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Ion channels play a crucial role in a variety of physiological and pathological
processes, making them attractive targets for drug development in diseases
such as diabetes, epilepsy, hypertension, cancer, and chronic pain. Despite the
importance of ion channels in drug discovery, the vastness of chemical space
and the complexity of ion channels pose significant challenges for identifying
drug candidates. The use of in silico methods in drug discovery has dramatically
reduced the time and cost of drug development and has the potential to
revolutionize the field of medicine. Recent advances in computer hardware
and software have enabled the screening of ultra-large compound libraries.
Integration of di�erent methods at various scales and dimensions is becoming
an inevitable trend in drug development. In this review, we provide an overview
of current state-of-the-art computational chemistry methodologies for ultra-
large compound library screening and their application to ion channel drug
discovery research. We discuss the advantages and limitations of various in

silico techniques, including virtual screening, molecular mechanics/dynamics
simulations, and machine learning-based approaches. We also highlight several
successful applications of computational chemistry methodologies in ion channel
drug discovery and provide insights into future directions and challenges in
this field.
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Introduction

Ion channels are widely expressed in living cells and play critical roles in the generation
of the cell membrane potential and in additional diverse cellular functions, such as
signal transduction, neurotransmitter release, muscle contraction, hormone secretion, cell
volume regulation, growth, mobility, and apoptosis. Dysfunction of ion channels due to
mutations in ion channel genes are associated with numerous diseases collectively known
as channelopathies, which include cardiac arrhythmias, ataxias, migraine headaches, muscle
paralysis, epilepsy, deafness and cancer. More than 60 channelopathies have been identified
in human diseases, and clinical sequencing results often discover novel mutations in
ion channel genes (Cannon, 2007; Kim, 2014). Because of the high pathophysiological
importance of ion channels and their involvement in several human diseases, they are the
target of diverse drugs, from antiepileptics to analgesics. Ion channels are the second largest
group of drug targets with approximately 130 drugs on the market that act on ion channels.
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Examples include voltage-gated sodium channel blockers for the
treatment of arrhythmia and local anesthesia, calcium channel
blockers for the treatment of angina and hypertension, and ATP-
sensitive potassium channel blockers for the therapy of type II
diabetes (Ford et al., 2016; Imbrici et al., 2016; Santos et al., 2016;
Li et al., 2017; Wolkenberg et al., 2017; Hutchings et al., 2019;
Chen et al., 2023). Despite this large number of existing drugs,
ion channels remain relatively underexploited for therapeutic
interventions. It is notable that the major chemical classes of ion
channel modulators were identified through serendipity and have
been in clinical use for many years, pre-dating major milestones
in ion channel research such as the development of patch clamp
physiology, molecular cloning of ion channels and their structure
determination by cryogenic electron microscopy (cryo-EM).

The rapid growth in structural information of ion channels
has fueled the use of computer-assisted drug discovery approaches.
At the time of writing (as of October 2023), approximately 100
unique human ion channel protein structures have been deposited
in the Protein Data Bank (PDB), ∼81% of these structures were
determined by cryo-EM (Lau et al., 2018; Rao et al., 2019;
Chen et al., 2023; mpstruc database, n.d.). In recent decades,
the increasing numbers of high-quality ion channel structures,
along with advances in computer-assisted drug discovery, have
led to a number of successful virtual screening (VS) campaigns
(Kang, 2001; Urbahns et al., 2003; Kenyon et al., 2006; Liu
et al., 2007; Etkins, 2018; Llanos et al., 2022; Pasqualetto et al.,
2023). Among ion channels, L-type calcium channels and hERG
channels have received the most extensive research attention to
date (Ekins et al., 2007). In contrast, there are very few examples
of successful applications for more ion-selective channels (K, Na)
and less selective channels such as nicotinic acetylcholine receptors
(nAChR) or acid-sensing ion channels (ASICs).

Most recently, the utility of VS for lead discovery has also
been boosted by the expansion of accessible chemical space
through make-on-demand compound libraries like Enamine
REAL Space library (Grygorenko et al., 2020; Enamine, n.d.).
Since 2016, these libraries have witnessed a remarkable expansion,
scaling up the availability of molecules from 11 million to an
astonishing 38 billion, and there is still potential for further
growth (Lyu et al., 2023). While such libraries cannot be
empirically screened, molecules within them can be computational
prioritized for synthesis and testing using VS and machine learning
approaches. Combining in silico approaches with conventional
high-throughput screening techniques greatly enhances ion
channel drug discovery. Methods of computer-aided drug
discovery (CADD) can significantly speed up screening and can
drastically improve hit rates. Molecular docking is routinely used
to process virtual libraries containing millions of molecules against
a variety of drug targets with known structures.

Recent strides in automated synthesis and the proliferation
of available chemicals present significant opportunities for VS
methods overall, and especially for docking. However, they also
introduce entirely new challenges to contend with (Gentile et al.,
2020). The widely used ZINC library has grown from 7,000 entries
in 2005 to over 1.3 billion constituent molecules in 2020, a
remarkable 1,000-fold increase (Irwin and Shoichet, 2005; Irwin
et al., 2020; ZINC Database, n.d.). In the past two years alone, the

Enamine REAL database has grown from 11 billion molecules to
38 billion make-on-demand molecules (Grygorenko et al., 2020).
Recently published works seem to advocate for expanding VS to
ultra-large chemical libraries. In a recent groundbreaking study,
Lyu et al. conducted docking experiments with 170 million on-
demand molecular structures (Lyu et al., 2019). Their findings
demonstrated that VS of such extensive databases not only enables
the discovery of highly potent inhibitors but also uncovers novel
chemical classes that are typically absent from routinely screened,
readily available chemical libraries (Lyu et al., 2019). Other docking
studies involving large collections of molecules led to similar
conclusions (Gorgulla et al., 2020; Stein et al., 2020).

