physiological significance of
the vtRNA-dependent MEK activation mechanism. In addition
to the analysis of the regulatory mechanism, other approaches
may be needed to address this issue, including observation
of phosphorylated ERK expression in dendrites using super-
resolution microscopy.

The genes encoding MVP and ERK1 are located in the
16p11.2 region of the human chromosome. The microdeletion
of this region is known to increase susceptibility to ASD (Horev
et al., 2011; Ouellette et al., 2020; Rein and Yan, 2020). This

suggests the critical roles of MVP and ERK1 in physiological
development of the neuronal network. While a number of
different factors/molecules are postulated in the pathogenesis
of neurodevelopmental disorders including ASD, most such
factors/molecules are involved in synapse formation during
the developmental stage (Gilbert and Man, 2017; Guang
et al., 2018). Thus, detailed understanding of the synapse
formation mechanism is likely connected to further elucidation
of the pathogenesis of neurodevelopmental disorders. A better
understanding of the signaling in which the Aurora-A-vault
complex is involved may lead to the development of new
therapeutic strategies against such disorders.
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