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disease and the spectrum of
amyotrophic lateral
sclerosis-frontotemporal
dementia
Sofia Bergh, Rachel Y. Cheong, Åsa Petersén* and
Sanaz Gabery
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Neurodegenerative disorders (NDDs) such as Huntington’s disease (HD) and

the spectrum of amyotrophic lateral sclerosis (ALS) and frontotemporal

dementia (FTD) are characterized by progressive loss of selectively vulnerable

populations of neurons. Although often associated with motor impairments,

these NDDs share several commonalities in early symptoms and signs that

extend beyond motor dysfunction. These include impairments in social

cognition and psychiatric symptoms. Oxytocin (OXT) is a neuropeptide known

to play a pivotal role in the regulation of social cognition as well as in

emotional behaviors such as anxiety and depression. Here, we present an

overview of key results implicating OXT in the pathology of HD, ALS and FTD

and seek to identify commonalities across these NDDs. OXT is produced in

the hypothalamus, a region in the brain that during the past decade has been

shown to be affected in HD, ALS, and FTD. Several studies using human post-

mortem neuropathological analyses, measurements of cerebrospinal fluid,

experimental treatments with OXT as well as genetic animal models have

collectively implicated an important role of central OXT in the development

of altered social cognition and psychiatric features across these diseases.

Understanding central OXT signaling may unveil the underlying mechanisms

of early signs of the social cognitive impairment and the psychiatric features in

NDDs. It is therefore possible that OXT might have potential therapeutic value

for early disease intervention and better symptomatic treatment in NDDs.
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Introduction

Neurodegenerative disorders (NDDs) are a group of diseases
caused by progressive and irreversible deterioration of neurons
within the central nervous system (CNS). Current treatment
is only symptomatic but does not modify disease progression
or reverse the neuronal dysfunction. These disorders are
characterized by selective cellular vulnerability to the pathogenic
process that often involve the accumulation of disease-
associated proteins. Important research questions are centered
on understanding the underlying mechanisms of selective
vulnerability as well as what changes occur early and could
be targeted for therapeutic disease-modifying interventions.
Recent work has indicated interesting similarities between
Huntington’s disease (HD) and the spectrum of amyotrophic
lateral sclerosis (ALS) and frontotemporal dementia (FTD)
(Vercruysse et al., 2018). The concept of an ALS and FTD
disease spectrum continuum has emerged, largely from an
overlap in pathological and genetic associations between the
two conditions (Neumann et al., 2006; Renton et al., 2011;
Strong et al., 2017). Although previous research has mainly
focused on the well-known disturbances in motor function
and accompanying neuropathology of movement-regulating
neurons for HD and ALS, recent work show early manifestation
of psychiatric symptoms and altered social cognition as well as
selective vulnerability of hypothalamic neurons in both HD and
the spectrum of ALS and FTD disorders (Vercruysse et al., 2018;
Gabery et al., 2021). Understanding the underlying mechanisms
of selective vulnerability of hypothalamic neurons and the link
to early psychiatric symptoms in these disorders may open
up for novel avenues for therapeutic interventions for these
disorders.

Several genes have been identified in the familial forms of
these NDDs. HD is caused by an expansion of the trinucleotide
CAG within the huntingtin (HTT) gene (HDCRG, 1993),
while there are several known genetic mutations in ALS
such as superoxide dismutase 1 (SOD1), chromosome 9 open
reading frame 72 (C9ORF72) and, trans-activation responsive
RNA-binding protein (TARBP). The latter two genes are also
affected in FTD as well as progranulin (GRN) and microtubule
associated protein tau (MAPT) (Taylor et al., 2016; Greaves
and Rohrer, 2019). Also, CAG expansions within the ataxin-2
have also been shown to be associated with ALS (Elden et al.,
2010).