Progress in high-throughput docking programs, computational
resources, and the accessibility of more and more ion channel
structures, promote a paradigm shift in drug discovery research
toward faster in silico lead compound generation. Despite these
advancements, it’s worth noting that the chemical space remains
so vast that it often remains beyond practical reach. A common
approach to mitigate these challenges is to filter these large
chemical collections to manageable subsets based on parameters
set forth by Lipinski and others (Lipinski et al., 2001; Lipinski,
2004). While this approach can effectively reduce an ultra-large
database to smaller, more accessible subsets, many potentially
useful compounds and novel or unconventional chemotypes could
be overlooked. It is essential to maximize the number of database
entries tangibly evaluated against a target of interest. Additionally,
a vast majority of docking data is not being utilized while it
could represent a very relevant, well-formatted, and content-
rich landscape for machine learning algorithms. Typical docking
campaigns rely on completing a full docking run and selecting only
an extremely narrow subset (∼1%) of favorably docked molecules
for future evaluation.

Ultra-large VS in ion channel drug discovery offers numerous
advantages compared to conventional experimental high
throughput screening methods. VS enables the exploration of
a vast chemical space, including millions of potential ion channel
modulators, increasing the likelihood of discovering novel hit
compounds with unique structures. It is cost and time-efficient,
allowing for rapid evaluation of compounds in silico, reducing the
need for expensive and time-consuming experimental synthesis
and testing. VS enables early hit identification, helping researchers
prioritize the most promising compounds and saving resources by
excluding less viable candidates. It provides mechanistic insights
into ion channel interactions and facilitates rational design and
optimization of modulators. Additionally, VS allows evaluation of
rare or challenging-to-source compounds, such as natural products
or derivatives, enhancing the probability of discovering valuable
hits. VS serves as a complement to experimental screening, and
computational predictions can guide subsequent experimental
validation and optimization of identified hits.

In this review we will introduce basic principles of VS and
methodology behind it. We will give an overview of the knowledge
base of ion channel structures and how they can be generated. We
will describe chemical libraries of small molecules that are used to
screen ion channel structures and we will go through several real
VS campaigns on ion channels utilizing different docking-based,
ligand-based, and deep learning VS techniques.
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Overview of virtual screening methods

Ultra-large VS technologies refer to computational methods
and techniques used to screen large chemical libraries against a
target of interest in drug discovery. VS is a firmly established
technique in computational drug design which can greatly reduce
the costs of discovering a new drug. In general, VS aims to
identify potential drug candidates by simulating and predicting
their interactions with a target protein or biological system. Ultra-
large VS technologies take this concept to a larger scale, enabling the
screening of massive chemical libraries containing millions or even
billions of compounds. The methodology of ultra-large VS will be
reviewed below in the sections devoted to each of the methods and
their applications in ion channel drug discovery campaigns will be
illustrated. The primary goal of ultra-large VS is to narrow down
the chemical space and prioritize the most promising compounds
for further experimental validation. It is an important tool in
the early stages of drug discovery where large-scale screening can
significantly reduce the time and cost associated with traditional
high-throughput screening methods.

VS methods can be divided into two main categories: ligand-
based and structure-based approaches (Figure 1). Ligand-based
methods rely on the similarity of identified molecules to the
known actives, whereas structure-based methods aim to predict the
binding pose of molecules based on the known 3D protein target
(Lavecchia and Di Giovanni, 2013).

Ligand-based VS (LBVS) approach is less computationally
expensive than the structure-based method because it does not rely
on macromolecular structure in calculations. LBVS methods are
usually performed by comparing fingerprints of tested molecules
with the ones from the active set. These fingerprints can be
of various types, such as topological descriptors, circular and
pharmacophore-based fingerprints, etc. Similarity searching and
quantitative structure-activity relationship (QSAR) modeling can
be applied to compare the fingerprints and derive the underlying
relationship between molecules and their activities (Gimeno et al.,
2019).

The analysis and recognition of QSAR has also become
an essential component of ligand-based VS techniques and
the pharmacology of ion channels. QSAR is an attempt to
establish a correlation between the chemical structure of a
molecule and the biological effect. The representation of chemical
structures can be described through molecular descriptors: 1-
D descriptors encode generic properties such as molecular
weight, hydrophobic/hydrophilic partition coefficient, and molar
refractivity, commonly related to a basic description of drug-
likeness; 2-D descriptors predict physicochemical properties,
and provide quantitative estimates of biological activity from
topological representations of the molecules; 3-D descriptors
are derived as the name implies, from the 3-D structures of
the molecules, depending on the conformation used and the
flexible superposition of the molecules. 3-D QSAR offers a
better representation of molecules interacting with proteins and
leads to statistically improved models. QSAR analysis builds on
mathematical models, e.g., random forest, decision trees, naive
Bayes classifier, support vector machines, k-nearest neighbors,
and artificial neural networks, to find some statistical correlation

between the biological parameters of tested molecules derived
from various assays (pEC50, Ki, activity, toxicity, etc.) and their
chemical structures (Hansch and Fujita, 1953). Regression and
classification techniques are applied to derive the relationship
between molecules, which can be substantiated by machine
learning (Neves et al., 2018) and pharmacophore modeling.

