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The involvement of mitochondrial dysfunction in cystatin B (CSTB) deficiency has 
been suggested, but its role in the onset of neurodegeneration, myoclonus, and 
ataxia in the CSTB-deficient mouse model (Cstb−/−) is yet unknown. CSTB is an 
inhibitor of lysosomal and nuclear cysteine cathepsins. In humans, partial loss-of-
function mutations cause the progressive myoclonus epilepsy neurodegenerative 
disorder, EPM1. Here we applied proteome analysis and respirometry on cerebellar 
synaptosomes from early symptomatic (Cstb−/−) mice to identify the molecular 
mechanisms involved in the onset of CSTB-deficiency associated neural 
pathogenesis. Proteome analysis showed that CSTB deficiency is associated with 
differential expression of mitochondrial and synaptic proteins, and respirometry 
revealed a progressive impairment in mitochondrial function coinciding with the 
onset of myoclonus and neurodegeneration in (Cstb−/−) mice. This mitochondrial 
dysfunction was not associated with alterations in mitochondrial DNA copy 
number or membrane ultrastructure. Collectively, our results show that CSTB 
deficiency generates a defect in synaptic mitochondrial bioenergetics that 
coincides with the onset and progression of the clinical phenotypes, and thus is 
likely a contributor to the pathogenesis of EPM1.
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1. Introduction

Progressive myoclonus epilepsy EPM1 (Unverricht-Lundborg disease; OMIM 254800), 
caused by biallelic partial loss-of-function mutations in the cystatin B (CSTB) gene (Pennacchio 
et al., 1996; Joensuu et al., 2008), is a neurodegenerative disorder manifesting with minor or no 
cognitive decline (Koskiniemi et al., 1974; Kälviäinen et al., 2008). Patients develop severely 
disabling and treatment-resistant myoclonus and tonic–clonic epileptic seizures between 6 and 
16 years of age, followed by ataxia, incoordination and dysarthria (Koskiniemi et al., 1974; 
Kälviäinen et al., 2008). Magnetic resonance imaging of EPM1 patient brains show widespread 
degenerative changes in both white and grey matter (Koskenkorva et al., 2009, 2012; Manninen 
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et al., 2013), and MRI-navigated transcranial magnetic stimulation 
analyses altered cortical responses (Danner et al., 2009; Julkunen et al., 
2013). Postmortem analyses have shown widespread atrophy, neuronal 
loss, and gliosis in both cerebrum and cerebellum (Haltia et al., 1969; 
Koskiniemi et al., 1974; Eldridge et al., 1983; Cohen et al., 2011).

Most EPM1 patients are homozygous for a 12-nucleotide repeat 
expansion mutation in the promoter region of CSTB, reducing CSTB 
mRNA and protein expression to less than 10% of that in controls 
(Joensuu et al., 2007). Patients that are compound heterozygous for 
the repeat expansion and a truncating null mutation have a more 
severe phenotype with an earlier onset and poorer cognitive 
performance (Koskenkorva et al., 2011; Canafoglia et al., 2012). In 
contrast, patients homozygous for two null mutations manifest a 
severe neonatal-onset progressive encephalopathy that is clinically 
distinct from EPM1 (Mancini et al., 2016; O’Brien et al., 2017). These 
genotype–phenotype correlations suggest that CSTB is essential for 
normal brain development and for maintaining neuronal integrity in 
mature brain. The CSTB deficient knockout mouse (Cstb−/−) is a 
model for EPM1. It recapitulates the key clinical features and 
pathological changes of the disorder: myoclonus, progressive ataxia, 
and grey and white matter degeneration (Pennacchio et al., 1998; 
Tegelberg et al., 2012; Manninen et al., 2013, 2014).

Cystatin B is a ubiquitously expressed inhibitor of cysteine 
proteases of the cathepsin family (Green et al., 1984; Čeru et al., 2010) 
showing both cytoplasmic and nuclear localization. In the cytoplasm, 
CSTB partially co-localizes with lysosomal markers (Alakurtti et al., 
2005) and is thought to prevent inappropriate proteolytic activity and 
redistribution of cysteine cathepsins in the cytosol (Boya and 
Kroemer, 2008). In line with its lysosomal association, CSTB function 
has been linked to protecting neurons from oxidative damage through 
an oxidative stress-responsive cystatin B-cathepsin B signaling 
pathway (Lehtinen et al., 2009). In the nucleus, CSTB interacts with 
histones and cathepsin L, which affects cell cycle regulation and 
proteolytic cleavage of the histone H3 tail (Čeru et al., 2010; Daura 
et al., 2021). Downstream effects of CSTB function are implicated in 
several cellular and biological processes, including inflammation 
(Tegelberg et  al., 2012; Maher et  al., 2014; Okuneva et  al., 2016), 
apoptosis (Pennacchio et al., 1998), neurogenesis (Di Matteo et al., 
2020; Daura et al., 2021), and synapse physiology (Joensuu et al., 2014; 
Penna et  al., 2019; Gorski et  al., 2020). CSTB deficiency induces 
widespread physiological and pathological changes in the mouse 
brain, which are most pronounced in the cerebellum. This includes 
progressive loss of cerebellar granule cells from 1 month of age 
onwards (Pennacchio et al., 1998) and a decrease in the cerebellar 
volume by 50% at 6 months of age (Tegelberg et  al., 2012). Other 
changes include altered GABAergic signaling (Joensuu et al., 2014), 
glial activation (Tegelberg et al., 2012) and inflammation (Okuneva 
et al., 2016). All of these events precede neuronal death.

