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Post-stroke pain (PSP) is a common complication after stroke and a�ects

patients’ quality of life. Currently, drug therapy and non-invasive brain

stimulation are common treatments for PSP. Given the poor e�cacy of

drug therapy and various side e�ects, non-invasive brain stimulation, such

as repetitive transcranial magnetic stimulation (rTMS), has been accepted by

many patients and attracted the attention of many researchers because of its

non-invasive and painless nature. This article reviews the therapeutic e�ect

of rTMS on PSP and discusses the possible mechanisms. In general, rTMS

has a good therapeutic e�ect on PSP. Possible mechanisms of its analgesia

include altering cortical excitability and synaptic plasticity, modulating the

release of related neurotransmitters, and a�ecting the structural and functional

connectivity of brain regions involved in pain processing and modulation.

At present, studies on the mechanism of rTMS in the treatment of PSP are

lacking, so we hope this review can provide a theoretical basis for future

mechanism studies.
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1. Introduction

Stroke is a disease with high morbidity, disability, and mortality worldwide (Lou

et al., 2020). The many sequelae after stroke include motor dysfunction, pain, cognitive

dysfunction, and paresthesia. Pain is one of the common sequelae after stroke and

affects the quality of life. The incidence of post-stroke pain (PSP) is reported to be

10–45.8% (Yang and Chang, 2021; Zhang et al., 2021). PSP can manifest in many

forms, including central PSP (CPSP), painful spasms, hemiplegia, tension headaches,

and musculoskeletal pain (Delpont et al., 2018; Torres-Parada et al., 2020; Yang and

Chang, 2021). CPSP is a neuropathic pain syndrome with challenging treatment due to

vascular lesions of the somatosensory pathways in the brain (Boivie et al., 1989; Jang

et al., 2019). The reported incidence of CPSP is 1–12% (Hansen et al., 2012). In most

CPSP patients with dysesthesia, hyperalgesia, and paresthesia (Klit et al., 2011), pain

can be characterized by spontaneous continuous pain (usually burning pain, squeezing,

penetrating, and numbness) or spontaneous intermittent pain (Kumar et al., 2009). Pain

severity is variable and involves temperature changes and emotional stress; movement
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aggravating pain, rest, and distraction can reduce pain (de

Oliveira et al., 2012). CPSP has negative effects on mood,

sleep, rehabilitation, and quality of life in stroke patients.

PSP is often managed with a combination of medications,

cognitive behavioral therapy, psychotherapy, and/or other non-

pharmacological treatments (repetitive transcranial magnetic

stimulation [rTMS] (Chen et al., 2022), electromotor core

cortical stimulation [EMCS], and deep brain stimulation [DBS]

(Cruccu et al., 2007; Elias et al., 2018)).

The management of CPSP remains challenging, and some

evidence-based studies suggest limited pain relief even with

high doses of different medications (Scuteri et al., 2020; Choi

et al., 2021). Invasive and non-invasive neurostimulation can

provide at least moderate chronic pain relief. However, invasive

treatment entails risks, and non-invasive transcranial magnetic

stimulation is the current treatment option for many patients

(Hosomi et al., 2015; Yang et al., 2022).

rTMS provides a non-invasive and non-painful means

of central nervous modulation for studying and treating

neuropathic pain states. The physical principle of rTMS

is electromagnetic induction. Current pulses pass through

induction coils on the scalp to generate magnetic pulses and

transmit them to the brain. Magnetic pulses delivered by the coil

induce an electric field in the cortex, which activates neurons

in the cerebral cortex (Ridding and Rothwell, 2007; Afuwape

et al., 2021). Transcranial magnetic stimulation activates remote,

interconnected parts of the brain in addition to targeted areas

(Hallett et al., 2017).

