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Neurocysticercosis (NCC), defined as an infection of the central nervous system

(CNS) by the cystic larval stage of the pork tapeworm Taenia solium, remains a major

challenge in public health mainly due to associated neurological morbidity (Garcia et al.,

2020; Bustos J. et al., 2021). This infection is endemic in most of the developing world

including Central and South America, Sub-Saharan Africa, and large regions of Asia

including India, China, and Southeast Asia (Ndimubanzi et al., 2010; Garcia et al., 2020;

Bustos J. et al., 2021). NCC is also increasingly diagnosed in non-endemic countries and

industrialized countries due to immigration and travel from endemic zones (O’Neal et al.,

2011; Gabriël et al., 2015; O’Neal and Flecker, 2015).

T. solium has a complex two-host life cycle. Humans acquire intestinal taeniasis by

ingesting poorly cooked pork containing the parasitic cystic larvae or cysticerci. Once

the adult tapeworm develops in the human small intestine, its microscopic eggs are

shed with the stools. In places with poor sanitation and domestic pig raising, pigs ingest

contaminated human feces containing T. solium eggs. Ingested Taenia eggs release their

embryos, called oncospheres, which cross the intestinal mucosa, and are distributed

by the circulatory system throughout the body. They evolve into metacestodes (post-

oncospheral stage) and encyst to form larval vesicles or cysticerci, reaching their

definitive size in 2–3 months. These infected pigs become the intermediate host by being

infected with the larval stage of the infection (cysticercosis), and thus the source of

taeniasis in the community. Humans can also act as intermediate host instead of pigs

and become infected with cysticercosis through accidental ingestion of Taenia eggs by

fecal oral infection from a tapeworm carrier in their surroundings (Flisser, 1994).

Clinical symptoms of NCC predominantly result from involvement of the CNS.

Outside the nervous system, cysticercosis causes few or no symptoms and the cysts

are usually identified and destroyed by the host’s immune response. The clinical

manifestations, diagnostic and therapeutic approaches, and prognosis of NCC vary

enormously depending on the type, stage, location, number and size of parasites in the
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nervous system, as well as the immune response of the

host (Garcia et al., 2020; Bustos J. et al., 2021). The most

frequent clinical manifestations of NCC are seizures, headaches,

and intracranial hypertension. In endemic regions, NCC is

considered the most frequent cause of acquired seizures and

epilepsy, accounting for up to 30% of seizure disorders in these

areas (Ndimubanzi et al., 2010; Mazumder and Lee, 2022; Segala

et al., 2022; Takayanagui and Haes, 2022).

Once in the brain parenchyma, the larvae establishes as a

viable cyst, protected by the blood brain barrier, and enacts a

series of immune evasion mechanisms that enable it to survive

for long periods, that may easily reach several years or even

more than a decade. During this time, there is only a mild

inflammatory reaction around the cyst. At some point and by

reasons not yet known, the host’s immune system detects the

parasite and attacks it with a cellular response, release of pro-

inflammatory cytokines, and marked local inflammation that

leads to the death of the parasite and its collapse of the cyst into

an inflammatory nodule. Eventually, the inflammatory process

subsides and most of the cyst remains are reabsorbed (Gonzales

et al., 2016). In a significant proportion of cases (∼20–30%

in single lesion NCC, 40% in multilesional NCC) the lesions

end in a well-defined calcified scar easily seen on computed

tomography (Bustos J. A. et al., 2021). There is little doubt, if

any, that NCC causes seizures and epilepsy. Seizures are less

frequent in individuals with only viable cysts, highly frequent

in cases with degenerating cysts, and persist in 50% of more of

patients after the cysts have resolved, with a strong association

between the likelihood of seizure relapses and the presence

of a calcified scar. Frequently patients with NCC present to

the neurologist only after years with seizures, usually of the

same type and topographically related to their parasitic lesions

(Garcia and Del Brutto, 2017; Duque et al., 2018). Seizures

are usually well-controlled with first line AEDs but may be

refractory in a small proportion of cases. Surgical series of

temporal lobe epilepsy have found a significant association

between the presence of calcified NCC lesions away from the

hippocampus and hippocampal sclerosis, suggesting that NCC

may not only act as an epileptogenic lesion causing local

damage in the case of temporal cysts, but also as an initial

precipitating injury to cause hippocampal sclerosis years later.

Even if located distant from the hippocampus. Whether this is

due to subclinical seizure activity or inflammatory mediators is

not yet known (Singh et al., 2013; Del Brutto et al., 2021; Secchi

et al., 2022).

The study of brain damage and epilepsy in human NCC has

always been hampered by the lack of reliable animal models.

Controlled animal models can greatly help to understand

the processes associated with NCC infection, study the host-

parasite interactions, ascertain the immunopathological and

inflammatory processes associated with CNS cyst infection and

in response to antiparasitic treatment, define biomarkers for

human disease, and also provide an ideal scenario for testing

novel therapies in controlled studies (Arora et al., 2017; De

Lange et al., 2019).