Cognitive and social behavioral alterations are key early
features that are present in HD, ALS, and FTD (Craufurd
et al., 2001; Phukan et al., 2007; Paulsen et al., 2008; Steenland
et al., 2010; Ahmed et al., 2014; Bott et al., 2014; McCarter
et al., 2016; Herzog-Krzywoszanska and Krzywoszanski, 2019;
Blasco et al., 2020; Boentert, 2020; Singh and Agrawal, 2021).
In particular, social cognitive impairment (e.g., processing of
facial expression of emotions, theory of mind, and empathy) in
NDDs has the potential to disrupt interpersonal relationships,

thereby eliminating the benefits that social interactions may
bring for patients suffering from these debilitating conditions
(Christidi et al., 2018). The underlying biological mechanisms
mediating these features in NDDs are not well understood.
However, given that both altered social cognition as well
as psychiatric features constitute a common denominator in
the early phases across all three diseases, it is likely that
that there could also be common pathologies in HD, ALS,
and FTD.

Hypothalamic alterations can be observed in all three NDDs,
including loss of different hypothalamic neurons (Gabery et al.,
2010, 2015, 2021; Vercruysse et al., 2018; Ahmed et al.,
2021c). The neuropeptide oxytocin (OXT) has long been known
to play a pivotal role in the regulation of complex social
cognition and behaviors, including prosocial behavior and pair-
bonding (Heinrichs et al., 2009; Galbally et al., 2011; Odent,
2013) as well as in emotional behavior including anxiety and
depression (Neumann and Landgraf, 2012; Jurek and Neumann,
2018; Onaka and Takayanagi, 2019; Yoon and Kim, 2020).
OXT is synthesized in the paraventricular nucleus (PVN)
and supraoptic nucleus of the hypothalamus (Gimpl and
Fahrenholz, 2001). OXT binds to OXT-receptors (OXTR) that
are located throughout the brain most prominently within the
limbic structures (Jurek and Neumann, 2018). Interestingly,
in a recent study, distinct OXTR expression patterns have
been shown in psychiatric disorders as well as in metabolic
regulation processes across development in humans (Rokicki
et al., 2022). Furthermore, genetic variation of OXTR has also
been shown to be associated with social impairment in HD
(Saiz-Rodríguez et al., 2022). When exogenously administered,
OXT facilitates social encounters, improved social cognitive
outcomes as well as emotion recognition in healthy and clinical
groups characterized by social deficits, such as autism and
social anxiety disorder (Heinrichs et al., 2009; Keech et al.,
2018).

Other hypothalamic specific neuropeptides that have been
studied in NDDs include hypocretin (orexin) which has
been shown to be reduced in both HD and ALS (Gabery
et al., 2010, 2021) as well as in Parkinson’s disease (Fronczek
et al., 2007). Like OXT, hypocretin is exclusively produced
in the hypothalamus and is involved in the regulation of
sleep, emotion, and metabolism (Tyree et al., 2018). Other
hypothalamic specific neurons such as vasopressin has also been
shown to be reduced in HD (Gabery et al., 2010), but not in ALS
or FTD (Piguet et al., 2011; Gabery et al., 2021). Hypothalamic
expression of neuropeptide Y (NPY), a neuropeptide involved
mostly in appetite regulation has also been studied and is
preserved in HD, ALS, and FTD (Gabery et al., 2010; Piguet
et al., 2011).

Hence, several studies have indicated that the OXT system
may be implicated across both HD and the spectrum of
ALS/FTD and therefore constitute an interesting common
denominator (Gabery et al., 2010, 2015, 2021; Jesso et al., 2011;
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Finger et al., 2015). Given the role OXT has on social cognition
and emotional regulation, there may be a link between the
pathology in the OXT system identified in these disorders and
some of the early social cognitive and psychiatric features. OXT
system may provide a common therapeutic target for disease
intervention. Understanding similarities and differences of these
disorders including of how the OXT system is affected may
provide important information in that direction. This review
therefore focuses on the current state of knowledge regarding
changes in the OXT system in these particular NDDs and
highlights the major results obtained so far in this emerging
field.

