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Cholesterol metabolism in the brain plays a crucial role in normal

physiological function, and its aberrations are associated with cognitive

dysfunction. The present study aimed to determine which cholesterol-related

genes play a vital role in cognitive dysfunction and to dissect its underlying

molecular mechanisms using a systems genetics approach in the BXD mice

family. We first systematically analyzed the association of expression of 280

hippocampal genes related to cholesterol metabolism with cognition-related

traits and identified lipoprotein lipase (Lpl) as a critical regulator. This was

further confirmed by phenome-wide association studies that indicate Lpl

associated with hippocampus volume residuals and anxiety-related traits. By

performing expression quantitative trait locus mapping, we demonstrate that

Lpl is strongly cis-regulated in the BXD hippocampus. We also identified

∼3,300 genes significantly (p < 0.05) correlated with the Lpl expression. Those

genes are mainly involved in the regulation of neuron-related traits through

the MAPK signaling pathway, axon guidance, synaptic vesicle cycle, and

NF-kappa B signaling pathway. Furthermore, a protein–protein interaction

network analysis identified several direct interactors of Lpl, including Rab3a,

Akt1, Igf1, Crp, and Lrp1, which indicates that Lpl involves in the regulation

of cognitive dysfunction through Rab3a-mediated synaptic vesicle cycle

and Akt1/Igf1/Crp/Lrp1-mediated MAPK signaling pathway. Our findings
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demonstrate the importance of the Lpl, among the cholesterol-related genes,

in regulating cognitive dysfunction and highlighting the potential signaling

pathways, which may serve as novel therapeutic targets for the treatment of

cognitive dysfunction.

KEYWORDS

BXD mice, cognitive dysfunction, Lpl, genetic regulation, hippocampus

Highlights

- This is the first study to systemically assess the associations
between cholesterol metabolism-related genes and
cognitive functions.

- Among the 280 cholesterol metabolism-related genes, we
found that decreased Lpl expression is associated with
impaired cognitive function, as well as emotional and anxious
behaviors, through modulation of synaptic vesicles and
MAPK signaling pathways.

- This finding demonstrates that Lpl is a crucial regulator of
cognitive function and may serve as a novel therapeutic target
for the treatment of cognitive dysfunction.

Introduction

The cholesterol metabolism maintains crucial physiological
functions in the brain (Zhang and Liu, 2015). Dysfunction
of this pathway is associated with various neurological
and neurodegenerative disorders, including Alzheimer’s,
Huntington’s, and Parkinson’s diseases (Pfrieger, 2021). Even
though the detailed mechanism remains largely unknown,
several recent studies have confirmed the causal relationship
between cholesterol metabolism and cognitive function (Djelti
et al., 2015). However, cholesterol metabolism is a complicated
process including over 200 genes involved in cholesterol
synthesis, transportation, uptake, storage, and release (Martín
et al., 2014), how these genes are systematically associated with
cognitive function is still unknown.

With the development of high throughput sequencing
technology, transcriptome-wide association study (TWAS) has
become a powerful approach to establishing the association
between gene expression and phenotypes at a population level
(Wainberg et al., 2019). Establishing a gene–gene and gene–
phenotype correlation network makes it possible to identify
potential key regulators and mechanisms. Moreover, with
the further combination of expression quantitative trait locus
(eQTL) analysis, it is even possible to reveal the potential
genetic regulation of certain genes. Nevertheless, such analysis
in neurological studies requires assessing the gene expression

of central nervous system (CNS) tissue, which is not practical
in the human population (Li and Auwerx, 2020). The mouse
genetic reference population has been extensively used for
genetics studies in neurodegenerative disorders (Li, 2019). The
BXD mice family contains over 150 recombinant inbred strains,
which descended from the hybridization between inbred strains
C57BL/6J (B6) and DBA/2J (D2) with stable genetic variations
(Ashbrook et al., 2021). In addition, dozens of transcriptomes
across various CNS tissues have been generated. Combing these
data with the cognition phenotypes makes it a unique resource
to perform a TWAS study in neurological study.

