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Neuromas form as a result of disorganized sensory axonal regeneration following
nerve injury. Painful neuromas lead to poor quality of life for patients and place a
burden on healthcare systems. Modern surgical interventions for neuromas entail guided
regeneration of sensory nerve fibers into muscle tissue leading to muscle innervation and
neuroma treatment or prevention. However, it is unclear how innervating denervated
muscle targets prevents painful neuroma formation, as little is known about the fate
of sensory fibers, and more specifically pain fiber, as they regenerate into muscle.
Golgi tendon organs and muscle spindles have been proposed as possible receptor
targets for the regenerating sensory fibers; however, these receptors are not typically
innervated by pain fibers, as these free nerve endings do not synapse on receptors. The
mechanisms by which pain fibers are signaled to cease regeneration therefore remain
unknown. In this article, we review the physiology underlying nerve regeneration, the
guiding molecular signals, and the target receptor specificity of regenerating sensory
axons as it pertains to the development and prevention of painful neuroma formation
while highlighting gaps in literature. We discuss management options for painful
neuromas and the current supporting evidence for the various interventions.

Keywords: neuroma, peripheral nerve regeneration, target receptors, targeted reinnervation, VDMT, RPNI, TMR

INTRODUCTION

Neuromas are bulbus swellings of abnormal and disorganized regeneration of predominantly
unmyelinated nerve endings that form on the end of a peripheral nerve that is transected and
left in discontinuity without timely repair (Cravioto and Battista, 1981). While some neuromas
do not cause symptoms, they often produce disabling pain and poor quality of life in otherwise
healthy individuals (Stokvis et al., 2010; Brogan and Kakar, 2013; Ellen and Renner, 2014). Patients
suffering limb amputations are particularly susceptible, with rates ranging from 4.17 to 48% of
patients with amputations (Penna et al., 2018). More than 185,000 people undergo amputations in
the United States each year, and the total number of amputees is expected to more than double to
nearly 3.6 million people by 2050 (Ziegler-Graham et al., 2008). Peripheral nerve injury places a
significant burden on our healthcare system, with average care cost of approximately $47,000 per
patient and therefore is an important area of investigation (Karsy et al., 2019).
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Nerve injuries are classified according to the stage of
nerve damage, which can determine functional prognosis
and indication for nerve repair. The most commonly
used classification is the Seddon-Sunderland classification
system (Seddon, 1947; Sunderland and Williams, 1992). These
classifications reflect the prognosis for nerve recovery (Chhabra
et al., 2014; Lu et al., 2018), as detailed in Table 1. Neuromas
arise from the disorganized regeneration of sensory axons
in the absence of innervation targets, specifically the pain
fiber subpopulation. If regenerating fibers find target tissue
to innervate, neuroma formation is prevented. Contemporary
surgical approaches to treat and prevent neuroma formation
make use of target receptors in muscle for the regenerating
axons that would otherwise form a neuroma. In targeted muscle
reinnervation (TMR), the distal end of the severed nerve is
connected to a motor nerve supplying a muscle, such that the
regenerating axon that would otherwise form a neuroma are
instead redirected into the target muscle. With the Regenerative
Peripheral Nerve Interface (RPNI) technique, nerve fibers are
directed to intramuscular targets by direct neurotization of small
free muscle grafts (Kung et al., 2014; Woo et al., 2016; Kubiak
et al., 2018). A more recently described approach involves using
vascularized denervated muscle targets (VDMTs) as targets
for direct neurotization (Tuffaha et al., 2020; Calotta et al.,
2021). All of these approaches rest on the assumption that the
axons regenerating from an injured nerve will reinnervate the
denervated muscle targets rather than forming a symptomatic
neuroma; however, the fate of sensory axons, and pain fibers
specifically, regenerating into muscle, denervated or not, remains
poorly understood. In this article, we review what is known from
prior studies regarding neuroma formation and target receptors
for regenerating nerves.

PERIPHERAL NERVE REGENERATION
(PNR)

Nerve Anatomy
Peripheral nerves are composed of neural, vascular, and
connective tissue. Nerve fibers surrounded by endoneurium
form nerve fascicles that are wrapped with the perineurium
sheath. Multiple fascicles arrange together to form large nerves
surrounded by a dense epineurium. Nerve fibers made up of
axons extend from cell bodies residing in the CNS, and they
can be either unmyelinated or myelinated by Schwan cells
(SCs) that wrap around the axons forming a myelin sheath
(Neumeister and Winters, 2020).