Clinical features and neuropathology
of Huntington’s disease

The clinical diagnosis of HD is based on a positive
gene test in combination with the manifestation of overt
motor disturbances including chorea (exaggerated involuntary
movements), rigidity and gait imbalance (Novak and Tabrizi,
2010; Ross et al., 2014). The onset of motor disturbances usually
occurs in midlife (30–55 years of age) followed by 20 years
of disease progression. Individuals with HD also experience
a range of non-motor symptoms and signs. These include
cognitive changes, such as executive dysfunction and altered
social cognition, as well as psychiatric symptoms such as anxiety,
depression, irritability, and apathy (Duff et al., 2007; Paulsen
et al., 2008). The disease-causing mutation is an expansion of
a CAG trinucleotide repeat in the HTT gene which encodes
an extended polyglutamine (Q) of the HTT protein (HDCRG,
1993; Ross et al., 2014). Individuals carrying more than 36Q
will develop HD, but there is reduced penetrance if the patient
is carrying between 36 and 39Q (Duyao et al., 1993). Despite
a major hallmark of HD pathology being the formation of
intraneuronal aggregates of the mutant HTT protein, the role
of these aggregates in the pathogenesis is not well understood
(DiFiglia et al., 1997; Ross and Shoulson, 2009; Cisbani and
Cicchetti, 2012). In HD, the most pronounced neuropathology
is observed in the striatum of the basal ganglia and the cerebral
cortex which are regions associated with motor function
(Vonsattel et al., 1985). The site of pathology for psychiatric
signs and symptoms as well as altered social cognition is still
not established but may in part be explained by dysfunctional
neural circuities and neuronal cell death in the hypothalamus.
Hypothalamic alterations have been observed decades before
onset of motor disturbances (Politis et al., 2008; Soneson et al.,
2010; Cheong et al., 2019). Recent studies have aimed to increase
the understanding of the non-motor features of HD and in
particular the role of OXT in this paradigm. A summary of the
main results for the role of OXT in HD pathology can be found
in Table 1.

Changes in the oxytocin system in
Huntington’s disease

The first clinical study to investigate OXT pathology
in clinical HD was conducted by Gabery et al. (2010).
Immunohistochemically processed post-mortem brain tissue
from HD patients of different Vonsattel grades (grades 2–4)
revealed a selective 45% OXT neuronal loss as well as a reduced
cell size of the remaining OXT neurons. The Vonsattel grading
system is a five-step grading system (0–4) for neurodegeneration
in HD focusing on the striatum, the most affected brain region
(Vonsattel et al., 1985). Furthermore, a case report based on
one HD patient with Vonsattel grade 0 showed the same low
number of OXT-expressing neurons as late-stage HD patients
with Vonsattel grade 2–4 (Gabery et al., 2015). The same
patient had deceased before the onset of any motor signs
and symptoms, however, had developed anxiety and sleep
disturbances (Gabery et al., 2015). These results suggest that
early changes in hypothalamic neuronal populations expressing
emotion-regulating neuropeptides could contribute to the early
behavioral phenotype of HD. However, one study reported no
changes in number of OXT neurons within the PVN (van
Wamelen et al., 2012). This discrepancy in results may stem
from different quantification approaches used. In the study
from Gabery et al. stereological quantification with the physical
dissector principle was applied while this was not the case in the
study by van Wamelen et al. (2012).

In several studies, OXT has been measured in both blood
and cerebrospinal fluid (CSF) samples from individuals with
HD. A recent study showed a significant 38% reduction in OXT
CSF levels in individuals carrying the mutant HTT gene (Hellem
et al., 2022). No changes in OXT plasma levels in HD patients
have been found, highlighting that changes in OXT levels occur
centrally and not in the periphery (Unti et al., 2018; Fisher et al.,
2021; Hellem et al., 2022).

There are a number of different transgenic mouse models
for HD (Pouladi et al., 2013). A decrease in OXT mRNA levels in
the CNS of both the R6/2 mouse expressing a short fragment of
mutant HTT as well as HD190QG expressing a longer fragment
of mutant HTT gene was observed (Kotliarova et al., 2005).
A decrease of OXT mRNA levels has also been reported in a viral
vector model with overexpression of mutant HTT selectively
in the hypothalamus (Hult et al., 2011). Furthermore, R6/2
mice displayed loss of OXT-expressing neurons, which was not
found in two other HD animal models; the BACHD and the
HD190Q transgenic HD mice (Kotliarova et al., 2005; Soylu-
Kucharz et al., 2016; Henningsen et al., 2021). In the PVN of
HD190QG mice, lower levels of OXT mRNA were associated
with a high frequency of mutant HTT aggregates (Kotliarova
et al., 2005). Furthermore, pretreatment with OXT before
intracerebroventricular (icv) injection 3-nitropropionic acid (3-
NP)-induced HD mouse model prevented the development

Frontiers in Molecular Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnmol.2022.984317
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-984317 September 8, 2022 Time: 15:55 # 4

Bergh et al. 10.3389/fnmol.2022.984317

TABLE 1 Summary of oxytocin (OXT) results in Huntington’s disease (HD).