To gain insight into the molecular defects associated with synaptic 
function in Cstb−/− mice, we  previously performed a quantitative 
proteomics study of cerebellar synaptosomes isolated from 
presymptomatic two-week old mice (Gorski et al., 2020). We found 
that one third of the cerebellar synaptosomal proteins that differed in 
abundance belong to the mitochondrial proteome, primarily those 
involved with oxidative phosphorylation (OXPHOS). These data 
imply that mitochondrial dysfunction is associated with the early 
pathogenesis of altered synaptic function in CSTB deficiency. In line 
with these findings, neural progenitor cells from Cstb−/− mice had 

altered mRNA expression levels of nuclear-encoded OXPHOS genes 
and impaired mitochondrial respiration upon neural stem cell 
differentiation (Daura et al., 2021).

In the present study, we  investigated cerebellar synaptosomes 
from symptomatic Cstb−/− mice early in the phenotype onset. Our 
results show that changes in the mitochondrial proteome and 
respiration are linked to the early onset of myoclonus and 
neurodegeneration. Collectively, our study expands the current 
understanding of mitochondrial involvement in the early neuronal 
pathology in CSTB deficiency.

2. Materials and methods

2.1. Ethics statement

The Animal Ethics Committee of the State Provincial Office of 
Southern Finland approved all animal research protocols (decisions 
ESAVI/10765/2015 and ESAVI/471/2019).

2.2. Mice

Cstb−/− mice were derived from The Jackson Laboratory (Bar 
Harbor, ME; 129-Cstbtm1Rm/SvJ; stock #003486) (Pennacchio et al., 
1998). Wild type mice of same age and background were used as 
controls. Heterozygous Cstb+/− males were backcrossed with inbred 
wild type females to expand the colony from heterozygous 
littermates and to maintain the Cstb−/− mouse line. The genetic 
background of the mouse colony was refreshed annually with wild 
type females, and F1-F3 generations were used for experimental 
procedures. Mice were sacrificed by carbon dioxide euthanasia, 
followed by cervical dislocation.

2.3. Synaptosome isolation

For proteomics analysis, cerebellar synaptosomes from P30 
Cstb−/− and wild type mice were isolated using a sucrose-based 
separation protocol, as previously described (Gorski et al., 2020). 
For analyses of high-resolution respirometry, mitochondrial DNA 
(mtDNA) copy number, immunoblot, and electron microscopy, 
cerebellar synaptosomes from P30 and P45 Cstb−/− and wild type 
mice were isolated using a Percoll-based separation protocol, 
modified from protocols by Dunkley et al. (2008) and Tenreiro et al. 
(2017). Briefly, cerebella were dissected and rinsed three times in 
ice-cold homogenization buffer (H1; 0.32 M sucrose, 1 mM EDTA, 
5 mM Tris, pH 7.4), followed by homogenization with 10 even 
strokes in ice-cold H1 using a glass-Teflon homogenizer. The 
homogenizer was rinsed with an equal volume of H1, and the 
combined homogenate was centrifuged at 1000 × g for 10 min at 
+4°C. The resulting supernatant was further centrifuged at 14000 × g 
for 20 min at +4°C. The resulting pellet was resuspended in 45% 
Percoll (Cytiva, MA, United  States) (v/v; Percoll:H1), and 
centrifuged at 14000 × g for 2 min at +4°C. The synaptosomal-
enriched fraction on the top layer was washed with four volumes 
H1 and pelleted twice at 14000 × g for 2 min at +4°C with an 
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additional H1 wash in between. Synaptosomal purity and protein 
enrichment were analyzed by immunoblotting (Figure 1).

2.4. Proteomics

2.4.1. Sample preparation and LC–MS/MS analysis
Lipids were removed from synaptosome samples (n = 5 + 5 

mice/genotype) as previously described (Gorski et al., 2020). Briefly, 
samples were incubated overnight at −20°C in five volumes ice-cold 
(−20°C) acetone and centrifuged twice at 1000 × g for 10 min at 
+4°C with an additional acetone wash in between. Pellets were air 
dried for 5 min and resuspended in freshly prepared 6.0 M 
urea/25 mM ammonium bicarbonate. Protein concentrations (μg/
μl) were determined spectrophotometrically using the BCA protein 
assay kit (Pierce, Thermo Fisher Scientific) according to the 
manufacturer’s instructions.

For proteome analysis, 5 μg of each sample was reduced and 
alkylated using dithiothreitol (DTT) and iodoacetamide (IAA), and 
the urea concentration was diluted to 1 M, followed by overnight 
digestion with trypsin (Promega Corporation, WI, USA) at 
+37°C. Peptides were desalted and concentrated by the STAGE-TIP 
method using a C18 resin disk (3 M Empore). Samples were eluted 
with 0.1% formic acid/60% acetonitrile, dried, and solubilized in 7 μl 
0.1% formic acid prior to mass spectrometry analysis. Each peptide 
mixture was analyzed using an EASY-nLC system coupled to the 
QExactive Plus mass spectrometer (ThermoElectron, Bremen, 
Germany) equipped with the EASY Spray PepMap®RSLC column 
(C18, 2 μl, 100 Å, 75 μm x 25 cm) using a 120 min LC 
separation gradient.

2.4.2. Protein identification, label-free 
quantification and bioinformatic analyses

The resulting MS raw files were submitted to the MaxQuant 
software (Cox and Mann, 2008) version 1.6.2.10 for protein 
identification and label-free quantification. Carbamidomethyl (C) was 
set as a fixed modification, and acetyl (protein N-term), carbamyl 
(N-term) and oxidation (M) were set as variable modifications. First 
search peptide tolerance of 20 ppm and main search error 4.5 ppm 
were used. Trypsin without proline restriction enzyme option was 
used with two allowed miscleavages. The minimal unique + razor 
peptides number was set to 1, and the allowed false discovery rate 
(FDR) was 0.01 (1%) for peptide and protein identification. Label-free 
quantitation (LFQ) was employed with default settings. The Uniprot 
database with ‘mouse’ entries (January 2019) was used for the 
database searches.