Regenerating Nerve Physiology
The cycling of neurotransmitters in neurons starts with
neurotransmitter synthesis in the cell body. Kinesin and dynein
motor proteins mediate anterograde and retrograde axoplasmic
transport, respectively, of neurotransmitters and structural
proteins. The disruption of axoplasmic flow, and the burst of
action potentials initiated at the injury site are key triggers to
axonal regeneration (Hanz and Fainzilber, 2006; Abe and Cavalli,
2008; Rishal and Fainzilber, 2010). Following axonal transection,

a bridge of dense connective tissue and inflammatory cells forms
between the proximal and the distal nerve stumps. About 24–
48 h after the injury occurs, Wallerian degeneration ensues,
wherein the SCs and macrophages phagocytose myelin and the
distal axons degenerate (Griffin et al., 2013; Conforti et al.,
2014). Furthermore, monocyte-derived macrophages migrate
to the nerve bridge and add to the resident macrophages to
secrete factors that induce SC dedifferentiation in the distal
stump. Mostly monocyte-derived macrophages within the bridge
sense the hypoxic environment surrounding a site of injury
and secrete vascular endothelial growth factor A (VEGF-A),
inducing angiogenesis, as well as unidentified factors that
enhance SC migration to the proximal stump. The newly formed
microvasculature serve as tracts that provide directionality to
SC migration (Cattin et al., 2015; Cattin and Lloyd, 2016).
The migrating, proliferating SCs form an empty band in the
endoneurium, referred to as bands of Bungner, which guide the
regrowth of axons through neurotrophic signaling (Ide, 1996;
Grinsell and Keating, 2014). At the proximal end, degeneration
also ensues, but stops at the first node of Ranvier (Hopkins and
Slack, 1981; McQuarrie, 1985). Many axolemma sprouts form at
this node and mature into a growth cone that extends through
Bunger bands in response to many neurotrophic and neurite-
promoting factors, ultimately reaching nervous tissue such as
muscle (Lundborg et al., 1986; Zhao, 1990; Ide, 1996; Lee and
Wolfe, 2000).

Tissue Specificity in Peripheral Nerve
Regeneration
Following nerve injury, numerous axonal extensions elongate at
the growth cone until they connect with a receptor (Grinsell
and Keating, 2014). The specific target receptors that the
fibers seek to reinnervate depends on the innervated tissue
type and the particular nerve fiber subtype. The resulting
reinnervation pattern may or may not be identical to the

TABLE 1 | Seddon-Sunderland classification of nerve injuries.