This study aimed to explore the cholesterol-related gene
expression associated with cognitive dysfunction and its
underlying mechanism with a TWAS study based on the
BXD population. The result reveals the Lpl expression level
in the hippocampus is significantly correlated with the
learning and memory function. Moreover, the Lpl expression
is strongly genetic cis-regulated, and the potential of the
mechanism is discussed.

Materials and methods

Hippocampus transcriptomic data set

The hippocampus is an important and intriguing part
of the forebrain that is crucial in memory formation and
retrieval and is often affected in epilepsy, Alzheimer’s disease,
and schizophrenia. The BXD hippocampus transcriptomic
data set used in this study provides estimates of mRNA
expression in the adult hippocampus of 67 BXD recombinant
inbred strains, two parental strains (C57BL/6J and DBA2/J),
and two reciprocal F1 hybrids. The raw microarray data
are available on GEO1 under the identifier GSE84767. The
normalized data set “hippocampus Consortium” is available
on the GeneNetwrok (Mulligan et al., 2017) under the
“BXD” group and “hippocampus mRNA” type with the
identifier “Hippocampus Consortium M430v2 (June 06) RMA”.
Below are brief descriptions of how this data set was
generated.

1 https://www.ncbi.nlm.nih.gov/geo/
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Mice and tissue harvesting
Animals from 71 BXD strains were obtained and housed

at the UTHSC under the controlled breeding environment
with 40∼60% humanity and 18∼22◦C. Mice were euthanized
by cervical dislocation at the age of 45–90 days. Brains were
removed and placed in RNA later, and the whole hippocampi
were dissected. All procedures involving mouse tissue were
approved by the Institutional Animal Care and Use Committee
at the University of Tennessee Health Science Center.

RNA extraction and evaluation
A pool of dissected tissue, typically from six hippocampi

and three naive adults of the same strain, sex, and age, was
collected in one session and used to generate cRNA samples.
A total of 143 RNA samples were extracted with RNA STAT-
60 according to the manufacturer’s instructions. This includes
tissue homogenization, RNA extraction, precipitation, and
wash. The RNA was further purified with Na4OAc, and its purity
and integrity were evaluated using the 260/280 nm absorbance
ratio and the Agilent Bioanalyzer 2100, respectively. RNA with
260/280 values greater than 1.8 and RNA integrity numbers
greater than 8 are required to run the array.

Microarray and data normalization
Pooled RNA samples from two to three animals were

hybridized into a single Affymetrix GeneChip Mouse
Expression 430 2.0 short oligomer arrays. Raw microarray
data were normalized using the RMA methods (Bolstad et al.,
2003) and further transformed with a modified z-score (2z + 8)
(Chesler et al., 2005). This analysis was done with R statistical
functions. The detailed sample info is listed in Supplementary
Table 1.

eQTL mapping

For the analyses presented here, whole genome eQTL
mapping was carried out using 71 BXD strains on GeneNetwork
with a modified Haley–Knott regression (Haley and Knott,
1992). The resulting likelihood ratio statistic (LRS) was used
to evaluate the associations between the genotypes2 and gene
expression levels. Genome-wide significant and suggestive
thresholds were determined with 1,000 permutation tests. This
analysis was done on GeneNetwork.

Sequence variants

Genetic variations between parental strains B6 and D6 were
searched with our previous whole genome resequencing data
and Mouse Genome Project3 (Keane et al., 2011).

2 http://gn1.genenetwork.org/webqtl/main.py?FormID=
sharinginfoandGN_AccessionId=600andInfoPageName=BXDGeno

3 https://www.sanger.ac.uk/data/mouse-genomes-project/

Correlation analysis

The Pearson correlation coefficient analysis was deployed
to identify the covariates of the gene of interest and the
BXD-published traits/phenotypes. A p-value lower than 0.05 is
considered statistically significant. This analysis was done on
the GeneNetwork.

Gene function enrichment analysis

A gene function enrichment analysis was done with a
hypergeometric test on the WEB-based Gene SeT AnaLysis
Toolkit (WebGestalt)4 (Liao et al., 2019). The resulting False
Discovery Rate (FDR) lower than 0.05 was used to define the
overrepresented terms, including the KEGG pathway and gene
ontology (GO).