The mass spectrometry proteomics data have been deposited to 
the ProteomeXchange Consortium1 via the PRIDE partner repository 
(Vizcaíno et al., 2013) with the dataset identifier PXD040382.

2.4.3. Data processing and analysis
The LFQ values were log10 -transformed, filtered to include only 

proteins identified and quantified in at least three out of five replicates 
in at least one experimental group, and missing values were imputed 
with default settings. Based on Principal component analysis, one wild 
type sample was removed as an outlier before statistical testing. To 
find statistically significant differences between the two groups 

1 http://proteomecentral.proteomexchange.org

FIGURE 1

Synaptosomal fractionation and characterization. (A) Schematic presentation of synaptosome isolation from mouse cerebella (pink) using sucrose and 
Percoll. Synaptosome preparations consist of functional pre- and postsynaptic terminals containing organelles, synaptic vesicles, and receptors for 
neurotransmitters. (B) Immunoblot detection of pre- and postsynaptic proteins Synaptophysin (SYP) and Post-synaptic density 95 (PSD-95), 
respectively, and depletion of Histone deacetylase 2 (HDAC2) show synaptic protein enrichment in synaptosome preparations (Syn) compared to 
cerebellar lysate (Lys). Mitochondrial abundance is shown in Percoll-fractions by detection of Mitochondrial import receptor subunit TOM40. Cytosolic 
proteins are represented by β-tubulin and cyclin dependent kinase 5 (CDK5). Sucrose and Percoll-isolated fractions were used for mass spectrometry, 
and analyses of synaptic mitochondria, respectively. Mt., mitochondria; S, SYP; C, cytoplasm; P, PSD-95. Asterisk indicates carry-over signal.
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(Cstb−/− vs. wild type), t-test was performed using permutation-based 
FDR ≤ 0.05 as cut-off.

Downstream analyses were conducted to proteins with a q-value 
<0.05 using the following softwares and statistical tests: PANTHER 
(version 17.0, released 2022-22-02) Overrepresentation Test (Released 
20,220,712) (Mi et  al., 2013) using the Gene Ontology (GO) 
enrichment analysis tool (Ashburner et  al., 2000; Gene Ontology 
Consortium, 2021) and Reactome pathway analysis (Wu and Haw, 
2017) version 65 (released 2021-10-01), using Fisher’s exact test 
followed by Benjamini–Hochberg correction (FDR) for multiple 
testing, considering FDR <0.01 statistically significant; DAVID 
functional annotation clustering version 2021 (Huang et al., 2009a,b), 
using medium classification stringency, and EASE scoring followed by 
Benjamini–Hochberg correction (FDR) for multiple testing, 
considering FDR <0.05 statistically significant, and Heatmapper 
(Babicki et al., 2016), using average linkage clustering. Mitochondrial 
proteins and their functions were retrieved using MitoCarta3.0 (Rath 
et  al., 2021). The software Inkscape2 was used for visualization of 
the data.

2.5. High-resolution respirometry

Mitochondrial oxygen consumption rates were measured from 
freshly isolated synaptosome fractions of P30 and P45 Cstb−/− and wild 
type mice (n = 7 + 7/age group, males and females) using a high-
resolution oxygraph (Oroboros Instruments GmbH, Innsbruck, 
Austria). Samples were resuspended in respiration buffer (0.5 mM 
EGTA, 3 mM MgCl2, 60 mM Lactobionic acid, 20 mM Taurine, 10 mM 
KH2PO4, 20 mM HEPES, 110 mM d-Sucrose, 1% fat-free BSA), and 
oxygen consumption rates [pmol/(s*mg synaptosomal proteins)] were 
measured at 37°C according to a substrate-uncoupler-inhibitor-
titration (SUIT) protocol as previously described (Awadhpersad and 
Jackson, 2021).

Briefly, measurements were performed in the presence of 1 mM 
malate, 5 mM pyruvate and 5 mM glutamate, and additional substrates 
and inhibitors were injected to oxygraph chambers in the following 
order: (i) 1.25 mM ADP; (ii) 10 mM succinate; (iii) 1 μg/ml oligomycin 
A; (iv) titration of carbonyl cyanide 4-(trifluoromethoxy) 
phenylhydrazone (FCCP); (v) 0.5 μM rotenone; (vi) 1 μg/ml antimycin 
A; (vii) 2 mM ascorbate; (viii) 0.5 mM N,N,N′,N′-tetramethyl-p-
phenylenediamine (TMPD); and (ix) 10 mM sodium azide. All 
substrates and inhibitors were purchased from Sigma Aldrich (Saint 
Louis, MO, United States). Polarographic oxygen sensors monitored 
changes in oxygen concentration as substrates and inhibitors were 
applied, and changes in oxygen concentration and consumption were 
plotted over time.

The DatLab software (Oroboros Instruments GmbH, Innsbruck, 
Austria) was used for calculating oxygen consumption rates (OCR). 
Rates were normalized to sample protein concentration, determined 
using the BCA protein assay kit (Pierce, Thermo Fisher Scientific) 
according to the manufacturer’s instructions.

CI and CII-linked coupled respiration was achieved after addition 
of succinate (ii), leak-respiration after uncoupling the ATP-synthase 

2 https://inkscape.org

(CV) from the electron transport system using oligomycin, and 
maximal uncoupled respiration by titrating FCCP until no further 
increase in respiration was detected. Complex IV (CIV) -dependent 
respiration was achieved by addition of ascorbate (vii), TMPD (viii), 
and sodium azide (ix). The difference between oxygen consumption 
before and after addition of sodium azide was considered as 
CIV-dependent respiration. Residual oxygen consumption (ROX) 
values were achieved after addition of rotenone (v) and antimycin A 
(vi), and subtracted from all oxygen consumption rates to correct for 
non-mitochondrial oxygen consumption. The coupling control ratio 
(CCR) was calculated according to the protocol by the MitoEAGLE 
Task Group (Gnaiger et al., 2020).