Sunderland
class

Injury Recovery
prognosis

Treatment
indicated

I Neuropraxia: localized and
reversible conduction

blockade

Complete No

II Axonotmesis: axonal
disruption

Complete No

III Axonotmesis: axonal and
endoneurial sheath

disruption

Incomplete,
Wallerian

degeneration

Medication

IV Axonotmesis: axonal,
endoneurial sheath, and

perineurial sheath
disruption

Wallerian
degeneration,

incomplete

Surgical

V Neurotmesis: axonal,
endoneurial sheath, and
perineurial sheath, and

epineurial sheath disruption

Wallerian
degeneration,

incomplete

Surgical

IV Combination of the above
injuries

Incomplete,
unpredictable

Surgical
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original tissue and target receptors prior to injury. Specificity
of sensory reinnervation of skin has been previously studied
and demonstrated (Liuzzi and Tedeschi, 1991). It has been
shown that transplanted dorsal root ganglia in frogs survived,
entered the forelimb along with motoneurons, and regenerating
sensory fibers reinnervated targets in the skin (Smith and Frank,
1987). Brushart et al. (2005) showed how electrical stimulation
following the transection of the femoral trunk allowed the
regenerating sensory nerve fibers from dorsal root ganglia to
more specifically reinnervate the skin compared to motoneurons,
providing further evidence for tissue specificity. However,
sensory innervation by regenerating nerves into muscle is less
specific. Koerber et al. (1995) showed that proprioceptive fibers
originally innervating muscle sensory organs can reinnervate
skin, although they had a propensity to reinnervate the original
target tissue type. The group also found that central and
peripheral stimulus adaptation properties were not perfectly
restored after reinnervation, suggesting the regenerated fibers
reinnervated altered reinnervation patterns (Koerber et al., 1995).
Cross innervation studies in cats and rodents have demonstrated
the potential to cross reinnervate tissue, where transected
cutaneous nerves were shown to regenerate into the original
and new cutaneous tissue, as well as skeletal muscles (Weiss
and Edds, 1945; Nishimura et al., 1993). This property of cross
innervation and lack of specificity of the reinnervated tissue by
sensory fibers raises the possibility of alternative target receptors
for regenerating sensory nerve subtypes in the setting of surgical
intervention to halt neuroma formation.

Receptor Specificity in Peripheral Nerve
Regeneration
While reinnervation of receptors prevents neuroma formation,
target receptor specificity depends on the nerve fiber types. It
is well established in the literature that motor axons target and
reinnervate motor end plates (MEPs) (Gutmann, 1945; Bader,
1980). In contrast, the target receptor for the sensory fibers in
muscle tissue is still unclear. Studies have previously suggested
that axonal regeneration can be deranged such that sensory
cutaneous afferents innervate MEP (Allodi et al., 2012), while
conflicting findings have demonstrated that sensory fibers do
not reinnervate MEP (Gutmann, 1945; Weiss and Edds, 1945;
Dellon et al., 1975). Possible suggested targets within muscle
for sensory fibers include the Golgi tendon organ or muscle
spindles (Dellon, 1991; Dellon and Aszmann, 2020). A study
by Kuiken et al. (2007) found that when TMR was performed,
some sensory fibers reinnervated overlying skin, although there
was some evidence for deeper proprioceptive innervation in
muscle as well. Earlier findings by Gutmann (1945) showed
that sensory fibers did not innervate a target within the
muscle, including muscle spindles. In another study, researchers
connected the sensory saphenous nerve to the distal motor
quadriceps nerve stump in rats, and similar to Gutmann’s study,
they found that while nerve stimulation in some samples resulted
in muscle contraction, this was not mediated by regenerating
sensory fibers. Histologically, myelinated sensory fibers had
regenerated normally into the motor stump, but the transmissible

connections of regenerating fibers in muscle were only formed by
a few escaped ventral root fibers (Weiss and Edds, 1945). A more
recent study by Elsohemy et al. (2009) on rats demonstrated
physical contact between regenerating nerves and intrafusal
fibers of muscle spindles. On electrophysiologic assessment,
stretching the gastrocnemius muscle elicited action potentials,
indicating reinnervation of muscle spindles (Elsohemy et al.,
2009). This suggests that there is a high degree of fidelity in
target receptor reinnervation, but specificity is not absolute and
neuroma treatment interventions can take advantage of this
property. Further research is required to elucidate specific target
receptors for sensory fibers regenerating into muscle tissue, and
the functionality of such connections. The mechanisms of growth
arrest upon contact of regenerating sensory fibers and muscle
targets remains unclear.

Free Nerve Endings Regeneration in Skin
In the skin, the neural network is widely distributed and
structurally complex. Sensory nerves receive multiple modalities
of input from a variety of unmyelinated free nerve endings (FNE)
and specialized receptors, and conduct the stimulation through
Aβ, Aδ, and C nerve fibers (Horch et al., 1977; Blais et al.,
2013). FNEs are the simplest form of receptors, and the most
abundant in the skin. They convey sensory information about
temperature, mechanical stimuli (touch, pressure, stretch) and
nociception (Horch et al., 1977; Weng et al., 2020). After injury,
nerve regeneration in the skin starts from either the migration
of new fibers from the wound bed, or from collateral sprouting
from adjacent healthy areas (Blais et al., 2013). FNEs also exist in
muscles and respond to nociceptive stimuli, and they are thought
to play a role in chronic musculoskeletal pain as their density was
shown to increase in an inflammatory environment (Stacey, 1969;
Mense and Meyer, 1985; Reinert et al., 1998). These FNEs can
grow from muscle into adjacent skin tissue. Studies have shown
that skin grafts over neurotized muscle free flaps show greater
degree of reinnervation with FNEs compared to non-neurotized
flaps (Bayramiçli et al., 2000). Recently, specialized terminal SCs
with nociceptive properties were discovered to interact with pain
fibers in the skin and seem to be involved with transmission of
pain signals (Abdo et al., 2019). Future studies are needed to
determine whether nociceptive SCs are also present in muscle and
whether they play a role in muscle reinnervation by pain fibers
in the setting of TMR for neuroma treatment and prevention.
Furthermore, how FNE regeneration into skin or muscle cease or
what homing signals FNEs recognize in this native tissue remains
to be elucidated.