Tissue HD stage Analysis Treatment Results References

Clinical HD IHC, stereology ↓ Number of OXT neurons Gabery et al., 2010;
Gabery et al., 2015

IHC = Number of OXT neurons van Wamelen et al., 2012

IHC, stereology ↑ Atrophic OXT neurons Gabery et al., 2010

Premanifest and
manifest

EIA, ELISA, RIA = OXT plasma level Unti et al., 2018; Fisher
et al., 2021; Hellem et al.,

2022

Premanifest ELISA, SDMT, VDT ↑ OXT plasma levels
correlated with ↑

executive function

Fisher et al., 2021

Premanifest and
manifest

ELISA, PBA ↑ OXT plasma levels
correlated with ↓

depressive-symptoms

Fisher et al., 2021

Manifest EIA, faux-pas ↑ OXT correlated with ↑

social cognition
Unti et al., 2018

Premanifest fMRI, emotional face
matching task

Intranasal OXT adm. ↑ Ability to process disgust
stimuli

Labuschagne et al., 2018

Manifest RIA ↓ OXT CSF levels Hellem et al., 2022

RIA, MMSE, MoCA,
TASIT, EHt, RME

↓ OXT CSF levels
correlated with ↑

cognitive impairment

Hellem et al., 2022

HD190QG
(Mouse)

RT-PCR ↓ OXT mRNA Kotliarova et al., 2005

IHC = Number of OXT neurons Kotliarova et al., 2005

BACHD
(Mouse)

RIA ↓ OXT plasma level Cheong et al., 2020

RIA, EPM, FST, SIT ↓ OXT plasma levels with
↑ depressive-,

anxiety-like and altered
social behavior

Cheong et al., 2020

FST Intranasal OXT adm. ↓ Depressive-like
symptoms

Cheong et al., 2020

IHC, stereology = Number of OXT neurons Soylu-Kucharz et al.,
2016

IHC, stereology QA injection = Number of OXT neurons Henningsen et al., 2021

R6/2
(MOUSE)

RT-PCR ↓ OXT mRNA levels Kotliarova et al., 2005

IHC, stereology ↓ Number of OXT neurons Henningsen et al., 2021

IHC, stereology QA injection = Number of OXT neurons Henningsen et al., 2021

AAV-MHTT
(Mouse)

RT-PCR mHTT AAV vector
injection

↓ OXT mRNA Hult et al., 2011

NP-3
(Rat)

OFT, EPM, FST icv OXT injection ↓ Anxiety- and
depressive-like

symptoms

Khodagholi et al., 2022

Western blot, ellman
method

icv OXT injection ↑ OXTR, mGluR2, GSH
levels

Khodagholi et al., 2022

Western blot icv OXT injection ↓ mGluR5 levels Khodagholi et al., 2022

↓: decrease in symptomatic or abundance, ↑: increase in abundance, =: no change in neuronal population. adm, administration; AAV, adeno-associated virus; EHt, emotion hexagon test;
EIA, enzyme inhibition assay; ELISA, enzyme-linked immunosorbent assay; EPM, elevated plus maze; FST, forced swim test; IHC, immunohistochemistry; icv, intracerebroventricular
injection; mHTT, mutant huntingtin; MoCA, Montreal cognitive assessment; MMSE, mini mental state examination; OFT, open field test; QA, quinolinic acid; RIA, radioimmunoassay;
RME, reading the mind of the eyes; RT-PCR, real-time polymerase chain reaction; PBA, problem behaviors assessment; SDMT, symbol digit modalities test; SIT, social interaction test;
TASIT, the awareness of social interference test; VDT, verbal fluency test.

of several changes including decreased levels of the OXT
receptor, mGluR2 and glutathione as well as increased mGluR5
levels in the striatum, hippocampus, prefrontal cortex, and
amygdala (Khodagholi et al., 2022). These results indicate
that OXT might have a protective effect on these molecular
changes in HD. However, the OXT neuronal population
appear to be resistant to quinolinic acid induced toxicity