2.6. Immunoblot analysis

2.6.1. Sample preparation
For immunoblot analysis, synaptosome samples were diluted in 

lysis buffer (50 mM This-HCl pH 7.5, 100 mM NaCl, 1 mM DTT) with 
1% n-Dodecyl-beta-Maltoside (DDM) (Thermo Fisher Scientific, 
Waltham, MA, United  States), and protease and phosphatase 
inhibitors (Pierce Protease and Phosphatase Inhibitor Mini Tablets, 
Thermo Fisher Scientific), and incubated on ice for 15 min. Protein 
concentrations (μg/μl) were determined spectrophotometrically using 
the BCA protein assay kit (Pierce, Thermo Fisher Scientific) according 
to the manufacturer’s instructions.

2.6.2. SDS-PAGE, electroblotting, and antibodies
Protein samples were mixed with Laemmli buffer containing 

β-mercaptoethanol, and proteins were separated in stain-free 4–20, 
7.5%, or all kD pre-cast gels (TGX Stain-Free, BioRad, CA, 
United States) and electroblotted to PVDF membranes (Trans-blot 
Turbo Transfer pack, BioRad). Membranes were blocked in 5% milk/
PBST for 60 min at r/t and incubated with primary antibodies against 
SYP (M0776, Dako; 1:500), HDAC2 (05–814, Millipore, 1:500), 
PSD-95 (610,495, BD Transduction Laboratories, 1:500), CDK-5 
(05–364, Upstate, 1:2000), VDAC-1 (ab14734, Abcam; 1:4000), 
Vinculin (ab129002, Abcam; 1:4000), SDHA (ab14715, Abcam; 
1:10000), mtCO1 (ab14705, Abcam; 1:3000), Atp5b (17247-1-AP, 
Proteintech, 1:5000), TOM40 (sc-11,414, Santa Cruz; 1:2000), TOM20 
(11802-1-AP, Proteintech, 1:4000), OPA1 (612,606, BD Biosciences, 
1,1,000), and β-tubulin (T4026, Sigma Aldrich; 1:5000) o/n at 
+8°C. Secondary antibodies against mouse (P0447, DAKO) and rabbit 
(P0399, DAKO), diluted 1:5000 in 1% milk/PBST +0.01% SDS, were 
incubated for 60 min at r/t. Antibody detection and signal intensity 
quantification was performed using the ChemiDoc XRS+ imaging 
system (BioRad, CA, United States) utilizing stain-free technology for 
total protein normalization, or the Odyssey Infrared Imaging system 
(LI-COR Biosciences).

2.7. Mitochondrial DNA copy number 
analysis

2.7.1. Standard curve preparation
Mitochondrial DNA (mtDNA) copy number (cn) was 

quantified from cerebellar synaptosomes of P30 and P45 
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Cstb−/− and wild type mice using a standard curve-based method, 
as previously described (Rooney et al., 2015). Briefly, a standard 
curve of template copies using a plasmid [501–1 mtDNA in the 
pBR325 backbone (Blanc et al., 1981)] was amplified in a 2-fold 
dilution series ranging from 4,000 to 256,000 copies. The 
standard line was plotted as log (plasmid copy number)  
versus real-time quantitative PCR (RT-qPCR) cycle threshold 
(Ct). Ct values were obtained from the RT-qPCR 
amplification plots.

2.7.2. DNA isolation from synaptosomes
Total DNA was isolated from synaptosomes (n = 10–13/

genotype/age group, males and females) using the DNeasy Blood 
& Tissue Kit (Qiagen, Venlo, Netherlands) according to the 
manufacturer’s instructions. Prior to lysis, samples were 
resuspended in ice-cold 1xPBS, and 50% of the sample volume 
was removed and used for determination of protein concentration 
using the BCA protein assay kit (Pierce, Thermo Fisher Scientific) 
according to the manufacturer’s instructions. Stock DNA (sDNA) 
elution volume was set to 20 μl and samples of working 
concentration DNA (wDNA) of approximately 0.1 ng/μl were 
diluted of these. The concentrations of sDNA and wDNA were 
assessed using the Qubit dsDNA HS Assay Kit (Thermo 
Fisher Scientific).

2.7.3. Real-time quantitative PCR
For each reaction, 1 μl of DNA template (standard or wDNA) was 

mixed with iQ SYBR Green Supermix (BioRad) and 10 uM of forward 
(5′-AGGAGCCTGTTCTATAATCGATAAA-3′) and reverse 
(5′-GATGGCGGTATATAGGCTGAA-3′) primers. RT-qPCR 
reactions were run once in triplicate using the CFX96 Real-time PCR 
detection system (BioRad) and the CFX Maestro software under the 
following program: 7 min at 95°C, 10 s at 95°C, and 40 cycles of 30 s at 
60°C, followed by a melt curve protocol of 0.5 s + plate read at 65°C, 
and then 0.5 s + plate read at each 0.5°C increments between 65°C and 
95°C. MtDNA copy number per μl wDNA was determined using 
Ct-values of the unknown samples in relation to the standard curve, 
and further calculated to mtDNA copy number/mg protein. RT-qPCR 
assays were performed in accordance with MIQE guidelines (Bustin 
et al., 2009).

2.8. Electron microscopy

Cerebellar tissue pieces (n = 1–3; P30, P45) from Cstb−/− and 
wild type mice were fixed in 2% glutaraldehyde in phosphate 
buffer, post-fixed in 1% osmium tetroxide and dehydrated 
through ascending concentrations of alcohol and embedded in 
Epon 812 resin. 60 nm ultrathin sections were obtained on a 
Reichert-Jung Ultracut ultramicrotome (Leica Microsystems, 
Wetzlar, Germany) equipped with a Diatome diamond knife 
(Diatome Ltd., Nidau, Switzerland), transferred to copper grids, 
stained with uranyl acetate and lead citrate, and observed in a 
CM12 transmission electron microscope (Philips Healthcare, 
Amsterdam, the Netherlands) at 80 kV. Images were recorded 
with a Morada digital camera and analyzed using the iTEM 
software (ResAlta Research Technologies, Golden, CO, 
United States).