Formation of Neuromas
Following complete transection (neurotmesis), if a receptor or
an endoneurial tube is not reached, regenerative axonal sprouts
continue to grow blindly, producing a neuroma (Allodi et al.,
2012; Grinsell and Keating, 2014). Histologically, neuromas are
non-neoplastic, non-encapsulated tangled masses of axons, SCs,
endoneurial cells, and perineurial cells in a dense collagenous
matrix surrounded by fibroblasts (Battista and Cravioto, 1981;
Cravioto and Battista, 1981; Murphey et al., 1999). Unmyelinated
C fibers and thinly myelinated A-δ fibers predominate in
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neuromas (Cravioto and Battista, 1981; Vora et al., 2005a; Lu
et al., 2018). In a histological study, Battista and Cravioto
showed an increase in the unmyelinated fibers, with a ratio of
unmyelinated to myelinated fibers of 20:1 (Cravioto and Battista,
1981; Lu et al., 2018). Other studies have also shown an increase
in thinly myelinated fibers within neuromas (Vora et al., 2005a,b).

Molecular Signaling in Nerve
Regeneration
Although the molecular signaling in nerve regeneration
had been extensively studied, signaling in disorganized
regeneration leading to neuroma formation has not been
clearly elucidated. The regulation of nerve regeneration is
complex and multifactorial, and neurotrophic factors (NTFs)
play an important role. NTFs are signaling molecules that
promote peripheral nerve regeneration (PNR) and protect the
injured nerve (Gordon, 2010; Shakhbazau et al., 2012). Upon
injury, the injured tissue upregulates NTFs, such as nerve growth
factor (NGF), glial cell line-derived neurotrophic factor (GDNF),
brain-derived neurotrophic factor (BDNF), neurotrophin-3
(NT-3), neurotrophin-4 (NT-4), and insulin-like growth factor-1
(IGF-1) (Bothwell, 1997; Weng et al., 2020). Some of these NTFs
exhibit specificity for certain types of nerve fibers (Allodi et al.,
2012). NGF has been shown to promote regeneration of certain
NGF-dependent small diameter A-δ and C fibers (Diamond et al.,
1992; Weng et al., 2020). On the other hand, NT-3 promotes
large diameter proprioceptive axon regeneration (Allodi et al.,
2012; Liu et al., 2016). On the other hand, IGF-1 and GDNF
demonstrate specificity for motor neurons and promotes axonal
regeneration, motor reinnervation, and reduces muscle atrophy
following peripheral nerve injury (Allodi et al., 2012; Tuffaha
et al., 2016; Weng et al., 2020). The formerly described migrating,
proliferating SCs form bands of Bungner and guide the regrowth
of axons through neurotrophic signaling (Ide, 1996; Grinsell
and Keating, 2014). Once SCs regain contact with regenerated
axons, the expression of NTFs and their receptors is suppressed,
creating a dynamic gradient where the highly activated SCs

are located distally into the degenerated nerve stump (Mueller,
1998; Allodi et al., 2012). This gradient helps maintain the
proper directionality of axonal regeneration, and after the
reinnervation of the target tissue is complete, the SCs go back
to a quiescent state (Taniuchi et al., 1988; Allodi et al., 2012).
It is unclear if or how this gradient of NTF signaling is altered
or dysregulated during the disorganized nerve regeneration in
neuroma formation compared to appropriate nerve regrowth.
While it remains incompletely understood, some research
suggests a role for NGF, GDNF and BDNF in neuroma formation
(Kryger et al., 2001; Marcol et al., 2007; Guzen et al., 2009;
Valverde Guevara et al., 2014).