Phenome-wide association analysis
(PheWAS)

We used the SNP genotypes (missense, splice site, and cis-
eQTL variants) within the Lpl gene to perform PheWAS against
5,000 clinical phenotypes in the BXD population (Li et al., 2018).
The multi-locus mixed-model approach (mlmm) was used to
estimate the associations between Lpl and clinical phenotypes.
The kinship matrix from BXD strains was applied to account for
the population structure. The Bonferroni’s method was used to
correct the multiple testing. The clinical phenome is currently
split into 13 broad categories based on general biological
ontologies. This analysis was done on Systems Genetics and
Omics Toolkit5 (Li et al., 2018).

Results

Correlation analysis reveals Lpl is a
crucial regulator of cognitive function
in BXD mice

To determine which cholesterol-related genes play a pivotal
role in cognitive function, we determined the expression levels
of 280 genes linked to cholesterol metabolism across the BXD
hippocampus. We performed correlation analysis against two
cognition-related traits, Morris water maze performance and
y-maze performance (Supplementary Table 2 and Figure 1).
This gene list was compiled from the gene ontology database
AmiGo 26 by searching “cholesterol.” Among the 280 genes,

4 http://www.webgestalt.org/

5 https://systems-genetics.org/

6 http://amigo.geneontology.org/amigo
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6 genes (Lpl, Apoa5, Lipe, Cyb5r3, Abcg4, and Mbtps1) were
associated with Morris water maze performance (BXD_15171,
p < 0.05), 12 genes (Lpcat3, Gnb3, Hsd3b6, Egf, Abca12, Osbp,
Lpl, Abcg5, Lipc, Slco1a6, Cln8, and Fdxr) were associated with
y-maze performance (BXD_20728, p < 0.05), and only one
gene Lpl was significantly correlated with both investigated traits
(p < 0.05, Figure 1).

Lpl is associated with multiple
cognition-related traits from both
genotype and intermediate phenotype

In addition to the associations with Morris water maze
performance (r = −0.499, p = 0.013) and y-maze performance
(r = −0.544, p = 0.036, Figure 1), Lpl mRNA levels were
also found to be negatively correlated with extinction learning
(r = −0.487, p = 0.029, Figure 2A) and positively related with
fear conditioning (r = 0.498, p = 0.042, Figure 2B). Moreover,
PheWAS between Lpl genotype and BXD phenome, comprising
of∼5,000 traits, revealed 19 traits showing moderate association
(-log10(p) > = 3, Figure 2C and Table 1). This includes ventral
hippocampus volume residuals and several anxiety assays, such
as the time in open quadrants using an elevated zero maze.

The expression level of Lpl in the BXD
hippocampus is strongly cis-regulated

We examined the hippocampus transcriptome across 67
BXD lines plus the two parentals, B6 and D2, and the two
F1 hybrids. Two probes target the Lpl gene body, with one
probe (1415904_at) at the distal 3′ UTR region and one
(1431056_a_at) targeting exons 7, 8, and 9. The average
mRNA level of 1415904_at is 11.815 ± 0.612 SD, with the
B6 and BXD99 mice having the lowest and highest expression
of 10.768 and 12.219 (Figure 3A), respectively. For probe
1431056_a_at, the average mRNA level is 8.798 ± 0.453
SD, with the B6 and BXD99 mice having the lowest and
highest expression of 8.079 and 9.994 (Figure 3B), respectively.
Those two probes showed consistent expression patterns across
the BXD mice, with a Pearson correlation r = 0.943 and
p-value < 0.0001.