Rodent NCC models offer multiple advantages for the

study of NCC, such as the ability to include large numbers

of animals in experiments, availability of commercial reagents

for analysis, and comparability with studies in other diseases

(Arora et al., 2017; De Lange et al., 2019; Sitali et al.,

2022). Intracranial injection of Mesocestoides corti or Taenia

crassiceps in mice has been used to characterize the processes

of neuroinflammation and cerebral granuloma formation (Patil

et al., 2006; Alvarez et al., 2010). These models, although

successful to produce CNS infection, are limited by the fact

that natural CNS infection in these species is rare, and that

these cysts are proliferating in nature, unlike T. solium NCC.

Therefore, T. solium animal models are needed to understand

the pathogenesis of human NCC.

Experimental T. solium infections in mice were described

as early as in 1994 (Yang et al., 1994) and 1997 (Ito et al.,

1997) by intravenous or subcutaneous injections. Better results

are obtained with immunosuppressed mice, in which 40–76%

develop cysticercosis through intravenous infection, and 100%

when infected subcutaneously. No central nervous system cysts

were obtained in these studies (Ito et al., 1997; Wang et al.,

1999; Liu et al., 2002). Our group has successfully infected rats

orally with oncospheres and produced typical CNS cysticercosis

infections, without the need for immunosuppression. This

method however had the disadvantage of requiring large

numbers of activated oncospheres. Non immunosuppressed rats

given an oral dose of 20,000 activated oncospheres produced

cysts in the brain in only 17% of the infected rats (Mejia Maza

et al., 2019).

More recently our group described a model of intracranial

injection of activated T. solium oncospheres in neonate

rats (Verastegui et al., 2015; Carmen-Orozco et al., 2019,

2021; Mejia Maza et al., 2019). This model is consistently

efficient (more than 80% of infected rats develop viable

CNS cysts, using as few as 120 activated oncospheres per

rat; Carmen-Orozco et al., 2021). Although intracranial

injection bypasses the intestinal mucosa step that occurs

in natural infection and oral infection models, cysticerci

found in the rat brains (mainly 1–2 cysticerci per brain)

show similar characteristics to those found in oral rat

infections (Sitali et al., 2022) or in the natural hosts

(pigs and humans), making this model more appropriate

to study NCC compared to previous rodent models

(Verastegui et al., 2015; Mejia Maza et al., 2019).

In the rat model our group has demonstrated similar

pathology of the brain surrounding the cysts to that occurring

in human neurocysticercosis. Cerebral T. solium cysts in the

rat are associated with blood-brain-barrier (BBB) disruption,

angiogenesis, astrogliosis, activated microglia, and axonal
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spheroids, all changes present in the human neurocysticercosis

(Mejia Maza et al., 2019). Dispersion of T. solium antigens

and increased gene expression of cerebral pro-inflammatory

cytokines around brain cysticerci, and distant from cysticerci

have also been demonstrated (Verastegui et al., 2015; Carmen-

Orozco et al., 2019, 2021; Mejia Maza et al., 2019). Moreover,

an increase in dysfunctional autophagy has been observed in

the neurons surrounding cysticerci in the rat model, which also

colocalizes with axonal swellings and supports the hypothesis

that dysfunctional autophagy is involved in the pathogenesis of

NCC. A subgroup (∼9%) of intracranially infected rats develop

evident generalized tonic-clonic seizures by 4 months after NCC

infection (Verastegui et al., 2015), and this proportion increases

to 40% by 8 months post infection (M. Verastegui, personal

communication, 2022). Epilepsy has only been shown before

in an experimental model of Rhesus monkeys (Chowdhury

et al., 2014), and pigs with NCC (Christensen et al., 2016;

Trevisan et al., 2016), but not in rodents. In both cases seizures

were seen in animals with heavy brain infections. Chowdhury

et al. (2014) infected Rhesus monkeys with 6,000 or 12,000

infective eggs and achieved heavy brain infections, with very

severe symptoms as early as 10 days post infection. Trevisan

et al. (2016) observed and videotaped 16 pigs with NCC

and uninfected controls and found clinically apparent seizures

in two. Large collagen fibrotic scars were found in the two

pigs with seizures but not in controls (Christensen et al.,

2016).

This novel rat model of NCC allows the correlation

of histopathological findings with seizure activity by using

telemetric encephalogram with a small set of electrodes in

the rat skull, so that EEG recordings can be later correlated

with focal histopathological findings as in other rat epilepsy

models. The anatomical pattern of brain infection includes

intraparenchymal cysts in a large majority of animals (some

with diverse degrees of contact with the subarachnoid space),

with occasional intraventricular cysts, as in humans. It

does not preferentially follow a particular vascular territory

(Verastegui et al., 2015; Carmen-Orozco et al., 2019, 2021;

Mejia Maza et al., 2019). However, a main drawback of this

and other rodent NCC models is the large size of the cyst

(∼5mm) in relation to the rat brain or skull, that may

cause mass effects and contribute to exacerbate inflammation

and damage associated with cyst establishment, limiting its

use in translational studies. Clearly, not all the pathology

in this model is related to mass effects or compression,

since axonal swelling is present in all directions around the

parasite and not increased in areas next to the skull where

compression would have been higher (Mejia Maza et al.,

2019).