Few reviews have summarized the effect and mechanism

of rTMS on PSP. This work reviewed recent studies on

rTMS improving PSP and analyzed the analgesic effect and

potential mechanism of rTMS on PSP. This review discusses the

therapeutic effects of different treatment parameters, hoping to

provide help for the formulation of standard rTMS treatment

of PSP. It also discusses the possible mechanism of rTMS in the

treatment of PSP.We hope to provide more references for future

research on the mechanism of rTMS.

2. E�ect of rTMS on PSP

Pain is one of the common sequelae after stroke, and

pain usually occurs on the opposite side of the central lesion,

mainly in the upper extremities. Burning, hurting, tingling,

freezing, crushing, shooting, or stabbing sensations are common

descriptors. It is often affected by factors such as temperature,

psychological stress, fatigue, and physical exercise. In clinical

practice, CPSP can be difficult to distinguish from other types of

PSP, such as hemiplegic shoulder pain, painful cramps, tension

headaches, and other musculoskeletal pain (Klit et al., 2009).

CPSP can impair quality of life, disrupt recovery, interfere

with sleep, affect mood (produce depression or anxiety), and

occasionally lead to suicide. The treatment of refractory CPSP

usually adopts comprehensive treatment, but the treatment

effect is often not ideal. Non-invasive treatment has received

extensive attention in recent years in improving refractory

CPSP. rTMS is a safe, non-invasive, tolerable, and effective mode

of therapeutic intervention. It delivers many pulses continuously

at a constant rate and is widely used clinically (Hosomi et al.,

2015; Gu and Chang, 2017). More studies on the effect of rTMS

on CPSP are detailed in Table 1.

2.1. Analgesic e�ect of rTMS

2.1.1. HF-rTMS has good analgesic e�ect

At present, there is no unified standard for the treatment

parameters of rTMS in the treatment of PSP. Different

treatment parameters (stimulation frequency, stimulation

site, and treatment duration) have varying analgesic effects.

Traditionally, low-frequency (LF) rTMS (defined as stimulation

at frequencies below 1Hz) has been shown to reduce cortical

excitability, whereas high-frequency (HF) rTMS (stimulation

at frequencies over 1Hz) has the opposite effect (Wassermann,

1998; Wagner et al., 2007; Bai et al., 2022). Multiple studies

have shown that HF-rTMS provides better pain relief than

LF stimulation (Cruccu et al., 2007; Borckardt et al., 2011;

Pazzaglia et al., 2018). In previous studies on the analgesic effect

of rTMS on PSP, HF-rTMS (5–20Hz) was found to be effective

in relieving pain in PSP. Multi-session and longer interventions

can produce better analgesic effects than single sessions and

short interventions (Ohn et al., 2012; Hosomi et al., 2013;

Ramger et al., 2019).

2.1.2. Significant analgesic e�ect by targeting
the M1 site

There are also significant differences in the analgesic effects

of different stimulation targets. At present, the stimulation target

selected in most studies is the M1 site, and the analgesic effect

in this site is more intuitive and significant than that in other

sites. Hirayama et al. (2006) applied 90% of RMT rTMS to the

premotor cortex (M1), the primary somatosensory cortex (S1),

the premotor area (preM), and supplementary motor area. Ten

trains of 10 s 5Hz TMS pulses were applied to each site, with

50’s intervals between each train. Visual analog scale and the

McGill Pain Questionnaire (SF-MPQ) scores were employed to

determine the effect of RMT rTMS on pain, the results showed

that stimulation at the M1 site has a more significant analgesic

effect than that at other sites. In addition, de Oliveira et al. (2014)

selected the premotor cortex/dorsolateral prefrontal cortex

(PMC/DLPFC) for stimulation, each stimulation intensity was

120% of RMT, 1,250 pulses per session, stimulation interval

25 s, a total of 10 sessions, VAS score was measured after each

session, and the results showed no significant pain relief effect

in CPSP. Thus, this result may be related to its small sample
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TABLE 1 Major findings of repetitive transcranial magnetic stimulation in post-stroke pain studies.