Lpl is located on Chromosome (Chr) 8 at 68.9 Mb. To
explore whether genomic loci regulate the Lpl expression
variation, we performed a genome-wide eQTL mapping with
the “interval mapping” method. Under the suggestive and
significant threshold of 11.0 and 17.9 determined by 1,000
permutation tests, one significant eQTL for probe 1415904_at
was mapped to Chr 8 at 69.676 Mb (rs48549917) with the peak
LRS of 134.15 (Figure 4A). This locus is located at 0.1 Mb of Lpl,
suggesting that Lpl is cis-regulated in the BXD hippocampus.
The other probe, 1431056_a_at, was also mapped to the same

locus (LRS = 99.056, Figure 4B). Moreover, we also found
the same cis-QTL in several other BXD tissues, including the
amygdala, brain, eye, midbrain, nucleus accumbens, pituitary,
prefrontal cortex, spleen, and ventral tegmental area. Statistical
analysis between the two cohorts grouped by the genotype
at the QTL peak position (rs48549917) demonstrated that
BXD mice with the D2 allele showed significantly higher Lpl
expression than those mice carrying the B6 allele (p < 0.0001,
Figures 4C, D).

Identification of genetic variations of
Lpl

Lpl is cis-regulated, which means that sequence variants
within or nearby Lpl likely affect its expression. Therefore, we
explored the genetic variations on the Mouse Genome Project
database, in which the whole genome was sequenced over 30
classical inbred strains, including B6 and D2. As shown in
Table 2, we identified 27 SNPs at the 3′ UTR region, one SNP at
the 5′ UTR region, and three SNPs at the splice region. Besides,
eight SNPs were located at the Lpl coding region, with two
(rs48623874, rs33121577) defined as missense variants and the
other six as synonymous variants.

We predicted the two missense variants’ functional effects
on protein function with SIFT in Variant Effect Predictor
(McLaren et al., 2016) and found that rs33121577 is a deleterious
amino acid substitution (c.1492 A > G, p.I410M, SIFT = 0.03).
We further speculate that these UTR mutations may be located
at transcription factor (TF) binding motifs and affect Lpl gene
expression by altering the TF binding capacity. To confirm
this, we looked up the variants in the JASPAR, an open-
access database storing manually curated TF binding profiles
(Castro-Mondragon et al., 2022), and found that several variants
hit the TF binding motifs (Table 2), including rs46345856
(NHLH2), rs8253499 (ZIC2, ZNF317, ZIC3), rs47929877
(DUX), rs244771561 (ATF7, CDX1, CDX2, CDX4, HOXD10,
HOXC12), rs50958623 (MSANTD3), rs232011516 (ZNF282),
rs13470201 (NR5A1, NR5A2), rs8236728 (ZNF331, ZNF682,
ZNF449), rs33449771 (MAFF, NRL), rs33176327 (NRL, NR2F1,
CTCF), rs222423431 (SPIB, SPI1), and rs229841610 (MSGN1,
YY1).

Genetic correlations between Lpl and
hippocampal transcriptome

To further understand the underlying biological processes
and pathways involved in Lpl, we performed a Pearson
correlation analysis between Lpl (1415904_at) and the
other hippocampal genes. This resulted in 3,758 probes
(corresponding to 3,364 transcripts) that are significantly
(p < 0.05) correlated with the Lpl expression. The gene set

Frontiers in Molecular Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnmol.2022.1044022
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-1044022 December 13, 2022 Time: 10:34 # 5

Hu et al. 10.3389/fnmol.2022.1044022

FIGURE 1

Bubble charts showing Lpl is a crucial regulator of cognitive function in BXD mice. The mRNA levels of 280 cholesterol-related genes in the
BXD hippocampus were correlated against two cognition-related traits, Morris water maze performance (A) and y-maze performance (B).
Pearson correlation coefficient and -log10 p-value are indicated in the x- and y-axis. This analysis was done on the GeneNetwork
(https://www.genenetwork.org/).

FIGURE 2

Lpl is associated with multiple cognition-related traits. Scatter plots of the correlations between the expression of Lpl and extinction learning (A)
and fear conditioning (B). The Pearson correlation coefficient was used to determine the relationship. Manhattan plots showing the
Lpl-associated phenotypes in BXD mice (C). This analysis was done on systems genetics (https://systems-genetics.org/) with the multi-locus
mixed-model approach. The clinical phenome was grouped into 11 broad categories based on general biological ontologies, including activity,
anxiety, drug response, hematology, immune, metabolism, metabolites, microbiome, morphology, musculoskeletal, and nervous system.
P-values were adjusted with the Bonferroni’s method.