(Henningsen et al., 2021), which is an excitotoxin that has
been linked to a loss of medium spiny neurons in the
striatum of HD (Beal et al., 1986, 1991; Ferrante et al.,
1993). This suggests that the vulnerability of OXT expressing
neurons in HD is not caused by excitotoxicity. The underlying
mechanisms of OXT loss in HD are not known and need further
study.
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Effects of oxytocin on social cognition
and psychiatric features in
Huntington’s disease

Oxytocin has previously been established to have an
important role in social cognition. Clinical studies have revealed
a link between OXT and social cognition in HD. In HD patients,
the ability to process emotions such as disgust, fear, anger, sad,
surprise, and happiness is reduced (Labuschagne et al., 2018).
Interestingly, a higher baseline level of OXT in the plasma was
associated with a better recognition of emotion facial expression
in HD gene carriers at an early disease stage before any onset
of motor signs and symptoms onset (premanifest HD) (Unti
et al., 2018). Moreover, intranasal OXT treatment normalized
the ability of premanifest patients to process disgust stimuli
(Labuschagne et al., 2018). More recently, Hellem et al. (2022)
reported that HD patients with social cognitive impairment had
significantly lower OXT CSF levels, suggesting a correlation
between OXT CSF levels and social cognitive function. OXT
may also be associated with executive dysfunction in HD.
A clinical pilot study revealed that premanifest HD patients with
higher OXT plasma levels performed better at cognitive tasks
including verbal functioning, visual spatial attention, processing
speed and working memory (Fisher et al., 2021). With an unmet
clinical need for HD biomarkers, both OXT CSF and plasma
levels may give some indication of the status of social cognitive
deficits in HD.

Oxytocin could also play a role for the neuropsychiatric
features of HD. In clinical HD, a positive correlation between
OXT plasma levels and depression in both motor manifest
and premanifest HD patients has been observed (Fisher
et al., 2021). In the BACHD mouse model, OXT plasma
level is lower than in wild-type littermates with increased
depressive-, anxiety-like and social behavior (Cheong et al.,
2020). Moreover, acute intranasal OXT administration reduced
depressive-like behavior in this mouse model with no effect
on anxiety-like behavior (Cheong et al., 2020). Furthermore,
pretreatment with OXT injections prior to icv NP-3 injection
in rats prevented the development of anxiety-and depressive-
like behavior (Khodagholi et al., 2022). These results suggest
that OXT might have protective effects and should be
further investigated as a potential treatment in preventing the
development of depressive and/or anxious phenotype in HD.

Clinical features and neuropathology
of frontotemporal dementia

Frontotemporal dementia is a group of NDDs that are
characterized by progressive altered behavior and decline in
executive functions. FTD is the second most common dementia
after Alzheimer’s disease (Ahmed et al., 2021b). Clinically it is
subdivided into three main types including behavioral-variant

frontotemporal dementia (bv-FTD), semantic dementia and
progressive non-fluent aphasia (Neary et al., 1998; Hodges
and Patterson, 2007). bv-FTD is the most common form and
comprises over 50% of all FTD cases. The syndrome has an early
age of onset with a mean around 50 years of age and disease
duration of approximately 8 years. Affected individuals have
a range of clinical symptoms such as behavioral disinhibition,
hallucinations, apathy, executive dysfunction as well as changes
in eating behavior with hyperorality (Woolley et al., 2007;
Rascovsky et al., 2011). However, a central feature in this
condition is the early progressive loss of empathy and social
cognition (Rankin et al., 2005). As such, considerable amount
of research has during the past two decades been devoted to
this topic. Impaired recognition of the facial expression of
emotions occurs at an early stage, which in turn complicates the
engagement or response to social cues (Keane et al., 2002; Rosen
et al., 2004). Regions in the brain that are thought to be involved
in social cognition include frontal, temporal and parietal lobes,
which are the regions with predisposition to neuropathological
changes and atrophy in FTD (Kennedy and Adolphs, 2012;
Ahmed et al., 2021b).