Author,
year

Country Study type Stroke
type

PSP type Sample
(size,
sex, age)

rTMS site Frequency/
Intensity

Duration Pulses Intertrain
interval

Analgesic
e�ect

de Oliveira et al.

(2014)

Brazil RCT ALL CPSP 21,10M,11 F

Real 55± 9.67

Sham

57.8±11.86

PMC/DLPFC 10 HZ/120%

of RMT

10 sessions 1,250 25 s No effect

pain relief

by VAS

Hosomi et al.

(2013)

Japan Cross-over ALL CPSP 21, 12M, 9 F

59.6± 9.0

M1 5hz/90% of

RMT

10 sessions 500 50 s Pain relief

by VAS

Malfitano et al.

(2021)

Italy Case series Ischemic stroke CPSP 1, 1 F, 32 M1 10 Hz/90% of

RMT

10 sessions 2,000 5 s Pain relief

by NRS

Zhao et al. (2021) China RCT ALL CPSP 38, 21M, 7 F,

Real:

50.1± 11.34,

Sham:

48.9± 11.51

M1 10 Hz/80% of

RMT

18 days 1,500 3 s Pain relief

by NRS

and MPQ

Choi-Kwon et al.

(2017)

Korea RCT ALL HSP 24, 13M, 11 F

59.0± 8.0

M1 10 Hz/90% of

RMT

10 sessions 1,000 55 s Pain relief

by NRS

Kobayashi et al.

(2015)

Japan Cross-over ALL Pain in the

paretic

extremities

18, 12M, 6F,

63.0± 9.9

M1 5 Hz/90%RMT 12 weeks 500 50 s Pain relief

by VAS

Hasan et al.

(2014)

UK Cross-over ALL CPSP 14, 10M, 4 F

57median

M1 10 Hz/80%−

90%RMT

5 sessions 2,000 60 s Pain relief

by NRS

Ohn et al. (2012) Republic of Korea Case series ALL CPSP 22, 13M, 9 F

54.9± 9.0

M1 10 Hz/90% of

RMT

5 sessions 1,000 55 s Pain relief

by VAS

Ojala et al. (2021) Finland RCT ALL CPSP 17 M1/S2 10 Hz/90% of

RMT

10 sessions 5,050 50 Pain relief

by NRS

CPSP, central PSP; PSP, Post-stroke pain; HSP, hemiplegic shoulder pain; M, male; F, female; RMT, resting motor threshold; M1, primary motor cortex; DLPFC, dorsolateral prefrontal cortex; PMC, premotor cortex; VAS, visual analog scale; NRS,

numerical rating scale; S2, secondary somatosensory cortex.

F
ro
n
tie

rs
in

M
o
le
c
u
la
r
N
e
u
ro
sc
ie
n
c
e

0
3

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fnmol.2022.1091402
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Pan et al. 10.3389/fnmol.2022.1091402

size, but the negligible analgesic effect shows that PMC/DLPFC

is not a good choice for the treatment of CPSP. However, in

a recent randomized controlled trial, some scholars compared

the analgesic effect of S2 and M1 on CPSP, after 10 times of

stimulation at 10HZ, each with an intensity of 5,050 pulses, the

numerical rating scale (NRS) was used to measure the degree of

pain of the patient, the results showed that both targeted S1 and

M1 stimulation had short-term analgesic effects, but there was

no difference compared to the sham group, suggesting a strong

placebo effect (Ojala et al., 2021).

2.1.3. rTMS has analgesic e�ects on various
types of pain

In addition to common neuropathic pain after stroke, HF-

rTMS (10Hz) also has a significant relieving effect on post-

stroke shoulder pain, some scholars have applied rTMS with

90% of RMT and pulse 1000 to M1 for 10 consecutive sessions

of treatment, the NRS score was measured on the first day, the

first week, the second week, and the fourth week. The results

showed that rTMS can significantly relieve HSP and maintained

it for about 4 weeks, indicating that rTMS also has a certain

relieving effect on peripheral pain (Choi and Chang, 2018).