Structure-based VS (SBVS) methods require a 3D structure of
a protein of interest, and tested molecules are ranked according to
their activity toward a receptor obtained from calculations (Maia
et al., 2020). Docking is the main approach used in SBVS (Kuntz
et al., 1982), which can be also supported by machine learning to
derive scoring functions, which evaluate the binding orientations
of molecules, as well as deep learning that speeds up the docking
protocol and allows to screen billions of molecules in much shorter
time (Pereira et al., 2016; Gentile et al., 2022). SBVS can also
utilize pharmacophoremodeling, which does not focus on a specific
ligand structure, but rather defines necessary functional groups
that a molecule should possess to create interactions in a receptor’s
binding pocket (Giordano et al., 2022). Another approach in SBVS
is fragment-based virtual screening, which involves screening small
molecular fragments against a target protein, followed by growing,
merging or linking fragments into larger drug-likemolecules (Doak
et al., 2016). Since the key aspect of fragment-based VS requires the
availability of the 3D structure of the protein target, this technology
is directly related to SBVS (Murray and Rees, 2009). By employing
fragment docking or fragment-based de novo design techniques,
millions or billions of molecules can be computationally screened
against a target. One advantage is that the small size of the
fragments allows a more efficient search of chemical space and
recovers more protein binding information than in traditional
high-throughput screens, allowing the size of the library to be
much smaller. Furthermore, the combination of fragment-based
and combinatorial chemistry approaches allows designing target-
focused and diverse chemical libraries (Liu et al., 2017). Hits
obtained from this screening can be expanded and optimized to
develop more potent drug candidates (Li, 2020).

In the following sections we will introduce the concepts of
several VS methods and review their applications in recent ion
channel drug discovery campaigns.

Ion channel structures for virtual
screening

Ultra-large VS efforts benefit from the quickly growing
number of protein target structures. For instance, for the largest
group of drug targets, G protein-coupled receptors (GPCRs), VS
experiments have flourished because of a larger number of available
GPCR structures (Luttens et al., 2022; Matricon et al., 2023).
Similarly, the number of ion channel structures has increased
tremendously over the last 25 years; from the determination of the
first ion channel structure, the KcsA channel from Streptomyces
lividans, in 1998 (Doyle et al., 1998) to more than 1,500 structures
nowadays. This includes ca. 200 ion channel structures from the
human proteome, with almost 100 of them being unique human ion
channel structures (Figure 2) (Pliushcheuskaya and Künze, 2023).
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FIGURE 1

Overview of the general VS workflow.

This progress was primarily due to technological advancements in
X-ray crystallography and cryo-EM.

If an experimental structure for an ion channel of interest
is lacking, structure prediction methods like AlphaFold (Jumper
et al., 2021), RoseTTAFold (Baek et al., 2021), or ESMFold
(Lin et al., 2023) offer a solution. For instance, The AlphaFold
database estimates more than 290 non-redundant structures for
ion channels for the human proteome (Varadi et al., 2022).
These artificial intelligence-based prediction methods can provide
highly accurate model structures which are often suitable for
VS applications.

Another use case of AlphaFold structure prediction is to
aid interpretation of low-resolution electron density maps of ion
channels. For instance, Huang et al. (2022a) studied the voltage-
gated sodium ion channel NaV1.7, which is highly expressed in
nociceptive neurons and is a drug target for pain relief (Hameed,
2019). Specifically, structures of NaV1.7 in combination with pore
blockers are of high interest to better understand the mechanism of

NaV1.7 modulation and develop effective analgesics (Zhang et al.,
2022b). In the study of Huang et al. (2022a), various wild-type
and mutant structures of NaV1.7 with and without small-molecule
ligands were determined. The use of AlphaFold was key to facilitate

interpretation of intracellular low-resolution regions of the cryo-

EM map, which are of direct interest for designing inhibitors of
NaV1.7. Eventually, the authors were able to identify determinants

of the NaV1.7 channel modulation, which was enabled by the
accurate structure determination of NaV1.7 (Figure 3).

Chemical libraries for ultra-large
virtual high-throughput screening

Physically available compound collections in academic and
industrial research institutions typically range from thousands
to millions of compounds (Sadybekov and Katritch, 2023). In
contrast, virtual compound libraries can be much larger, reaching
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FIGURE 2

Number of unique structures of human ion channels released every year since 2011 (data were obtained from mpstruc database, source: mpstruc
database: Available at: https://blanco.biomol.uci.edu/mpstruc/, accessed on 23 October 2023). Values on top of blue bars indicate the number of
new human ion channel structures released every year.

billions of compounds, with the aim of enhancing chemical
diversity coverage (Grygorenko et al., 2020; Huang et al., 2022b;
Kuan et al., 2023; Lyu et al., 2023). Chemical space encompasses
all possible organic molecules, estimated to be around 1060 or
more. This vastness offers an opportunity to discover unique
biological activities and mechanisms of action not found in
general screenings.

Enamine is a chemical supplier that offers diverse small
molecule collections for screening and hit expansion, focusing on
synthetically accessible molecules. The REAL (Readily Accessible)
database, popular among researchers, contains over 38 billion
compounds with varied chemical scaffolds (REAL Compounds,
n.d.). Widely used in drug discovery stages such as hit
identification, lead optimization, and fragment-based screening,
the REAL library is a significant advancement in combinatorial
chemistry. It features simple fragments and building blocks
connected through efficient one- or two-step reactions, allowing
for a vast number of unique combinations. This versatility makes
it valuable for diverse molecular structure generation in VS and
positions it as a crucial resource in drug discovery and material
science. Similar extensive libraries are offered now also by other
vendors like eMolecules (eMolecules, n.d.).