2.9. Statistical analyses

Statistical analyses were carried out using GraphPad Prism 
version 9.4 for Windows (GraphPad Software, La Jolla, CA, 
United  States3). Data was tested for normal distribution and 
comparisons between experimental conditions were evaluated using 
the two-tailed unpaired t-test, the nonparametric Mann–Whitney U 
test, and the one-way ANOVA with the Šídák correction. Statistical 
significance was defined as p < 0.05.

3. Results

3.1. Differential abundance of 
mitochondrial and synaptic proteins in 
Cstb−/− synaptosomes

To investigate synaptic alterations associated with the early 
symptomatic phase of CSTB deficiency, we  used label-free 
quantitative proteomics to analyze cerebellar synaptosomes from 
P30 Cstb−/− and wild type mice. Principal component analysis 
(PCA) showed that the first component, PC1, explained 34.3% of 
the total variation, and segregated the samples into two genotype-
specific clusters (Supplementary Figure 1A). We identified more 
than 2,500 and reliably quantified 1,555 proteins 
(Supplementary Table 1_sheet1). Of these, 349 proteins differed 
significantly between Cstb−/− and wild type mice 
(Supplementary Figure 1B and Supplementary Table 1_sheet2). In 
addition, we  identified 34 proteins in one genotype only 
(Supplementary Table 1_sheet3).

To investigate the biological relationships between the 349 
differentially abundant proteins, we performed Gene Ontology (GO) 
classification (Ashburner et al., 2000; Gene Ontology Consortium, 
2021), DAVID functional annotation clustering (Huang et al., 2009a,b), 
Reactome pathway analysis (Wu and Haw, 2017), and PANTHER 
enrichment analysis (Mi et al., 2013). Analysis of statistically significant 
(FDR <0.01) overrepresented GO terms revealed that Synapse and 
Mitochondria were the most overrepresented cellular components in 
the dataset (Supplementary Figure  1B and 
Supplementary Table 2_sheet1). Correspondingly, the top 15 GO terms 
of biological processes were associated with energy metabolism and 
nucleotide biosynthesis and they grouped into several overlapping 
GO-terms (Supplementary Figure 2 and Supplementary Table 2_sheet2). 
The DAVID functional annotation clustering tool annotated proteins 
with increased abundance (n = 188) to mitochondrial function and 
energy metabolism, whereas proteins with decreased abundance 
(n = 161) were annotated to synaptic structure and function 
(Figures  2A,B, Supplementary Table  2_sheet3, and 
Supplementary Table  2_sheet4). The Reactome pathway database 
annotated the differentially abundant proteins to pathways related to 
immunological functions, mitochondrial energy metabolism, and 
intracellular trafficking (Supplementary Figure 3 and Supplementary 
Table 2_sheet5).
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3.2. Alterations in proteins of the synaptic 
vesicle cycle and mitochondrial 
metabolism in Cstb−/− synaptosomes

Grouping of the differentially abundant proteins by their 
biological mechanisms revealed that a substantial number were 
members of the synaptic vesicle cycle or functioned within the 
mitochondria (Figure 2C). Of the synaptic vesicle cycle proteins, 21 

were direct members and an additional 9 were regulators of this 
pathway (Supplementary Table 3_sheet1). A majority of these were 
decreased in Cstb−/− synaptosomes. Most of these altered proteins 
function in localizing synaptic vesicles to the active zone, the fusion 
and release of neurotransmitters, and the retrieval of synaptic vesicle 
proteins by endocytosis (Figure 2D).

Of all significantly different proteins, 66 were mitochondrial 
(Figure 2C and Supplementary Table 3_sheet2). Of these, 28 were 

FIGURE 2

Differentially abundant proteins between wild type and Cstb−/− mice synaptosomes at P30. (A,B) Bar charts of enriched (enrichment score > 4.0) DAVID 
functional annotation clusters of proteins with decreased (A) and increased (B) abundance in Cstb−/− synaptosomes. (C) Volcano plot of differentially 
abundant proteins plotted as –log10-transformed value of p [derived from the t-test (Cstb−/−/wild type; n = 5 + 4)] vs. log2 fold change protein 
abundance. The 349 DAPs significantly differing in abundance (q-value ≤0.05) are plotted above the threshold limit of –log10 (value of p) 1.62. 
Mitochondrial proteins (n = 66) are plotted in green and proteins of the synaptic vesicle cycle (n = 30) in purple. The remaining quantified proteins (1206) 
with non-significant q-values are plotted in the gray area below the threshold limit. (D) Schematic figure of the synaptic vesicle cycle and the 
differentially abundant synaptic vesicle cycle proteins (n = 21) with fold changes (Cstb−/−/wt), labeled according to function (B, budding; L, localization; P, 
priming and docking; Ex, exocytosis; En, endocytosis). (E) A subset of the differentially abundant mitochondrial proteins grouped by biological 
function. Most proteins (n = 19) are subunits of the oxidative phosphorylation (OXPHOS), followed by proteins involved in homeostasis of proteins and 
small molecules (n = 8) and lipid metabolism (n = 7). Red and blue color indicate increased and decreased protein abundance (Cstb−/−/wild type), 
respectively.
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decreased and 38 increased in abundance. The single largest group was 
oxidative phosphorylation (OXPHOS) subunits, which were 
distributed across complexes I–V (Figure  2E). The highest fold 
changes were observed for complex I, complex IV and complex V 
subunits, with abundance of complex I subunits being decreased and 
complex IV and complex V subunits increased in Cstb−/− 
synaptosomes. Altered abundance was also observed for components 
of the TOM and TIM mitochondrial import translocon complexes 
and several other proteins involved in protein and small molecule 
homeostasis (Figure 2E). In addition, the proteome analysis showed 
changes in proteins involved in lipid metabolism, including acyl-
coenzyme A hydrolysis and lipid transport (Figure 2E).