Psychiatric symptoms can often initially mask an FTD
diagnosis, as several of the symptoms overlap with other
psychiatric syndromes such as obsessive-compulsive disorder,
bipolar disorder and major depressive disorder (MDD). Around
50% of patients with bv-FTD receive initially a psychiatric
diagnosis (Woolley et al., 2011). Neuroimaging studies have
revealed a loss of gray matter in both MDD and bipolar disease
that overlap with the affected regions in FTD (Peet et al., 2021).
This, therefore, poses a diagnostic difficulty in the clinical setting
(Ducharme et al., 2020). Recently, post-mortem analysis on
brain tissue from FTD cases have shown a correlation between
psychiatric symptoms and a higher abundance of the transactive
response DNA-binding protein 43 kDa (TDP-43) inclusion
pathology (Scarioni et al., 2020).

Clinical features and neuropathology
of amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis is a fast-progressing NDD
associated with both upper and lower motor neuron dysfunction
leading to muscle weakness and bulbar dysfunction (Taylor
et al., 2016). The disease onset occurs commonly in mid-
adulthood (at a mean age of 55 years) with death typically
3–5 years after diagnosis usually due to respiratory failure (Zarei
et al., 2015; Taylor et al., 2016). ALS patients also exhibit a range
of non-motor symptoms including altered energy metabolism
and eating behavior (Dupuis et al., 2011; Ahmed et al., 2016,
2021b). Pathological findings have been observed in the frontal
and temporal cortices as well as in the hypothalamus that may
underlie some of these changes (Neumann et al., 2006; Gabery
et al., 2021).
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Psychiatric symptoms such as apathy and depression have
also been described in ALS, which have been shown to precede
the onset of motor symptoms (Mioshi et al., 2014; Caga et al.,
2018, 2021). In particular, depression is reported before and after
diagnosis (Turner et al., 2016). Recent studies indicate that social
cognitive impairment and emotion facial expression processing
deficits is present in ALS patients. Also, an increased atrophy
of the fornix, the main white matter tract of the limbic system,
has shown to correlate with increased behavioral changes in
ALS patients (Gabery et al., 2021). A recent report has shown
that ALS patients have more difficulty with recognition of facial
expression of emotions such as disgust, anger, fear and sadness
(Palumbo et al., 2022). These findings suggest that the OXT
pathway might be affected in ALS.

Overlap between amyotrophic lateral
sclerosis and frontotemporal dementia

In recent years, a growing amount of evidence point
toward that ALS and a large proportion of FTD are part
of a disease spectrum continuum (Clark and Forman, 2006).
Approximately 15% of FTD patients develop ALS-associated
motor signs and symptoms and 15–18% of ALS patients exhibit
FTD-like symptoms (Burrell et al., 2011; Lattante et al., 2015;
Taylor et al., 2016). This concept was potentiated further with
the discovery of the C9ORF72 expansion causing both ALS
and FTD (DeJesus-Hernandez et al., 2011; Hodges, 2012).
Both conditions share overlap at the neuropathological level
including cytoplasmic TDP-43 inclusions in both neurons and
glia cells (Buratti and Baralle, 2008, 2012).

Changes in the oxytocin system in
amyotrophic lateral sclerosis and
frontotemporal dementia

For FTD and ALS, the symptomatology and the clinical
presentation suggest involvement of key physiological functions
of the hypothalamus, which might even precede the onset of
the cognitive and motor symptoms development (Vercruysse
et al., 2018; Ahmed et al., 2021a). Significant atrophy of the
hypothalamus is present on structural magnetic resonance
imaging (MRI) as well as on post-mortem analyses in patients
with bv-FTD and ALS (Piguet et al., 2011; Gorges et al., 2017;
Gabery et al., 2021). So far, only a few studies have investigated
OXT in ALS and FTD.

Recently, a 33% loss of OXT-expressing neurons in post-
mortem tissue from ALS patients was reported together
with the presence of TDP-43 inclusions in OXT-expressing
neurons (Gabery et al., 2021). In bv-FTD, promising results
have been observed during pharmacological treatments with

OXT mainly targeting loss of empathy and the ability to
process facial expression of emotions. So far, two small
randomized controlled trials with intranasal OXT treatment
have shown safety and tolerability as well as significant
improvement in neuropsychiatric inventory scores assessing
agitation, depression, apathy and irritability (Table 2; Jesso et al.,
2011; Finger et al., 2015). However, larger randomized control
trials are required before more definitive conclusions of the
potential positive therapeutic effects of OXT can be made.