The ZINC database is a widely used resource that provides a
vast collection of commercially available compounds for VS and
drug discovery. It contains over 230 million small molecules with
diverse chemical structures (Irwin and Shoichet, 2005), of which
approximately 34 million predictions belong to the ion channel
major class. Regarding the number of reactions, the ZINC database
primarily focuses on providing commercially available compounds,
while the Enamine REAL database emphasizes synthetically
accessible compounds. As a result, Enamine’s REAL database may

have a larger number of enumerated reactions available for the
compounds within its library (Saldívar-González et al., 2020).
However, it is worth noting that the exact number of compounds
in each database can vary over time due to updates and additions.

PubChem is a free chemical database maintained by the
National Center for Biotechnology Information (NCBI). It offers
a vast collection of chemical substances (over 293 million), small
molecules (over 110 million), bioassays (over 1.25 million), and
their associated data (Kim et al., 2016). PubChem is extensively
used in drug discovery research. PubChem primarily focuses on
aggregating and curating chemical data from various sources, while
the Enamine REAL database specifically emphasizes synthetically
accessible compounds.

ChEMBL is a large database of over 2.4 million bioactive
compounds and their associated biological activities (Gaulton
et al., 2012) where approximately 190,000 are associated with an
ion channel family major class. It provides access to chemical
structures, target information, and bioactivity data extracted from
scientific literature. ChEMBL is commonly used for drug discovery,
lead optimization, and target identification. It primarily focuses
on capturing and curating bioactivity data and target information
rather than enumerating chemical reactions.

Another type of VS libraries are combinatorial libraries which
consist of related molecules systematically generated by altering
structural scaffolds or through parallel synthesis methods. These
libraries efficiently explore chemical space and save time in drug
discovery and other applications. Scaffold hopping and reaction-
based scheme are two common approaches to create such libraries,
enabling the generation of structurally related compounds with
potential variations in biological activity. By defining the main
substituents that molecules should possess, combinatorial libraries
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FIGURE 3

Cryo-EM structure of wild-type human NaV1.7. (A) EM map of wild-type NaV1.7-β1-β2 complex. (B) EM maps of previously unresolved cytosolic
regions. (C) Structure of NaV1.7-β1-β2 complex. The core domain is gray, previously unresolved regions are colored correspondingly to those in (B).
VSD, voltage-sensing domain; NTD, amino-terminal domain, CTD, carboxy-terminal domain. Reprinted (adapted) from Huang et al. (2022a).
Copyright 2022, Elsevier.

can be generated by a scaffold mining with addition of these
substituents to varying chemical cores (Varin et al., 2011; Hu et al.,
2017). This approach is usually applied when a specific protein
target is known and pharmacophoric elements are of importance
for a potential drug to be active (Karthikeyan et al., 2015). The other
way of generating combinatorial libraries involves defining a set
of chemical reactions that should be followed in order to generate
final molecules by connecting building blocks (Podlewska et al.,
2017; Suay-García et al., 2022). Several pharmaceutical companies
develop their own reaction-based combinatorial libraries, such as
Eli Lilly’s Proximal Collection (Nicolaou et al., 2016) and Pfizer
global virtual library (Hu et al., 2012).

There are also ion channel-focused combinatorial libraries,
like the IONCore library developed by ChemBridge (n.d.).

This is an ion channel-focused library consisting of ca. 6000
small molecules, which were compiled based on 3D similarity
to published compounds with activity against ion channels.
SelleckChem developed an ion channel ligand library consisting of
745 small molecules to target a diverse set of ion channels (Ion
Channel Ligand Library, n.d.). Furthermore, Enamine provides
an ion channel-targeted library containing ca. 40,000 compounds,
subdivided into collections for major ion channel families, e.g.,
the calcium ion channel library with 10,560 compounds and the
sodium ion channel library with 5440 molecules, respectively (Ion
Channel Library, n.d.).

Other commercial vendors provide chemical additional
databases, e.g., MolPort (n.d.). MolPort aggregates compounds
from various suppliers and contains ca. four million entities,

Frontiers inMolecularNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnmol.2023.1336004
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Melancon et al. 10.3389/fnmol.2023.1336004

including molecules generated via combinatorial methods and
reaction-based approaches.

Challenges of CADD on ion channels
compared to soluble protein targets

CADD encounters distinctive challenges when targeting
ion channels in comparison to soluble protein targets. The
lipid membrane environment, in which ion channels reside,
poses complexities in accurately predicting ion channel-ligand
interactions due to the unique physicochemical properties of the
membrane and additional interactions that are formed between
the small molecule compound and lipids. Furthermore, the
involvement of ion channels in regulating ion concentration
gradients and changing the electrical field properties across the
membrane emphasizes the significance of considering electrostatic
interactions for modeling ligand binding. Additionally, the narrow
and deep binding sites in ion channels, particularly in the pore
region, present challenges in designing ligands that can efficiently
navigate these confined spaces. This can be further complicated by
the fact that ion channels switch between multiple conformational
states during gating and that experimentally determined structures
are available for only a handful of these states, also underscoring
the intricacies of CADD in this context. Growing evidence
from biophysical and structural investigations suggest association
of many small-molecule drugs with the membrane-exposed
surface of ion channels (Payandeh and Volgraf, 2021). The
absence of a direct path from bulk solvent to the binding site
entails an initial partitioning into the membrane, fundamentally
shaping the drug’s interaction with the protein target. This
membrane access mechanism imparts a critical influence on
potency data, structure-activity relationships, pharmacokinetics
and physicochemical properties.