We further examined differences in the mitochondrial proteins by 
immunoblot analysis of individual OXPHOS complexes and 

mitochondrial outer membrane proteins (Figures 3A,E). We did not 
detect clear genotype-specific changes in the expression of marker 
proteins for OXPHOS complexes II (succinate dehydrogenase 
flavoprotein subunit; SDHA), IV (cytochrome c oxidase subunit 1; 
mtCO1), and V (ATP synthase subunit beta; ATP5B) (Figures 3B–D), 
neither in the expression of Voltage-dependent anion-selective 
channel protein 1 (VDAC1), Mitochondrial import receptor subunit 
TOM20 homolog (Tom20), nor Mitochondrial import receptor 
subunit TOM40 homolog (Tom40), although variation was high 
within genotypes (Figures 3F–H).

3.3. Mitochondrial respiration declines 
progressively in Cstb−/− synaptosomes

To test whether alterations to the mitochondrial proteome in Cstb−/− 
synaptosomes affected organelle function, we performed high-resolution 
respirometry to investigate oxidative phosphorylation in synaptosomal 
preparations. We analyzed mice at the early-symptomatic stage (P30) and 
later once there are detectable myoclonus phenotypes and signs of 
neuronal loss (P45). These two time points allowed us to determine if any 
alterations in mitochondrial oxidative phosphorylation function preceded 
the onset of the clinical symptoms in Cstb−/− mice.

Following synaptosome isolation, samples were immediately 
recorded for mitochondrial respiration. Associated with CSTB deficiency 
we observed a progressive decline in oxidative phosphorylation capacity. 
At P30, we  found no differences between genotypes in any of the 
examined respiration states, but at P45 the overall respiration declined 
significantly in Cstb−/− mice (Figure 4A). ADP-linked complex I and 
combined succinate-induced complex I  and complex II oxygen-
consumption rates were all reduced in Cstb−/− mice, implying for 
decreased utilization of complex I  and complex II substrates. Both 
coupled (Figure 4A) and uncoupled (Figure 4C) respiration was reduced 
in Cstb−/− mice, implying that the respiratory dysfunction is not dependent 
on complex V. Oligomycin-induced leak respiration, indicative of 
damaged mitochondrial inner membrane, was lower in Cstb−/− samples, 
but the difference was caused by increased leak respiration in wild type 
mice (Supplementary Figure 4). Such increase was not observed in Cstb−/− 
mice. The coupling control ratio showed no differences in synaptosome 
samples between genotypes at either time point (Supplementary Figure 5). 
Independent complex IV activity was also reduced in Cstb−/− mice 
(Figure  4D), further pointing toward an oxidative phosphorylation 
complex impairment and general respiratory dysfunction. Immunoblot 
analysis for nuclear and mitochondrial encoded subunits of the OXPHOS 
complexes showed no difference in electron transport system proteins, 
complex II and complex IV subunits SDHA and mtCO1, or in the 
complex V subunit, ATP5B at P45 (Figures 4E–H).

3.4. No change in mitochondrial DNA copy 
number and membrane ultrastructure in 
Cstb−/− cerebella

Next, we investigated whether other mitochondrial phenotypes 
were affected in Cstb−/− cerebella. No significant differences in 
mitochondrial DNA (mtDNA) copy number were detected in 
synaptosomal preparations between Cstb−/− and wild type mice at P30 
and P45 (Figure 5A). Further, no gross alterations in the mitochondrial 

FIGURE 3

Immunoblot detection of mitochondrial proteins in wild type and 
Cstb−/− cerebellar synaptosomes at P30. Representative immunoblot 
detection (A,E) and relative expression of SDHA (B), mtCO1 (C), 
ATP5B (D), VDAC1 (F), TOM20 (G), and TOM40 (H) in synaptosomes 
of wild type (white) and Cstb−/− (black) mice (n = 5 + 5). Antibody 
intensity values were normalized to that of Vinculin. Bars represent 
mean, and error bars standard deviation (SD).
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membrane ultrastructure were observed in cerebellar tissue 
preparations using transmission electron microscopy (TEM) 
(Figures 5B,C). We also investigated early indicators of cellular stress 
affecting mitochondrial dynamics by analyzing the (OPA1) isoforms 

in synaptosomal preparations. The proteolytic cleavage of the long 
isoforms (L-OPA1) was estimated as a percentage of short isoforms 
(S-OPA1) of total OPA1. No differences were observed between 
Cstb−/− and wild type mice (Figures 5D,E).

4. Discussion

Identifying the mechanisms underlying the synaptic 
pathophysiology associated with CSTB deficiency is important for 
understanding EPM1 disease onset and progression. In mice, CSTB 
deficiency causes progressive neuron loss, which is most striking in 
the cerebellum, the emergence of which coincides with the onset of 
myoclonus (Pennacchio et al., 1998) and is preceded by prevalent 
rearrangements of synaptic proteins in the cerebellum (Gorski et al., 
2020) and altered GABAergic signaling in cerebellar Purkinje cells 
(Joensuu et  al., 2014). Following our previous study from 
presymptomatic Cstb−/− mice (Gorski et al., 2020), we here extended 
the analysis of cerebellar synaptosomes to the early symptomatic 
phase. We  identified an impairment in mitochondrial respiration, 
which was preceded by widespread changes in the mitochondrial 
proteome. Our data reveal that mitochondrial dysfunction contributes 
to the early pathogenesis of CSTB deficiency.