enrichment analysis showed that those genes were significantly
(FDR < 0.05) enriched in the GO biological processes of cell
proliferation (291 genes), generation of neurons (243 genes),

neurogenesis (254 genes), neuron differentiation (220 genes),
and neuron development (185 genes) (Figure 5). For KEGG
pathways, those genes were significantly (FDR < 0.05) involved
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FIGURE 3

Bar and violin plots showing the Lpl expression variation across the BXD hippocampus. A total of 71 strains were employed for hippocampal
transcriptomic profiling, with two probes 1415904_at (A) and 1431056_a_at (B), representing the Lpl expression level. The values are log2
transformed, and mean ± SE was used.

FIGURE 4

Expression quantitative trait locus (eQTL) mapping for Lpl. Manhattan plots showing the genome-wide regulating locus for probe 1415904_at
(A) and 1431056_a_at (B) in the BXD hippocampus. The x-axis denotes a position on the mouse genome in megabases (Mb) and the y-axis
indicates the LRS score. This analysis was done on GeneNetwork (https://www.genenetwork.org/) with the “interval mapping” method. The
genome-wide suggestive and significant thresholds were determined with 1,000 permutation tests. Bar plots showing the mRNA level of probe
1415904_at (C) and 1431056_a_at (D) between (B,D) alleles at 69.676 Mb on Chr 8 (rs48549917). The values are log2 transformed and
***p < 0.0001.
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TABLE 1 Lists of the 19 Lpl-associated phenotypes.

-Log10
(p-value)

Phenotype Category

4.19538 Microbiome, Barnesiella (OTU) proportion assessed by 16S rRNA sequencing of fecal pellets from young adult
males and females (residuals, log10 of fraction)

Microbiome

4.04995 Cerebellum internal granule layer (IGL) volume without adjustment (mm3) Morphology

3.80718 Anxiety assay, restraint stress (15 min) and ethanol (1.8 g/kg ip) (RSE group), time in open quadrants using an
elevated zero maze in 60–120-day-old males only during last 5 min (% time)

Anxiety

3.80435 Anxiety assay, restraint stress (15 min) and ethanol (1.8 g/kg ip) (RSE group), time in open quadrants using an
elevated zero maze in 60–120-day-old males only during 10 min (% time)

Anxiety

3.47909 Neurexin 1 (Nrxn1) expression in hippocampus, first principal component generated using all coding exon
probe sets and UMUTAffyExon_0209_RMA data (relative residual concentration)

Nervous system

3.46809 Anxiety assay, restraint stress (15 min) and ethanol (1.8 g/kg ip) (RSE group), time in open quadrants using an
elevated zero maze in 60–120-day-old males only during first 5 min (% time)

Anxiety

3.42566 Hippocampus, ventral hippocampus volume residuals, adjusted for differences in age and brain weight (mm3) Morphology

3.38372 Ratio of C18:2-carnitine/C18:1-carnitine_CD Metabolites

3.37807 Cerebellum weight, whole, bilateral in adults of both sexes (mg) Morphology

3.30292 Microbiome, Bacteroidales (order) frequency assessed by 16S rRNA sequencing of fecal pellets from young
adult males and females (residuals, log10 of fraction)

Microbiome

3.30292 Microbiome, Bacteroidetes (class) frequency assessed by 16S rRNA sequencing of fecal pellets from young
adult males and females (residuals, log10 of fraction)

Microbiome

3.19546 Basolateral amygdala residual volume, statistically adjusted for variation in sex, age, body weight (residual
mm∧3)

Nervous system

3.18975 Amygdala, basolateral complex volume (LaDL, LaVL, LaVM, BLP, and BLA), unilateral shrinkage corrected
and adjusted for variation in body weight and plane of section from serial histological sections (mm∧3)

Nervous system

3.18822 Cerebellum volume (mm3) Morphology

3.17338 Hippocampus, ventral hippocampus volume, age-adjusted residuals (mm3) Morphology

3.10528 Body weight gain between 9 and 10 weeks in males on high fat diet (45% energy from fat) feeding from 4 weeks
on (g)

Morphology

3.00485 Novel open field behavior, urinations for males (n/test period) Anxiety

2.95593 Brain weight, male and female adult average, unadjusted for body weight, age, sex (mg) Morphology

2.95526 Anxiety assay, time in middle of an elevated plus maze for males and females (sec) Anxiety

in the MAPK signaling pathway (59 genes), axon guidance
(39 genes), synaptic vesicle cycle (17 genes), and NF-kappa B
signaling pathway (24 genes) (Figure 5).