MD simulations can be an accurate method for simulating
ion channel-ligand binding events within the membrane region
(Gumbart et al., 2005; Goossens and De Winter, 2018), because
the dynamic behavior of both the protein and the surrounding
lipid bilayer can be explicitly modeled. While MD approaches
can provide valuable insights, they are usually time-consuming,
limiting their applicability to a small number of ligands. The
intractability of MD for extensive ligand sets has led to
the exploration of alternative techniques such as free energy
perturbation (FEP) (Kuhn et al., 2020). In a recent study,
Dickson et al. (2021), applied FEP to calculate the relative
binding energies of a series of antagonists that target the lipid-
exposed, extra-helical site of a membrane protein. By constructing
an appropriate thermodynamic cycle, the authors were able to
uncouple the membrane partitioning of the drug from the drug
binding at the lipid-exposed site and could calculate the free
energy for each step. Because of its promising performance
the protocol might be applied in a predictive manner on
larger datasets of ligands targeting protein-membrane interfaces.
This approach holds potential for enhancing the efficiency and
scalability of computational studies focused on membrane protein-
ligand interactions.

The hydrophobic environment of the lipid bilayer poses
a challenge for CADD due to its impact on the energetics
of ligand binding. The dynamics of the lipid bilayer further
complicates matters, influencing conformational changes in ion
channels, which are crucial for their function. Incorporating
these aspects into computational protocols presents a complex
task, requiring ongoing computational protocol development and
optimization of force fields. One such specialized protocol was
devised within the Rosetta framework for the docking of cholesterol
to integral membrane proteins (Marlow et al., 2023). The so-
called RosettaCholesterol protocol, based on RosettaLigand (Meiler
and Baker, 2006), adapts the sampling and scoring steps to
improve docking of the cholesterol ligand and adds an additional
filtering step to predict the cholesterol binding site specificity.
The RosettaCholesterol protocol improved sampling and scoring
of native poses over the RosettaLigand baseline in 91% of cases.
Furthermore, the authors were able to recapitulate experimentally
validated specific sites on the β2 adrenergic receptor. It proves
to be a computationally fast and inexpensive tool that can
screenmany possible protein-cholesterol complexes. Future studies
may further refine Rosetta-based protocols to explore a broader
spectrum of lipid-protein interactions, paving the way for a more
comprehensive understanding of membrane biology and protein-
lipid dynamics.

Some lipids also have pharmacological effects and can be
utilized to inform drug design. Notably, polyunsaturated fatty acids
(PUFAs) can serve as signaling molecules with pharmacological
effects, influencing cellular processes and modulating ion channels
and inflammation (Xiao et al., 2005). Understanding the roles
of bioactive lipids in cellular signaling informs the rational
design of compounds targeting the protein-lipid surface. For
example, Yazdi et al. (2021) studied PUFAs-modulated activation
and mode of binding on KCNQ1 channels. Utilizing MD and
electrophysiological experiments, they observed that PUFAs bind
to the KCNQ1 voltage sensor and pore domain. The positively
charged amino acid residues in these regions favorably stabilize
the electronegative head group of PUFAs, while the tail group
maintains the open position of KCNQ1 upon interaction with the
hydrophobic residues. Different PUFA analogs produce a range
of modulatory effects in ion channels (Bohannon et al., 2020a,b)
which can be a useful information to guide the design of anti-
epileptic and anti-arrhythmic drugs.

There exists still much uncertainty about the location of
possible druggable sites in ion channels and new binding sites have
been often discovered at unexpected locations (Wright et al., 2020;
Sridhar et al., 2021; Botte et al., 2022; Kschonsak et al., 2023).
Hence, methods that can accurately predict ligand binding sites on
membrane proteins will significantly improve drug discovery. Lu
et al. (2019) described a machine learning-based classifier tailored
to the prediction of ligand binding sites on membrane protein
surfaces. The MPLs-Pred method uses evolutionary profiles,
topological features, physicochemical properties, and primary
sequence segment descriptors as combined features in a random
forest classifier. MPLs-Pred achieved an appreciable performance
with Matthew’s correlation coefficients of 0.597 and 0.356 on cross-
validation and independent test sets, respectively. Ligand-specific
predictive models that classify ligands into drugs, metal ions and
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biomacromolecules further improved the prediction performance.
Notably, the versatility inherent in the approach above suggests the
potential for its extension to accommodate the prediction of various
other ligand species.

The characteristics of ion channel binding sites, particularly
the narrow and deep pores, requires molecules that can efficiently
navigate and bind within these confined spaces. CaverDock,
developed by Vavra et al. (2019), is a docking tool based on
AutoDock Vina (Eberhardt et al., 2021) which can simulate the
binding and unbinding of ligands to protein tunnels like ion
channel pores. This tool uses the optimized docking algorithm of
AutoDock Vina for ligand placement and implements a parallel
heuristic algorithm to search the space of possible trajectories. In
comparison with MD simulations, CaverDock does not require
extensive knowledge of the studied system. CaverDock can sample
the binding energy throughout the whole protein tunnel and
identify unfavorable binding interactions, which can then be
optimized by site-directed mutagenesis.