Furthermore, using blood oxygen level dependent signal
during functional MRI, intranasal OXT treatment showed
enhanced activity in limbic regions associated with processing
of facial expression of emotions (Oliver et al., 2020). However,
to date, no studies have investigated OXT in animal models of
ALS or FTD. Nevertheless, these findings together highlight the
potential of OXT as symptomatic treatment for deficits.

Similarities across Huntington’s disease
and the spectrum of amyotrophic
lateral sclerosis and frontotemporal
dementia disorders

The role of OXT has evolved from solely being related to
parturition and breastfeeding to be able to modulate aspects
of social behavior as well as emotional regulation. As these
functions are affected early on in HD and the spectrum
of ALS/FTD, OXT may play an important role (Figure 1).
Impairments in social cognition as well as a reduced ability to
recognize facial expression of emotions in all three conditions
have been established (Craufurd et al., 2001; Christidi et al.,
2018; Keech et al., 2018; Palumbo et al., 2022). This could be
associated with OXT, in particular in HD and FTD in which
direct correlations of OXT levels has been found (Jesso et al.,
2011; Labuschagne et al., 2018; Unti et al., 2018; Hellem et al.,
2022). Moreover, hypothalamic pathology has been identified in
all three conditions with a selective OXT loss in HD and ALS.
Histopathological findings such as HTT inclusions in HD as well
as presence of TDP-43 inclusions in OXT-expressing neurons
suggest a selective vulnerability of this neuronal population to
the presence of mutant HTT and TDP-43 (Gabery et al., 2010,
2021). To date, no studies have investigated the number of
OXT cells in FTD. Collectively, these findings could indicate a
mechanistic overlap across all three NDDs.

Furthermore, pharmacological administration with
exogenous OXT improved processing of facial expression of
emotions in both HD and FTD, thus supporting the possibility
of a therapeutic application of OXT in the future. However,
chronic administration of OXT at least in rodents lead to
anxiety, via alternative splicing of Crfr2a (Winter et al., 2021),
which needs to be considered in the development of clinical
applications.
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TABLE 2 Summary of oxytocin (OXT) results in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).

Tissue Condition Analysis Treatment Results References

Clinical
ALS/FTD

ALS IHC, stereology ↓ Number of OXT neurons Gabery et al., 2021

FTD Intranasal OXT adm. Safe and well tolerated Finger et al., 2015

FTD Facial expression
recognition task,
neuropsychiatric
inventory scale

Intranasal OXT adm. ↑ Emotion recognition
Improvement in
neuropsychiatric
inventory score

Jesso et al., 2011

FTD fMRI, Bold Intranasal OXT adm. ↑ Increased activity in
limbic regions

Oliver et al., 2020

↓: decrease in neuronal population, ↑: improvement in capacity. IHC, immunohistochemistry; fMRI, functional magnetic resonance imaging; BOLD, blood oxygenation level dependent.

FIGURE 1

An overview of changes in the oxytocin system in Huntington’s disease and amyotrophic lateral sclerosis-frontotemporal dementia. The
illustration summarizes the main positive results from studies investigating the oxytocin (OXT) system in Huntington’s disease (HD), amyotrophic
lateral sclerosis (ALS) and frontotemporal dementia (FTD). A decrease is indicated by the downward arrows, lack of change is indicated by an
equal sign. Abbreviations, CSF, cerebrospinal fluid; HTT, huntingtin; TDP-43, transactive response DNA-binding protein 43 kDa.

Conclusion

In this review, we provided a summary of the main results
implicating changes in the OXT system related to HD, ALS
and FTD in the literature. Across all three conditions, the
impairments in social cognition and neuropsychiatric behavior

occur early in the disease progression, prior to the onset of
motor disturbances. OXT neuropathology may at least in part
explain the development of these early features. There is an
unmet need for biomarkers to track early disease progression
in HD, ALS, and FTD. Levels of OXT in both CSF and
plasma have been shown to track certain social cognitive
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features, rendering OXT a potential biomarker candidate. Also,
initial pharmacological intervention with OXT shows promising
results. However, more experimental studies are needed to
further determine the causative role of OXT in the development
of the social and psychiatric impairments in HD, ALS, and FTD.
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