Studies on rTMS are mainly aimed at chronic CPSP, which

may be caused by cognitive impairment in early-stage patients,

leading to difficulty in diagnosis or first-line treatment of CPSP.

According to expert consensus, HF-rTMS (>5Hz) can provides

moderate pain relief in chronic CPSP (Leung et al., 2020). But

rTMS studies on acute or subacute CPSP are few. In a case study,

10Hz rTMS was applied to the M1 site of a subacute CPSP

patient for 2,000 pulses each time, with an intensity of 90% of

RMT, for a total of 10 sessions, and the pain levels weremeasured

before, after stimulation, and 1 month after stimulation. The

results showed that the level of post-stimulation was significantly

lower than the baseline level, suggesting that rTMS had the same

analgesic effect on acute CPSP (Malfitano et al., 2021).

The analgesic effect of rTMS on PSP is positive correlates

with frequency and treatment duration, and the M1 site as a

stimulation target has a better therapeutic effect than other sites.

rTMS has a good analgesic effect on pain, regardless of whether

the pain is neuropathic, peripheral, acute or chronic.

2.2. rTMS has antidepressant e�ects

PSP is often accompanied by depression and anxiety,

which aggravates the pain and hinders the recovery process.

In many studies, pain relief was accompanied by depression

improvement, suggesting that depression, and anxiety may

influence the analgesic effect of rTMS. Ohn et al. (2012) applied

10Hz rTMS (M1) to 22 patients with CPSP, and gave rTMS

with an intensity of 90% of RMT and 1000 pulses. After 5 days

of continuous treatment, the responders’ VAS score and HDRS

score decreased significantly. Results showed the lower the

HDRS score at baseline, the more significant the analgesic effect,

indicating a relationship between the improvement of depressive

mood and pain relief. Galhardoni et al. (2019) applied 10Hz

rTMS to the anterior cingulate cortex (Hasan et al., 2014) and

posterior superior insula (PSI), a total of 16 sessions lasted for

12 weeks, the stimulation intensity was 90 of RMT, 1,500 pulses,

and the results showed that both ACC stimulation and PSI

stimulation produced pain relief but no significant difference.

In contrast, ACC stimulation had a more significant anxiolytic

effect than PSI simulation. However, little research has been

conducted in this area, andmore studies are needed in the future

to demonstrate the relationship between mood improvement

and pain relief.

3. Mechanism of rTMS for PSP

3.1. rTMS changes cerebral cortical
excitability

Although rTMS has been reported to have a significant

analgesic effect on PSP, the underlying mechanism of its

therapeutic effect has not been fully defined. The rTMS-

promoting recovery of cortical excitability has been reported

by many studies. Spontaneous pain in CPSP may be related

to hyperexcitability or spontaneous firing of missing neurons

in the thalamus or cortex (Vestergaard et al., 1995; Walton

and Llinás, 2010), and pain relief after rTMS treatment of

stroke is often accompanied by recovery of abnormal cortical

excitability. This is considered one of the possible mechanisms

for rTMS to treat PSP (Hosomi et al., 2013). It may involve

the functional reorganization of various parts of the cerebral

cortex, the recovery of abnormal inhibition between the cerebral

hemispheres, and the transmission of some neurotransmitters.

The mechanism of rTMS in the treatment of PSP is shown in

Figure 1.

3.1.1. rTMS a�ects functional reorganization of
the brain

CPSP typically occurs weeks or months after stroke.