Ligand docking scoring functions used in CADD may be
less accurate for membrane proteins because of the unique
physicochemical environment of lipid membranes and because
scoring functions have been usually optimized for soluble protein-
ligand systems (Li et al., 2019; Rudden and Degiacomi, 2021),
emphasizing the need for refinement and validation of scoring
approaches tailored to ion channels. The presence of charged
residues in the membrane surface region necessitates careful
consideration of electrostatic interactions. Therefore, tuning the
scoring function may involve emphasizing terms related to
electrostatic forces, including charged interactions between the
ligand and the protein. This is also observed in the hydrophobic
deep membrane region, where the lipid bilayer provides a
nonpolar environment, requiring adjustments of the solvation and
electrostatic score terms. Unfortunately, the availability of tools
tailored for ligand docking scoring functions is relatively limited,
with a predominant focus on the development and benchmarking
of ligand docking scoring functions for soluble receptors (Li
et al., 2019). Very few docking programs have incorporated
membrane scoring functions to address the challenges associated
with modeling interactions at the protein-membrane interface.
Usually these computational frameworks are intended for protein
docking but can be adapted to ligand docking as well. MEMDOCK
is an algorithm designed specifically for docking alpha-helical
membrane proteins within the membrane. The method models
both side chain and backbone flexibility and performs rigid body
optimization of the ligand orientation using modified Patchdock
and Fiberdock (Hurwitz et al., 2016). Furthermore, HADDOCK
(Dominguez et al., 2003), LightDock (Jiménez-García et al., 2018),
and Rosetta (Leman et al., 2020) also offer the possibility for
protein and ligand docking in an implicit membrane model.
Within the Schrödinger suite of tools, Glide (Halgren et al., 2004)
and Desmond (Desmond Software, n.d.) allow for an integrated
workflow in which researchers can first conduct MD simulations
onmembrane proteins using Desmond and subsequently transition
the resulting structures to Glide for ligand docking experiments.
This offers a holistic exploration of membrane protein dynamics
and facilitates a detailed examination of ligand binding within
the context of the lipid bilayer environment. While other

common docking programs such as ZDOCK (Pierce et al.,
2014) and AutoDock (Eberhardt et al., 2021) traditionally lack
built-in membrane protein scoring functions for ligand binding,
noteworthy adaptations and integrations have been introduced to
enable their functionality in the context of docking ligands into
transmembrane domains (Greene et al., 2016; Kobeissy Stanley
M Stevens and editors, 2017). These modifications often involve
specialized considerations for the hydrophobic and electrical
properties of membrane environments.

Docking-based ultra-large virtual
screening

In docking-based VS a panel of protein targets is screened
with various molecular docking software to model the binding
mode and interactions with small molecules in the binding pocket.
The top-ranked small molecules are prioritized for further studies
(Lazar et al., 2017). Software tools and platforms like AutoDock,
DOCK, Glide, DiffDock, and Deep Docking (DD) facilitate high-
throughput docking by employing diverse scoring functions and
algorithms to predict compound binding affinity and orientation
within the target’s binding site (Kuntz et al., 1982; Halgren et al.,
2004; Trott and Olson, 2009; Gentile et al., 2020; Corso et al., 2022).

Hughes et al. (2019) applied docking-based VS to discover new
modulators of transient receptor potential vanilloid 5 (TRPV5) ion
channels. TRPV5 is a calcium-selected ion channel, which plays
an important role in renal calcium homeostasis in the human
organism (Dang et al., 2019). TRPV5-knockout mice were shown
to exhibit hypercalciuria and nephrolithiasis proving its critical role
in calcium levels maintenance (De Groot et al., 2008). There are
several existing TRPV5 modulators (Nilius et al., 2001; Hughes
et al., 2018), but they lack selectivity over TRPV6 subtype, which is
the closest homolog of TRPV5. In this regard, Hughes et al. (2019)
conducted a VS experiment at the inhibitor binding site of TRPV5
utilizing the ZINC15 library with over 12 million molecules. The
library was docked into TRPV5 using the Glide software package
from the Schrödinger suite (Friesner et al., 2004), and top-100 best
decoys were clustered into 65 groups with unique scaffolds based on
the Tanimoto similarity score. 43 were proceeded to physiological
testing by means of whole cell patch clamp experiments. Several
compounds from this set were shown to inhibit TRPV5-induced
currents, with two of them, ZINC9155420 and ZINC17988990,
exhibiting additionally selectivity for TRPV5 over TRPV6. The
authors also determined cryo-EM structures of these two ligands
bound to the TRPV5 channels and identified new binding sites that
provided insights into the ligand mode of specificity.

Wacker et al. (2012) studied heteromultimeric KV channels
in VS experiments. Particularly, KV1.1–1.2 represents the most
abundant potassium channel multimer in central and peripheral
nervous systems (Coleman et al., 1999). KV1.1–1.2 channels are
highly expressed in the hippocampus and are an important target
in epileptic seizures and multiple sclerosis (D’adamo et al., 2020).
The known KV1.1–1.2 inhibitor, 4-aminopyridine, however, has
limited potency and also inhibits other KV channels (KV1.4, KV4.2
subtypes), which compromises cardiac safety (Goodman et al.,
2009, 2010). Wacker et al. (2012) conducted docking-based VS
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with Autodock-Vina (Trott and Olson, 2009) on KV1.1-1.2 using
the ZINC library containing ∼10 million molecules. From 200
top scored compounds 89 compounds were tested using patch
clamp experiments. Fourteen of 89 compounds showed some
inhibitory activity ranging from 0.6 to 6µMonKV1.1–1.2 channels
(compared to 4-aminopyridine with IC50 = 170µM on KV1.1 and
IC50 = 230µM on KV1.2), and two of them also showed a higher
potency toward inhibition of KV1.1–1.2 in respect to other channels
(hERG, CaV1.2, NaV1.5).