NEUROMA MANAGEMENT

Non-surgical Treatments
Several options have been proposed for the management of
neuromas, but none has been established as a superior method.
Rosen and Lundborg proposed mirror therapy for relief of
symptoms, proposing that amputees suffering from neuromas
would benefit from manipulations of the visual system to reduce
their associated pain (Rosén and Lundborg, 2005). Furthermore,
evidence suggests that exercise inhibits neuroma formation and
relieves allodynia through modulation of NTF expression (Tian
et al., 2018). Cryotherapy, the application of low temperature to
relieve pain, as well as spinal cord stimulation, which involves
pulse current stimulation through electrodes implanted in the
spinal cord, are other minimally invasive treatments that have
also been used in the treatment of refractory neuromas (Messina
et al., 2011; Rhame et al., 2011). Pharmacologic treatments
with non-psychoactive cannabinoids targeting Cannabinoid
receptor 2 (CB2) provides analgesic relief in painful neuromas
(Anand et al., 2008; Wong et al., 2017; Wong and Cairns,
2019). Patients have also reported significant relief after steroid
injections (Greenfield et al., 1984; Bennett et al., 1995). Other
medications used for painful neuromas include antidepressants,

TABLE 2 | Advantages, disadvantages, and target receptors in surgical interventions.

Intervention Target receptor Advantage Disadvantage

Simple ligation None Easy and quick to perform, non-sight
dependent

High failure rates

BIM None Easy and quick to perform, non-sight
dependent

Inconsistent success at preventing neuroma
formation or pain resolution

Neurorrhaphy None Highly effective at preventing neuroma
formation

Limited by availability of nerves, high technical
skill required

Conduits/nerve capping None Can be effective, not sight dependent Cost and availability of material

TMR Muscle spindles, Golgi tendon organs Highly effective at preventing neuroma
formation, possible use in prosthetics control

enhancement

High technical skill required, sight
dependent-require recipient motor nerve
stump, size mismatch, risk of neuroma in

continuity, limitations on nerve size

RPNI Muscle spindles Highly effective at preventing neuroma
formation, possible use for prosthetic control

enhancement, non-sight dependent

Limitation on muscle graft size, risk of graft
fibrosis and/or resorption, limitation on nerve

size

VDMT Muscle spindles Highly effective at preventing neuroma
formation, widely available recipient sights, no

concerns for graft ischemia or
fibrosis/resorption, use possible with large

nerves

Sight dependent-vascular pedicle with
muscle graft required
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FIGURE 1 | Summary of mechanisms of nerve regeneration, neuroma
formation, and target receptors for regenerating fibers. (A) Nerve injury leads
to Wallerian degeneration of nerve fiber back to first node of Ranvier.
(B) Nerve fiber regeneration by axolemma sprouting, and growth cone and
lamellipodia/filopodia formation under influence of NTFs. (C) Formed neuroma
treated by: (D) BIM: excision and nerve tuck under muscle, neuroma reforms
but is protected from physical and chemical stimuli or (E) TMR: sensory
nerves regenerate into coapted motor nerve stump and into muscle to
reinnervate muscle spindles and Golgi tendon organs to prevent neuroma
formation, or (F) RPNI or (G) VDMT: sensory nerves directly reinnervate
muscle spindles in small free muscle grafts (RPNI) or vascularized, denervated
portions of muscle (VDMT) to prevent neuroma formation.

anticonvulsants, alpha-receptor agonists, opioids, and lidocaine
(Lu et al., 2018), although there are no clearly preferred first line
agents or a standard of care.

Surgical Treatment
Multiple surgical approaches have been developed with varying
success rates, advantages, and disadvantages as summarized in
Table 2. Ligation is the oldest and simplest surgical method
performed, in which the proximal nerve is ligated, forming
fibrous connective tissue at the ligation site (Herrmann and
Gibbs, 1945). However, this method has been associated with
a high failure rate and is therefore not commonly used (Guse
and Moran, 2013). Burying the nerve in muscle (BIM) is a
commonly used surgical technique where the proximal stump
of the nerve is tucked into or under a muscle. Studies have

shown that BIM successfully treated neuromas, had better
functional outcomes, and prevented neuroma formation (Teneff,
1949; Dellon and Mackinnon, 1986). Other studies showed
that while neuromas formed, they are sheltered from chemical
and mechanical stimuli, and have decreased rates of fibrosis
associated (Dellon et al., 1984). Furthermore, a study using a rat
model showed that nerve implantation in vein was superior to
muscles (Prasetyono et al., 2014). However, some research has
shown low neuroma remission rate with this method in digital
amputation (Dellon and Mackinnon, 1986).