Neurons are metabolically active and have a high energy demand, 
most of which is used for neurotransmission (Harris et al., 2012). 
Synaptic energy in the form of adenosine triphosphate is synthetized 
locally through glycolysis and mitochondrial oxidative 
phosphorylation (OXPHOS) (Harris et  al., 2012). Presynaptic 
mitochondrial dysfunction and bioenergetic failure have been 
associated with several, both common and rare neurodegenerative 
diseases and their models (reviewed in Li and Sheng, 2022), and our 
findings presented here establish the presence of EPM1 among these 
disorders. However, the question remains how deficiency of a protein 
with a cytosolic and nuclear localization can cause failure of synaptic 
mitochondria without evident alterations in the 
mitochondrial phenotype.

Cystatin B is a soluble cytoplasmic protein that associates with 
cytoplasmic granular structures representing lysosomes (Alakurtti 
et  al., 2005). It has previously been reported to have synaptic 
localization with an implied crucial role in synaptic physiology (Penna 
et  al., 2019; Gorski et  al., 2020). CSTB belongs to the cystatin 
superfamily of endogenous inhibitors of lysosomal cysteine proteases 
of the cathepsin family that are thought to protect cells from cathepsin-
mediated proteolysis in the cytoplasm in the case of lysosomal 
membrane damage (Boya and Kroemer, 2008). Leakage of lysosomal 
cathepsins has been reported in several pathological conditions and 
neurodegenerative disorders (Nagai et al., 2000; Sundelöf et al., 2010; 
Morena et al., 2017), and mutations in mitochondrial genes are often 
associated with impairment of the lysosomal system and vice versa 
(Deus et  al., 2020). Increased activity of cathepsin B, one of the 
cysteine proteases inhibited by CSTB, has been described in 
lymphoblastoid cells from EPM1 patients (Rinne et  al., 2002), in 
cultured cerebellar granule neurons from Cstb−/− mice (Lehtinen et al., 
2009), and in neural progenitor cells from Cstb−/− mice (Daura et al., 
2021). Cathepsin B maintains proteolytic activity in the cytoplasm and 
initiates mitochondrial apoptosis though activation of Bcl-2 family 
members (Droga-Mazovec et al., 2008; de Castro et al., 2016). Indeed, 
apoptotic cell death of cerebellar granule neurons is one of the 

FIGURE 4

Mitochondrial respiration in wild type and Cstb−/− synaptosomes. 
(A) Representative traces of the SUIT-protocol from wild type and 
Cstb−/− samples at P45 showing oxygen consumption consumption 
(pmol/(s*mg synaptosomal protein); y-axis) during substrate and 
coupling states (x-axis). MPG, malate/pyruvate/glutamate; ADP, 
adenosine diphosphate; Succ, succinate; OM, oligomycin; FCCP, 
carbonyl cyanide-p-trifluoromethoxyphenylhydrazone; ROT, 
rotenone; Ama, antimycin A; TMPD, N,N,N,N-tetramethyl-p-
phenylenediamine; Az, azide; CIOXPH, phosphorylating respiration 
(OXPHOS) in presence of CI substrates; CI + CIIOXPH, OXPHOS 
respiration in presence of CI and CII substrates; LEAK, oligomycin-
inhibited non-phosphorylating basal respiration; CI + CIIETS MAXres, 
maximal capacity of the electron transport system; ROX, residual 
oxygen consumption; CIV, complex IV activity. (B–D) Complex 
I + Complex II-linked OXPHOS (B), Maximal uncoupled respiration (C), 
and Complex IV activity (D) in wild type (gray) and Cstb−/− (black) 
synaptosomes at P30 and P45 (n = 7 + 7 + 7 + 7). Statistical significance 
was determined by one-way ANOVA with correction for multiple 
comparisons using the Šídák method; *p < 0.05; **p < 0.01; bars 
represent mean and error bars standard deviation of oxygen 
consumption [pmol/(second*mg synaptosomal protein)]. 
(E) Representative immunoblot detection and relative expression of 
SDHA (F), mtCO1 (G), and ATP5B (H) in synaptosomes of wild type 
(white) and Cstb−/− (black) mice (n = 6 + 6) at P45. Antibody intensity 
values were normalized to that of Vinculin. Bars represent mean, and 
error bars standard deviation (SD).
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hallmarks of brain pathology in Cstb−/− mice (Pennacchio et al., 1998) 
with cystatin B-cathepsin B double knockout mice showing a 
reduction in the amount of cerebellar granule neuron apoptosis 
compared to Cstb−/− mice (Houseweart et  al., 2003). Recently, 
lysosomal leakage and consequent increased proteolytic activity of 
cathepsins B and L were reported to initiate a metabolic remodeling 
of the mitochondrial proteome in a human iPSC-derived macrophage 
model (Bussi et al., 2022). This lysosome-mitochondria crosstalk was 
implied to modulate macrophage immunometabolism via cathepsin-
mediated degradation of mitochondrial proteins leading to impaired 
OXPHOS activity (Bussi et al., 2022). It remains to be investigated 
whether similar mechanisms contribute to compromised 
mitochondrial function in neurons. Interestingly, a more than twofold 
increase in cathepsin B abundance was observed in our proteomics 
data of cerebellar synaptosomes from Cstb−/− mice. Considering that 
cathepsin B also regulates lysosome and autophagosome dynamics 
(Man and Kanneganti, 2016; Qi et al., 2016), and activates the NLRP3 
neuroinflammasome (Chevriaux et  al., 2020) and subsequent 
production of interleukin (IL) 1β (Bai et al., 2018), all of which are 
implicated in experimental models of CSTB deficiency (Maher et al., 
2014; Polajnar et al., 2014), it is possible that many of the pathological 

consequences of CSTB deficiency, including mitochondrial 
dysfunction, are mediated through increased cathepsin B activity.