Docking-based VS was also utilized in the study of Oddsson
et al. (2020), aiming at identifying new dual target molecules against
Alzheimer’s disease, acting via nicotinic acetylcholine receptors
(nAChRs). The same research group showed that a combination
acetylcholinesterase (AChE) inhibitors and activators of nAChRs
can lead to beneficial effects in the symptomatic treatment of
Alzheimer’s disease (Zoli et al., 2015; Kowal et al., 2019). The
research group speculated that the increased activity of α7 nAChR,
which is a ligand-gated ion channel, may improve treatment
in Alzheimer’s disease. Correspondingly, Oddsson et al. (2020)
performed VS on both target proteins using the ZINC15 dataset
with a total number of ∼four million compounds. All molecules
were docked into AChE and nAChRs, and from the top-scored
ligands in both proteins a common subset was selected that was
encountered in both screening runs. One of the identified hit
molecules showed the desirable inhibitory effect on AChE and
agonistic activity on nAChR when evaluated in voltage-clamp
electrophysiological testing. The identified compound represented
the first example of a multitarget compound for the treatment of
Alzheimer’s disease.

Additional notable docking-based VS studies on ion channels
include the discovery of small-molecule activators of the KCNQ1
channel (Liu et al., 2020; Lin et al., 2021) and of allosteric
modulators of BK channels (Zhang et al., 2022a). All of these studies
used the MDock docking software (Yan and Zou, 2015) and the
Available Chemical Database (ACD) for screening. Interestingly,
the identified compounds were found to affect their ion channel
targets via different modes of action. The KCNQ1 activator
molecule CP1mimics the lipid PIP2 inmediation of voltage sensor-
pore coupling and thereby enhances KCNQ1 activation (Liu et al.,
2020). C28 is another KCNQ1 activator molecule but binds to and
stabilizes the voltage sensor domain, thereby decreasing the voltage
required for voltage-dependent KCNQ1 activation (Lin et al.,
2021). The authors found that C28 can effectively reverse drug-
induced lengthening of the action potential duration in ventricular
myocytes. The small-molecule BK channel allosteric modulator
BC5 binds at the voltage sensor-cytosolic tail domain interface and
specifically enhances Ca2+-dependent activation by perturbing the
pathway for coupling between Ca2+ binding and pore opening
(Zhang et al., 2022a). This mode of action was corroborated by
mutagenesis and atomistic simulations and suggested that the
interface between voltage sensor and cytosolic tail domain in BK
channels is an important site for allosteric modulation.

Ultra-large VS requires fast algorithms that are able to predict
the activity or binding affinity of billions of compounds in
reasonable time. Deep Docking (DD), is a novel deep learning
platform that is suitable for docking billions of molecular structures
in a rapid, yet accurate fashion (Gentile et al., 2020). The DD

approach employs sophisticated deep neural network models
rooted in QSAR principles. These models are trained using docking
scores from a small subset of a molecule library. The primary goal is
to predict the docking results for new entries and iteratively exclude
unfavorable molecules. By integrating the DD methodology with
the FRED docking program, Gentile et al. achieved rapid and
precise computation of docking scores for 1.36 billion molecules
sourced from the ZINC15 library (Gentile et al., 2020). This
extensive analysis covered 12 notable target proteins. Notably, this
approach led to an impressive data reduction of up to 100-fold
and a remarkable enrichment of high-scoring molecules by a factor
of 6,000. Importantly, these advancements were attained without
any substantial loss in the successful docking of molecules. The
DD protocol can be seamlessly incorporated into many docking
programs and is publicly available (Gentile et al., 2020).

In a recent study conducted by Yang et al. (2023), the
researchers utilized deep docking-facilitated VS in conjunction
with the VirtualFlow platform to screen ligands targeting
the inward rectifier potassium channel 5.1 (Kir5.1, KCNJ16).
VirtualFlow is a flexible and parallel workflow platform designed
to execute VS tasks on Linux-based computer clusters of various
sizes and types, all seamlessly managed by a batch system.
The author’s gene profiling and enrichment analyses revealed
that KCNJ16 exhibited downregulation in thyroid tumor tissues
compared to normal ones, implicating a pivotal role for KCNJ16
in cell growth and differentiation. Consequently, Kir5.1, encoded
by KCNJ16, emerged as an appealing target in thyroid cancer
research. To narrow down their selection of compounds, Yang
et al. employed the DD protocol and executed the final docking
run using VirtualFlow. They relied on the AlphaFold predicted
structure of Kir5.1 for docking. Employing the DD protocol, the
authors identified several molecules, including Z2087256678_2,
Z2211139111_1, Z2211139111_2, and PV-000592319198_1, as
potent ligands for Kir5.1. Unfortunately, the computationally
identified hit molecules were not further tested and, therefore,
should be regarded as suggestive.

V-SYNTHES (virtual synthon hierarchical enumeration
screening), developed by Sadybekov et al., represents another
approach aimed at efficiently screening ultra-large compound
libraries for potential hit compounds using a modular synthon-
based strategy (Sadybekov et al., 2022). Essentially, a synthon
represents a fragment of a molecule that can be used as a building
block for synthesizing more complex molecules. In this pioneering
study, the algorithm enabled efficient screening of the Enamine
REAL library and its REAL Space extension containing over 11
billion drug-like compounds.