This late-onset feature suggests that the mechanism of CPSP

development is gradual, possibly through maladaptive pain

network reorganization or plastic changes (Hosomi et al.,

2015). CPSP is often associated with strokes that occur around

somatosensory pathways, including the ventral posterolateral

nucleus (VPL) of the thalamus, anterior occipital nucleus, and

lateral medulla. CPSP may also involve changes in medial

emotional pathways, including the amygdala, anterior cingulate

cortex, and insular cortex (Sprenger et al., 2012; Vartiainen

et al., 2016). CPSP is thought to be caused by maladaptive

reorganization between different regions of the brain, which
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FIGURE 1

The mechanisms of rTMS in the treatment of PSP. Schematic illustration of the underlying mechanism of rTMS in the treatment of PSP. rTMS

modulates the abnormal excitability of the cerebral cortex by modulating the pain network, improving interhemispheric inhibition, and

increasing the number of GABA receptors, BDNF expression, and the number of NMDA receptors to alter brain plasticity, ultimately relieving PSP.

VPL, ventral posterolateral nucleus; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; MD, mediodorsal nucleus; IHI,

interhemispheric inhibition; ICI, intracortical inhibition; GABA receptor, gamma-aminobutyric acid receptor; BDNF, brain-derived neurotrophic

factor; NMDA receptor, N-methyl-D-aspartate receptor; LTP, long-term potentiation.

neuromodulation techniques can normalize and treat (Chen

et al., 2022). Evidence from animal studies suggests that

CPSP reduces functional connectivity between the VPL and S1

(primary somatosensory cortex)/S2 (secondary somatosensory

cortex) (responsible for perceiving pain location, intensity, and

duration) and increases functional connectivity (responsible

for the attentional, cognitive, and emotional aspects of pain

evaluation) between the mediodorsal nucleus (Tarragó et al.,

2016) and the amygdala. rTMS therapy relieves this abnormal

connection (Kadono et al., 2021), so we speculate that this may

be one of the mechanisms of rTMS pain relief.

3.1.2. rTMS a�ects interhemispheric inhibition

The mechanism of CPSP is unclear, but theories of central

disinhibition have been proposed (Head and Holmes, 1911).

Damage to the lateral thalamus is hypothesized to free themedial

thalamus from control, inducing spontaneous or atopic pain.

This is similar to the later proposed model of interhemispheric

inhibition (IHI) (Duque et al., 2005), which assumes balanced

inhibition between the hemispheres of a healthy brain. Although

IHI theory is more commonly used to explain the recovery

of dyskinesia after stroke, some scholars believe that IHI may

also be involved in the CPSP mechanism (Morishita and Inoue,

2016). On the basis of IHI theory and the fact that M1

transcranial magnetic stimulation inhibits CPSP, we speculate

that inhibitory signals from the contralateral hemisphere may

suppress the activity of M1 in the ipsilateral hemisphere, and

the mechanism of pain suppression in patients with CPSP

may malfunction. The presence of post-stroke lesions results

in reduced M1 excitability in the affected hemisphere, thereby

reducing its neural output, including IHI toM1 in the unaffected

hemisphere. This resulted in a relative increase in the excitability

of M1 in the contralateral hemisphere and increased neural
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output, thereby increasing the IHI from M1 in the contralateral

hemisphere to M1 in the affected hemisphere and inhibiting

the excitability of M1 in the affected hemisphere (Gerges et al.,

2022). A recent study found that rTMS induces an Increase in

IHI in the affected hemisphere to the contralateral hemisphere,

thereby relieving pain (Alhassani et al., 2019). Therefore, LF-

rTMS of the unaffected hemisphere may reduce inhibition to

the affected hemisphere. In contrast, HF-rTMS of the affected

hemisphere increases inhibition to the unaffected hemisphere,

normalizing the excitability of the cerebral cortex and finally

achieving the effect of pain relief. Discussions of our theory focus

more on movement disorders after stroke, and further research

and discussion are needed on PSP.