Previous results have demonstrated that the synaptic
vesicle cycle could be mediated by memory impairment and
presynaptic dysfunction in the Lpl-deficient mice. Therefore, we
further explored those 17 Lpl-correlated genes involved in the
synaptic vesicle cycle. Among these, Atp6v1b2 (r = 0.550 and
p = 7.69 E-07) and Rab3a (r = −0.374 and p = 0.002) show the
most positive and negative correlation with Lpl, respectively.

To narrow down the Lpl potentially directly interacted
genes, we searched those genes in the string website, a database
of known and predicted protein–protein interactions. We
identified 11 genes (Akt1, Apoh, Cebpa, Crp, Dgki, Itpkb, Lrp1,
Mgll, Pcsk5, and Ppard) directly connected to Lpl (Figures 6A,
B), especially for Igf1, Akt1, and Lrp1. In neurons, Lpl binds
to Igf1 and activates the MAPK signaling pathway along with
the PI3K/AKT1 signaling pathway, leading to amyloid β (Aβ)
toxicity, increased RAGE expression, tau hyperphosphorylation,
induction of apoptosis, and autophagy (Figure 6C). LRP1

regulates Aβ binding and uptake in neurons and interacts
with Lpl to regulate energy homeostasis and cognitive function
(Figure 6C).

Discussion

In this study, we demonstrate, among the 280 genes
related to lipid metabolism, that the Lpl plays a pivotal
role in regulating cognitive function, as evidenced by the
significant correlations with all four cognition-related traits.
Specifically, we found a negative correlation between Lpl
expression and latency to reach a hidden platform, indicating
impaired cognitive function with a lower level of Lpl expression.
Supporting our results, cognitive decline was observed in
an Lpl deficiency mouse model, including increased latency
to an escape platform and increased mistake frequency in
a water maze test, and decreased latency to a platform in
the step-down inhibitory avoidance test (Xian et al., 2009).
In addition, our PheWAS also indicated the association of
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TABLE 2 Lists of Lpl genetic variants between B6 and D2.