The polarized structure and compartmentalized functions of 
neurons require long-distance transport of a variety of cargoes, 
including organelles and synaptic vesicle precursors (Maday 
et  al., 2014). In addition to housing metabolic pathways, 
mitochondria form contact sites with other organelles to 
modulate the exchange of lipids, ions, and proteins (Vance, 2014). 
Cellular stress has been shown to increase contact sites between 
the endoplasmic reticulum (ER) and mitochondria in vitro (Bravo 
et  al., 2011), and for several neurodegenerative disorders, 
including Alzheimer’s disease, Parkinson’s disease, and Charcot–
Marie–Tooth disease, many dysregulated cellular functions have 
been associated with these (Wilson and Metzakopian, 2021). 
Impaired mitochondrial respiration in Cstb−/− synaptosomes 
could result from reduced or dysregulated mitochondria-ER 
signaling, causing destabilization of OXPHOS supercomplexes. 
This has been reported in a neuronal model of Alzheimer’s 
disease, where loss of mitochondria-ER contact sites leads to 
dysfunctions in mitochondrial bioenergetics due to reduced 
levels of cardiolipin, a phospholipid that stabilizes OXPHOS 

FIGURE 5

Mitochondrial DNA copy number and membrane ultrastructure is not altered in Cstb−/− cerebella. (A) The relative ratio between mtDNA copy number 
and protein amount in synaptosomes of wild type (white) and Cstb−/− (black) mice cerebella at P30 (n = 10–13) and P45 (n = 13). Bars represent mean, 
and error bars standard deviation (SD) of relative mtDNA copy number/mg synaptosomal protein. (B,C) Transmission electron microscopy images 
showing mitochondrial ultrastructure in wild type (B) and Cstb−/− (C) cerebellar tissue at P45. (D) Representative immunoblot detection using an 
antibody against OPA1 in synaptosomes of wild type and Cstb−/− mice (n = 4 + 6) at P45. The long and short OPA1 isoforms are marked L1-L3 and S1-S2, 
respectively. (E) The short isoforms of OPA1 (S-OPA1) in relation to total OPA1 in synaptosomes of wild type (white) and Cstb−/− (black) mice at P45 
(n = 8–10). Bars represent mean, and error bars standard deviation (SD).
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supercomplexes in the mitochondrial inner membrane (Martino 
Adami et al., 2019).

Impaired redox homeostasis has previously been implicated 
as a key mechanism by which CSTB deficiency causes neuronal 
death and oxidative damage in the cerebellum of Cstb−/− mice 
(Lehtinen et al., 2009). In addition, mitochondrial dysfunction 
has been demonstrated in several in vitro models derived from 
Cstb−/− mice, leading to propositions of both direct and indirect 
mechanisms linking CSTB function to mitochondria. Maher et al. 
(2014) investigated inflammatory responses in lipopolysaccharide 
(LPS)-stimulated bone marrow-derived macrophages from 
Cstb−/− mice and showed that mitochondrial membrane potential 
stability is impaired upon LPS stimulation and leads to increased 
ROS generation (Maher et al., 2014). The authors suggested that 
CSTB translocates to mitochondria where it physically protects 
the mitochondrial membrane integrity (Maher et al., 2014). More 
recently, in a cell culture model of murine neural stem cell 
renewal and differentiation, activation of nuclear-encoded 
mitochondrial genes was shown to be delayed in CSTB-deficient 
cells leading to impairment of the enhanced mitochondrial 
respiration that is induced upon induction of differentiation 
(Daura et al., 2021). We previously reported proteomic alterations 
in cerebellar synaptosomes of presymptomatic Cstb−/− mice and 
showed extensive rearrangements of the mitochondrial proteome, 
especially in proteins involved in mitochondrial energy 
metabolism, ROS production, and antioxidant-mediated 
maintenance of redox homeostasis (Gorski et al., 2020). Since the 
data also showed changes in several key structural transport 
proteins, previously reported on gene expression level (Joensuu 
et al., 2014), we suggested that defects in axonal transport could 
contribute to synaptic mitochondrial dysfunction (Gorski et al., 
2020). None of these studies reported alterations in mitochondrial 
morphology. Alterations in mitochondrial membrane 
morphology are often associated with organelle dysfunction 
(Bertholet et al., 2016). In the present study, we did not identify 
alterations in the abundance of key factors that coordinate 
mitochondrial membrane fission and fusion. Furthermore, 
cleavage of the long isoform of OPA1, which regulates 
mitochondrial cristae integrity, mtDNA maintenance, and 
mitochondrial inner membrane fusion, was not altered in the 
synaptic mitochondria from Cstb−/− mice. Taken together, these 
data suggest that mitochondrial dysfunction in CSTB deficiency 
is due to a secondary event rather than primary defect to 
organelle function.

It is likely that the consequences of reduced mitochondrial 
respiration affect the energy-demanding downstream functions 
of the synapse, including neurotransmission. Synaptic vesicle 
refilling and recycling are processes sensitive for energy depletion 
(Pathak et  al., 2015). Indeed, in the present proteomics data, 
we observed differential abundance of several members involved 
in the synaptic vesicle cycle, predicted to affect synaptic vesicle 
mobilization, docking and fusion (John et  al., 2021). The 
previously implicated alterations in GABAergic inhibition in 
brains of Cstb−/− mice (Joensuu et al., 2014) may thus be, at least 
partially, a consequence of impaired synaptic mitochondrial 
function. Whether the mitochondrial dysfunction is exclusive to 
cerebellar synaptosomes or applies also to other cell 
compartments or cell types, needs to be clarified in future studies.

In conclusion, our study shows that significant alterations in the 
synaptic proteome and consequent mitochondrial dysfunction are 
early changes in cerebellar synaptosomes of Cstb−/− mice, coinciding 
with the onset and progression of clinical symptoms. Understanding 
the underlying mechanisms is a prerequisite for designing new 
therapeutic strategies for EPM1.
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