3.1.3. RTMS a�ects GABAergic neuron
transmission

Various experimental studies have highlighted the reduction

of GABAergic neurotransmission in the central nervous system

as the main reason for chronic neuropathic pain (Neto et al.,

2006; Yang et al., 2019). In animal models of neuropathic pain,

decreased GABAergic tone was found at the level of the dorsal

spinal cord, thalamic sensory nuclei, and somatosensory cortex,

which resulted in neuronal hyperactivity in the sensorimotor

cortex (Guilbaud et al., 1992; Paz et al., 2010). Intracortical

inhibition (ICI) is thought to reflect the function of interneurons

within M1; ICI and intracortical facilitation (ICF) may reflect

GABAergic inhibitory interneurons, especially GABA function

(Ziemann et al., 1996; Reis et al., 2008; Lanza et al., 2020).

Previous studies have shown that HF-rTMS can increase ICI and

ICF, and this change is associated with PSP relief (Lefaucheur

et al., 2006; Hosomi et al., 2013). HF-rTMS has been observed

to enhance GABAergic synaptic connections (Lefaucheur et al.,

2006); therefore, rTMS can relieve PSP through this mechanism

of enhancing GABAergic neuron transmission.

3.2. rTMS induces changes in brain
plasticity

Chronic pain states are known to be associated with

neuroplastic changes, and the development of neuropathic

pain states may involve changes in supraspinal canal function

associated with pain perception (Lorenz and Casey, 2005;

Maihöfner et al., 2006; Thompson and Neugebauer, 2019).

The neurotrophic factor BDNF is closely related to neuronal

plasticity, which is important for neuropathic pain recovery.

Increased expression of BDNF has been observed in subacute

and chronic stroke patients with neuropathic pain, suggesting

that BDNF is involved in pain recovery after stroke (Siotto

et al., 2017). The effect of rTMS on brain plasticity is mainly

through two forms of long-term potentiation (LTP) and long-

term depression (LTD) (Hoogendam et al., 2010). LTP can

durably enhance synaptic strength from days to months,

whereas LTD causes a secular decrease in synaptic strength

(Duffau, 2006). The induction of LTP and LTD may be related

to NMDA receptors, NMDA receptors contain ion channels

that are blocked by resting magnesium ions, but membrane

depolarization unblocks this channel, allowing calcium ions to

enter the postsynaptic neuron and finally induce LTP (Cooke

and Bliss, 2006). NMDA receptor activation is also involved in

LTD, but in a different way. Rapid increases in postsynaptic

calcium content induce LTP, whereas small and slow flows of

calcium induce LTD. Previous studies have also demonstrated

that rTMS can increase the number of NMDA receptors

in the ventromedial thalamus, amygdala, and parietal cortex

(Lisanby and Belmaker, 2000). Accordingly, we speculated that

rTMS modifies the plasticity changes of the nervous system

by increasing the expression of NMDA receptors. BDNF is

a “classical” neurotrophic factor that has been shown to be

closely related to neuronal plasticity and neuropathic pain.

Many studies have shown that serum BDNF is inversely

correlated with pain levels (Zhao et al., 2021). In a previous

study (Dall’agnol et al., 2014), patients with CPSP experienced

significant increases in serum BDNF levels and less pain after

3 weeks of rTMS treatment. In another experiment (Zhao

et al., 2021), 10HZ rTMS was applied to 40 patients with acute

CPSP. After 3 weeks of treatment, the pain was significantly

relieved and accompanied by an increase in serum BDNF. This

result was consistent with previous findings, suggesting that

the pain relief effect of rTMS may be related to an increase

in BDNF.

4. Conclusion

rTMS is the preferred non-invasive, non-drug therapy for

PSP, which is safer than invasive therapy and more easily

accepted by patients. rTMS has good analgesic effects on

both neuropathic and peripheral pain after stroke, which

may be related to the recovery of cortical excitability,

changes in brain plasticity, and pain-related mood and

sensory improvement. Most of the current research results

show that HF, M1, and multiple courses of rTMS have

better therapeutic effects than LF and a single session of

rTMS. However, there is currently no standard treatment

plan for rTMS treatment of PSP. The mechanism by which

rTMS relieves pain has yet to be determined. This review

discusses the possible mechanism of rTMS to improve

pain, and it is hoped to provide a theoretical basis for

future research.
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