Chr Position dbSNP Ref DBA/2J Type TF

8 68904539 rs46345856 T C 3_prime_utr NHLH2

8 68904738 rs48259087 T C 3_prime_utr NA

8 68904747 rs8253499 G T 3_prime_utr Zic2, ZNF317, Zic3

8 68904797 rs50930818 C T 3_prime_utr NA

8 68904931 rs49173156 A G 3_prime_utr NA

8 68904952 rs47929877 T C 3_prime_utr DUX

8 68904954 rs50307489 A G 3_prime_utr NA

8 68905178 rs244771561 A G 3_prime_utr ATF7, CDX1, CDX2, CDX4, HOXD10, HOXC12

8 68905238 rs254737771 G A 3_prime_utr NA

8 68905258 rs50958623 A G 3_prime_utr MSANTD3

8 68905297 rs49436803 A C 3_prime_utr NA

8 68905347 rs232011516 G A 3_prime_utr ZNF282

8 68905376 rs52439029 T C 3_prime_utr NA

8 68905792 rs13470201 C A 3_prime_utr NR5A1, NR5A2

8 68905874 rs108904688 T C 3_prime_utr NA

8 68906389 rs8236728 G A 3_prime_utr ZNF331, ZNF682, ZNF449

8 68906598 rs8253498 C T 3_prime_utr NA

8 68907303 − A G 3_prime_utr NA

8 68907333 rs33449771 G A 3_prime_utr MAFF,NRL

8 68907336 rs33176327 G A 3_prime_utr NRL, NR2F1, CTCF

8 68907355 rs50695992 C T 3_prime_utr NA

8 68907378 rs48718417 A T 3_prime_utr NA

8 68904980 rs262678694 G GT 3_prime_utr NA

8 68905231 rs229666878 G GGATAGATGTTGAAAAT 3_prime_utr NA

8 68905549 - GA G 3_prime_utr NA

8 68905725 rs222423431 ACTT A 3_prime_utr SPIB, SPI1

8 68906070 rs229841610 AT A 3_prime_utr MSGN1, YY1

8 68880605 rs32769281 T C 5_prime_utr NA

8 68899458 rs48623874 G A Missense NA

8 68901238 rs33121577 A G Missense NA

8 68887444 rs33396764 G A Splice_region NA

8 68899545 rs51454640 T C Splice_region NA

8 68891362 rs257133866 CTTAAAATCG C Splice_region NA

8 68895786 rs33408109 A G Synonymous NA

8 68895801 rs32832821 A G Synonymous NA

8 68896627 rs33594984 C T Synonymous NA

8 68896684 rs33075533 G A Synonymous NA

8 68899487 rs48000521 G A Synonymous NA

8 68901262 rs49765636 T C Synonymous NA

Lpl genetic polymorphisms with ventral hippocampus volume
residuals and several anxiety-related behavioral traits. These
findings align with the ventral hippocampus function that is
involved in the control of emotional and anxious behaviors
(Gulyaeva, 2015). Thus, our gene–phenotype correlation and
genotype–phenotype association analysis demonstrated that Lpl
is associated with cognitive dysfunction as well as emotional
and anxious behaviors through modulation of hippocampus
functions.

As a lipoprotein metabolism risk gene, Lpl plays a critical
role in breaking down fat in the form of triglycerides, which
are carried from various organs to the blood via lipoprotein
molecules. LPL mRNA is found predominantly in the
hippocampus and is 2.5-fold higher than in other brain regions
(Wang and Eckel, 2012). A recent study has reported that
AD is highly associated with LPL featuring on CNS microglia
linked with phagocytosis and protection of AD (Hemonnot
et al., 2019). In addition, Lpl-deficient mice displayed some
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FIGURE 5

Bubble charts of the enrichment results of GO and KEGG terms for the Lpl correlated genes. The x-axis represents an enriched ratio, and the
y-axis represents enriched terms. The size of the dots represents the number of genes, and the color indicates the FDR value. An enriched ratio
is defined as the number of observed divided by the number of expected genes from the annotation category in the gene list.

degree of memory impairment and presynaptic dysfunction (Liu
et al., 2014). In humans, LPL is strongly cis-regulated in whole
blood, lung, spleen, thyroid, adipose, testis, and brain (GTEx
Consortium, 2020). Moreover, dozens of pathogenic variants
have been identified in its gene body (Landrum et al., 2020).
Genetic mutations in LPL have been associated with AD risk
(Bruce et al., 2020), especially clustered with other cholesterol-
related gene mutations (Papassotiropoulos et al., 2005). In the
current study, we systemically analyzed the Lpl expression and
genetic regulation in the hippocampus in the BXD family mice.
Consistent with the previous findings, Lpl is highly expressed
in the hippocampus and shown 2.7–3.7-fold change among the
strains (Figure 3). By performing eQTL analysis, we confirmed
that this variation is regulated by the local genetic variants
(Table 2), in which BXD mice with the D2 allele showed
significantly higher Lpl expression than those mice carrying the
B6 allele (Figure 4). In addition, we also found the same cis-
eQTL in several other tissues, demonstrating the robustness of
this cis-regulation in the BXD family.