Another technique is neurorrhaphy—connecting two nerves
to treat or prevent neuroma formation. Neurorrhaphy can be
end-to-end of 2 proximal nerve stumps, or end-to-side via an
epineural window (Gorkisch et al., 1984; Aszmann et al., 2003;
Ayan et al., 2007); if only one nerve is available, the nerve can
be split into two fascicles of equal size (Ives et al., 2018). Studies
show 94–100% of patients report improvement or resolution
of pain (Kon and Bloem, 1987; Barbera and Albert-Pamplo,
1993; Al-Qattan, 2000; Boroumand et al., 2015). Unfortunately,
this technique is limited by nerve availability, and demands a
high degree of technical difficulty that may produce unreliable
outcomes with less experienced surgeons (Ives et al., 2018).

A newly emerging treatment method for neuromas involves
capping the nerve. The goal of this approach is to inhibit
growth and progression of neuroma formation by inhibiting
nerve regeneration and neuroma formation (Yao et al., 2017;
Lu et al., 2018). A variety of materials have been used to create
nerve conduits, such as veins or epineurium, as well as synthetic
materials including silicone, collagen, or chondroitin sulfate (Zuo
et al., 1998; Sakai et al., 2005; Okuda et al., 2006; Galeano et al.,
2009). Acellular nerve allografts have also been used in nerve
capping and were found to reduce axon regeneration (Hong
et al., 2019). Onode et al. (2020) found bioabsorbable conduits
effective at treating neuroma-induced neuropathic pain, with
prevention of perineural scar formation and neuroinflammation
around the nerve stump in rat models. With both acellular nerve
allografts and bioabsorbable conduits, studies showed that the
length of the conduit played an important role in the efficacy of
the treatment, with longer conduits better able to inhibit axonal
regeneration (Hong et al., 2019; Onode et al., 2020).

Targeted muscle reinnervation (TMR) is a technique that was
initially devised to enhance intuitive prosthesis control, that has
since been adopted for treatment of neuromas (Pierrie et al.,
2019). It involves rerouting the proximal end of cut sensory nerve
stumps into the distal end of a newly divided nearby motor nerve
branch (Hijjawi et al., 2006; Bowen et al., 2019; Fracol et al.,
2020). The effectiveness of TMR as a treatment for neuromas
and associated neuropathic pain has been well corroborated in
the literature (Souza et al., 2014; Bowen et al., 2019; Dumanian
et al., 2019; Salminger et al., 2019). In a randomized control trial
in 28 patients standard BIM with TMR, the longitudinal mixed
model analysis revealed a significant difference at 1-year post-op,
with greater relief in the TMR arm compared with standard BIM
(Dumanian et al., 2019). Nevertheless, possible size mismatch
between the two ends poses a concern for axonal escape and
formation of neuroma at the coaptation site (Mavrogenis et al.,
2008; Chappell et al., 2020).
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Regenerative peripheral nerve interface (RPNI) is another
method which was initially designed for prosthetic control and
later found to be effective in treating neuroma (Kung et al., 2014;
Woo et al., 2016; Kubiak et al., 2018). This approach involves
denervated free muscle grafts that provide physiological targets
for peripheral nerve ingrowth (Woo et al., 2016). Some studies
have shown RPNI to be effective at treating and preventing
neuroma formation (Woo et al., 2016; Kubiak et al., 2019).
A study by Woo et al. (2016) showed 71% of patients reported
reduction in neuroma pain and 53% reduction in phantom
pain. Furthermore, 75% of patients were satisfied or highly
satisfied, and patients reported decreased (56%) or stable (44%)
analgesic use (Woo et al., 2016). In a matched case-controlled
retrospective study by Kubiak et al. (2019), RPNI effectively
prevented neuroma formation (0 vs. 13.3%, p = 0.026) and fewer
patients reported phantom pain (51.1 vs. 91.1%, p < 0.0001)
compared to controls. Unlike TMR, RPNI does not require
the denervation of residual muscles or sacrificing a motor
nerve. It is also efficient, and doesn’t require tedious dissection
to isolate motor nerves as in TMR (Santosa et al., 2020).
However, RPNI requires devascularized muscle grafts sustained
by diffusion of nutrients. Therefore it must be appropriately
sized to allow for graft revascularization without tissue necrosis
(Ives et al., 2018), and may limit the size of nerve used.
Denervated muscle tissue with limited nutrient supply is also
susceptible to fibrosis which can prevent proper reinnervation
(Lee and Wolfe, 2000).