The pig, on the other hand, is considered the best model

for the study of NCC. Pigs are the natural hosts of the

T. solium larvae, and the immunopathological characteristics

of CNS cyst infection in pigs closely resemble the human

pathology (De Lange et al., 2019; Sitali et al., 2022). Studies

in naturally infected pigs have been previously reported

to assess the efficacy of cysticidal drugs (Gonzalez et al.,

1995, 1997, 1998, 2001, 2012; Gonzales et al., 1996; Vargas-

Calla et al., 2016), immunotherapies (Evans et al., 1997;

Verastegui et al., 2003), and diagnostic test performance

(Gonzalez et al., 1990; Bustos et al., 2019). Of particular

interest, studies in pigs naturally infected with NCC have

assessed the characteristics of the perilesional, acute brain

inflammation that is triggered by antiparasitic treatment

(Guerra-Giraldez et al., 2013; Marzal et al., 2014; Cangalaya

et al., 2015, 2016; Mahanty et al., 2015). BBB disruption

in the brain tissue adjacent to cysticerci is evident in MRI

and histology as early as 2 days post-treatment and more

marked by day 5 post-treatment. Neuroinflammation is found

around cysts that show BBB disruption (macroscopically

demonstrated as Evans Blue extravasation), and its severity

FIGURE 1

Timeline of events in the animal neurocysticercosis models.
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correlates with increased gene expression of pro-inflammatory

cytokines (IL-6, IFN-γ, TNF-α, and IL-13; Mahanty et al.,

2015). The overexpression of pro-inflammatory cytokines can

also be downregulated by administration of TNF-α inhibitors

such as etanercept before antiparasitic treatment (Mahanty

et al., 2017). However, major drawbacks of using naturally

NCC pigs in pre-clinical studies includes the uncertainty

about cyst longevity (unknown date of infection), pre-

existing inflammation, and the extreme variability in CNS

burden among NCC pigs (Arora et al., 2017; Alroy et al.,

2018).

Experimental NCC pig models using oral ingestion of

T. solium eggs or surgical implantation of oncospheres in

the CNS lack reproducibility or produce mainly degenerating

cysts (Santamaria et al., 2002; Deckers et al., 2008; Fleury

et al., 2015). We have also recently developed and optimized

an intracarotid oncosphere injection NCC pig model. The

carotid route allows to direct the passage of oncospheres

into the CNS of pigs and produces viable CNS cysticerci,

providing a more consistent model for NCC (Alroy et al., 2018;

Arroyo et al., 2022). A minimal dose of 5000 oncospheres

is sufficient to consistently reproduce NCC in >80% of pigs,

with parasite loads and brain distribution similar to human

NCC (Arroyo et al., 2022). As in the rat model, most cysts are

intraparenchymal, some with diverse degrees of contact with

the subarachnoid space, and with occasional intraventricular

cysts, like in human infection. Since this model reproduces

viable CNS cyst infection, it can be used to more appropriately

study the pathways that lead to cyst establishment, brain

inflammation and damage, cyst resolution and scarring, and

also to test novel therapies in controlled experimental studies.

Drawbacks of the carotid NCC model include the relative

lack of reagents for pig immunohistochemistry or immunology

and the paucity of neurological manifestations in the pig,

and logistical issues related to handling large animals. The

most likely explanation for the apparent absence of clinical

manifestations in pigs is that pigs are usually sacrificed for

human consumption at very early ages (9 months) and thus

there is no time for the parasites to evolve into degeneration and

break the state of immune equilibrium of the parasite with its

natural host.

In the context of animal models used for the study of

epilepsy, the rat and pig models of NCC are more comparable

to models of traumatic brain injury (TBI) in the sense of an

established lesional injury, rather than other models of seizure

induction using chemoconvulsants or electrical stimulation

(Vezzani et al., 2011; Korthas et al., 2022). In clinical patients,

TBI has a known time of injury which is not known in

NCC patients attending after months or years of infection. In

animal models however, the timeline is well-defined (Figure 1),

and unlike TBI, the nature and extension of the lesion are

more predictable.

In summary, the availability of reproducible and robust

animal models for cerebral Taenia solium cysticercosis infection,

in which the time points for lesion development and brain

inflammation and damage are set, should now serve to define

the mechanisms underlying brain damage and epileptogenesis

that may include dysfunctional autophagy, alterations in

axonal transport, and apoptosis, among others. Transcriptomic

studies can contribute to elucidate the pathways related

to brain inflammation and brain damage during CNS cyst

infection and after antiparasitic treatment (Vezzani et al.,

2019). Sound study designs involving antiparasitic and anti-

inflammatory agents as well as other novel therapies that could

reduce the likelihood of calcification such as bisphosphonates

may lead to define the roles of inflammation and scarring

as well as the interactions between these processes and

how does epileptogenesis occur. Modulating inflammation,

reducing damage, and decreasing residual calcification may

eventually result in a much reduced likelihood of NCC-

associated epilepsy.
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