A gene set enrichment analysis was performed to evaluate
Lpl pathways in the hippocampus. We observed that Lpl
covariates are mainly involved in neuron development,
neurogenesis, and neuron differentiation, as well as in several
signaling pathways, including MAPK signaling pathway, axon
guidance, synaptic vesicle cycle, and NF-kappa B signaling

pathway (Figure 5). In neurons, synaptic vesicles are a
class of small, electron-lucent vesicles that store various
neurotransmitters released at the synapse, and are involved in
the impairment of learning and memory function (Kennedy,
2016). A previous study showed that disruption of the synaptic
vesicle cycle leads to presynaptic dysfunction and plasticity
damage in LPL-deficient neurons (Liu et al., 2014). In the
current study, we identified 17 Lpl covariates related to the
synaptic vesicle cycle, with Rab3a showing the most negative
correlation with Lpl, suggesting that Rab3a may mediate
the negative regulation of synaptic vesicle cycles by Lpl.
Ras-associated binding protein 3A (Rab3a) is a neuronal
guanosine triphosphate binding protein that binds synaptic
vesicles and regulates synaptic transmission. In relation to
our findings, increased hippocampal Lpl expression was
observed in Rab3a−/− mice (Yang et al., 2007). As an
important transmitter of extracellular information from the
cell surface to the intracellular space, MAPK signaling has
been implicated in AD with various mechanisms, including
amyloid beta (Aβ) toxicity, increasing RAGE expression, tau
hyperphosphorylation, induction of apoptosis, and deregulated
autophagy (Kheiri et al., 2018). In this study, we identified
serine/threonine kinase 1 (Akt1) and insulin-like growth
factor-1 (Igf1), part of the enriched MAPK pathway, that
directly interacted with Lpl through PPI network analysis.
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FIGURE 6

Molecular mechanisms of Lpl involved in the regulation of cognitive dysfunction. (A) Correlations between the expression of Lpl and its directly
interacted genes. The Pearson correlation coefficient was used to determine the relationship. (B) The Lpl PPI interaction network. The network
was created and evaluated with the 11 Lpl directly interacted genes using string (https://www.string-db.org/). (C) Lpl interacts with Igf1 to
activate the MAPK signaling pathway while blocking the PI3K/AKT1 signaling pathway, leading to amyloidβ (Aβ) toxicity, increased RAGE
expression, tau hyperphosphorylation, induction of apoptosis, and autophagy. Lrp1 regulates Aβ binding and uptake in neurons and interacts
with Lpl to activate the MAPK signaling pathway, inducing neuronal damage that leads to cognitive dysfunction.

Studies have shown that impaired insulin signaling pathways
regulate amyloid precursor protein processing (Adlerz et al.,
2007) and Aβ clearance by blocking PI3K/AKT pathway, which
may partially explain why diabetic patients are susceptible to
AD (Sun et al., 2020).

The resulting PPI network also showed that several direct
interactors of Lpl were involved in neuron-related functions,
such as Crp and Lrp1 (Figure 6). CRP has been reported to
have an essential clinical significance in cardiovascular disease
and AD (Luan and Yao, 2018). In addition, CRP has also been
linked with the activation of the MAPK signaling pathway in
AD (Cargnello and Roux, 2011). In neurons, LRP1 can regulate
cellular Aβ binding and uptake (Liu et al., 2017). Furthermore,
LRP1 deficiency in forebrain neurons leads to disturbances in
brain lipid metabolism, progressive and age-dependent synaptic
loss, memory loss, and neurodegeneration (Liu et al., 2010).
These phenotypes are similar to those in LPL-deficient mice
(Xian et al., 2009). In the hypothalamus, LRP1−/− mice exhibit
obesity associated with hyperlipidemia, glucose intolerance, and
insulin resistance (Liu et al., 2011), with similar phenotypes
observed in neuronal LPL-deficient mice (Wang et al., 2011).

These results suggest that LPL and LRP1 interact in some
way in brain to regulate energy homeostasis and cognitive
function.

In summary, by taking advantage of the BXD family mice for
genomic, phenomic, and hippocampal transcriptomic data, our
results indicate that Lpl is associated with cognitive dysfunction-
related phenotypes. The co-expression and PPI network analysis
revealed that Lpl participates in cognition function through
the MAPK signaling pathway and synaptic vesicle cycle, and
by directly interacting with the neuron function-related gene
Rab3a, Akt1, Igf1, Crp, and Lrp1 (Figure 6). Our findings
demonstrate the importance of the Lpl, among the cholesterol-
related genes, in regulating cognitive dysfunction, which may
serve as a novel therapeutic target for treating cognitive
dysfunction.
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