To circumvent the problem of nutrient diffusion, an RPNI
can be designed with a vascular pedicle. After resection of the
nerve, and deflation of a tourniquet if applicable, a nearby arterial
branch to muscle is identified and confirmed with Doppler,
and a small muscular flap is dissected free of its surroundings.
A nerve stimulator is used to confirm denervation, and this
small muscle flap is used similarly to an RPNI (Tuffaha et al.,
2020). This technique provides vascularized, denervated muscle
targets (VDMTs), which can be used for larger peripheral nerves,
and do not suffer from ischemia-induced fibrosis and resorption
(Calotta et al., 2021). The technique has been described in the
upper extremity and head/neck; and can be adapted to nearly any
site, allowing easy local transposition.

Figure 1 summarizes the mechanisms of PNR, neuroma
formation and all three surgical treatment methods in TMR,
RPNI, and VDMT that are based on the guided nerve
regeneration to novel target receptors in muscle tissue. New
approaches have sought to take advantage of a combination
of the aforementioned techniques. For example, Valerio et al.
(2020) reviewed a case series of 119 patients that underwent
simultaneous TMR and VDMT (referred to here as “vascularized
pedicled RPNI”). Only one patient developed a neuroma and
required a second TMR/vRPNI (Valerio et al., 2020).

Although multiple surgeries are viable options for neuroma
treatment, there is no clear superior method, and comparative
data are lacking (Elliot, 2014; Ives et al., 2018; Santosa et al.,
2020). This is, in part, due to limitations of current research
supporting each method, including relatively short follow-up,
small sample sizes, lack of control groups, and the use of non-
validated outcome measures (Ives et al., 2018).

CONCLUSION

Painful neuromas are problematic, and can lead to disability,
loss of productivity and decreased quality of life, in addition
to the financial burden they place on healthcare systems.
NTFs, which promote and guide PNR, are believed to
play an important role in neuroma formation, but the
molecular mechanisms of neuroma formation are not fully
understood. Although physical contact between regenerating
nerves and their target receptors arrests nerve regeneration
and neuroma formation, the mechanisms and signaling
pathways causing this arrest remain to be elucidated.
Moreover the target receptors within the muscle are still
not completely clear, though some research provides evidence
for muscle spindle reinnervation by sensory fibers. Better
understanding of such mechanisms can provide an insight into
treatment of neuromas.

FUTURE DIRECTIONS

Currently, surgical management remains the mainstay of
definitive treatment of neuromas. TMR, RPNI, and VDMT are
surgical approaches that take advantage of introducing target
receptors to regenerating sensory nerves in denervated muscle
tissue. Many other surgical and non-surgical treatments for
neuromas are available, but more comparative outcomes research
is required to establish the best approach to neuroma treatment.
Furthermore, studies elucidating the molecular signaling factors
and signaling cascades downstream can provide an insight for
future therapies. The study of the molecular factors that represent
a homing signal to arrest nerve regeneration upon contact
with target receptors can help develop therapeutic agonists
to prevent neuroma formation by signal mimicking. Mapping
downstream signaling cascades can provide ideas for molecular
interventions on the intracellular level. Finally, understanding
the molecular mechanisms of organized nerve regeneration
and how they differ from signaling in disorganized nerve
regeneration may help us develop therapeutics that reorganize
and enhance nerve fiber regeneration while avoiding neuroma
formation.
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