V-SYNTHES involves several iterative steps (Figure 4), starting
with the creation of a fragment-like compound library representing
all possible scaffold-synthon combinations. In the first step,
compounds are constructed by combining reaction scaffolds with
corresponding synthons at one position, while other positions are
capped. Capping refers to the process of modifying or blocking
certain positions on a molecule while allowing chemical reactions
to occur at specific, chosen positions. This results in a library of
∼600,000 compounds, corresponding to the number of synthons.
In the second step, docking simulations are used to predict
the binding affinity of these fragments to a target protein. The
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top-scoring candidates (1,000–10,000) undergo further rounds of
enumeration and docking in steps three and four. The final set of
50–100 compounds for experimental testing is selected based on
post-processing filters e.g., synthesizability.

In the original V-SYNTHES paper (Sadybekov et al., 2022),
the Enamine REAL Space library was screened for cannabinoid
receptor antagonists using a receptor-template-based approach. V-
SYNTHES significantly accelerated the screening process, requiring
docking of only ca. 2 million compounds, while screening a much
larger chemical space. Furthermore, V-SYNTHES outperformed
traditional brute force VS approaches by identifying more high-
scoring compounds. The approach yielded 80 hit candidates, with
60 synthesized and functionally characterized. Notably, 33% of
these hits had Ki values better than 10µM. This hit rate was twice as
high as the hit rate achieved in standard docking of a representative
subset of the Enamine REAL library.

The hit compounds showed diverse structures, containing
new scaffolds and fully occupying the receptor’s orthosteric
binding pocket. Application of V-SYNTHES to the kinase target
ROCK1 also led to successful results, with a 28.5% hit rate
containing compounds with nanomolar affinity. Overall, V-
SYNTHES provides a practical and efficient method for rapidly
screening ultra-large modular virtual libraries. It can be adapted
to various docking-based screening platforms and applied to ion
channels and other target proteins, which demonstrates the broad
applicability of the method in drug discovery efforts.

Ligand-based virtual screening

Ligand-based VS techniques play a crucial role in the field of ion
channel drug discovery by aiding in the identification of potential
compounds that couldmodulate ion channel activity. Ligand-based
VS focuses on identifying molecules with structural and chemical
properties similar to known ion channel modulators. This approach
is particularly useful when experimental structural information
about the target ion channel is limited or unavailable. The ligand-
based methods include approaches like similarity and substructure
searching, QSAR modeling, pharmacophore-based search, and 3D
shape matching supported by machine learning and molecular
modeling techniques.

Ligand-based VS enables the efficient exploration of large
compound databases, identifying molecules that exhibit potential
ion channel modulatory effects. This approach helps prioritize
compounds for experimental testing, reducing the time and
resources required in early stages of drug discovery. Overall,
ligand-based VS techniques complement experimental approaches
in ion channel drug discovery and contribute significantly to
the identification of novel therapeutic candidates targeting ion
channels, potentially leading to the development of innovative
treatments for various diseases (Sharma et al., 2021).

Ijjaali et al. (2007) focused on the use of ligand-based VS
techniques for the discovery of novel T-type calcium channel
inhibitors. T-type calcium channels are implicated in various neural
disorders such as epilepsy and neuropathic pain. To identify new
inhibitors, the researchers employed a pharmacophore-based VS
approach using 2D pharmacophoric fingerprints. They collected

a dataset of known active compounds from the AurSCOPE Ion
Channels knowledgebase (AurSCOPE Ion Channel Database, n.d.),
which was used as a query to screen an external molecular database.
A total of 38 compounds were selected for biological evaluation,
and functional patch clamp assays were conducted on the CaV3.2
isoform. Interestingly, 16 out of the 38 compounds showed more
than 50% blockade of CaV3.2-mediated T-type current. These
findings demonstrate the effectiveness of ligand-based VS in
identifying potential T-type calcium channel inhibitors for further
investigation in drug discovery efforts.

Mohan et al. conducted a study aiming to identify compounds
with N-type calcium channel blocking activity (Mungalpara
et al., 2010). They utilized multiple descriptors such as structure,
ADME/Tox, thermodynamics, and electrotopological properties to
train a QSAR model for predicting blocking activity. The resultant
descriptors offered insights into the physico-chemical attributes
influencing N-type calcium channel blocking activity.

The team led by Noskov evaluated a collection of hERG
pore domain blockers through a combination of 3D-QSAR and
receptor-based molecular docking techniques (Durdagi et al.,
2011). They also designed a pharmacophore model that enabled
swift assessment of compound channel-blocking capability. The
outcomes were corroborated by docking hits into a hERG
homologymodel and through in silicomutagenesis, aligning closely
with experimental data.

Pharmacophore-based screening methods represent another
powerful approach for ligand-based VS. Pharmacophore models
represent the critical chemical features of the ligand molecule
and their spatial arrangement required for compound-target
interactions. These methods can swiftly search large chemical
databases for compounds that conform to the pharmacophoric
constraints of the target (Urbahns et al., 2003; Dror et al., 2009;
Seidel et al., 2010; Giordano et al., 2022). Pharmacophore-based
screening is particularly useful when the protein target structure is
challenging to obtain (Kaserer et al., 2015; Schaller et al., 2020).

Sehgal et al. (2014) performed pharmacophore-based screening
experiments to identify inhibitors of the potassium channel
subfamily K member 18 (KCNK18). KCNK18 is one of the
determinant factors of migraine-associated pain. A large number
of mutations in the KCNK18 gene exist that are associated with
excessive neuronal excitability and severe headaches (Grangeon
et al., 2023). Sehgal et al. (2014) used pharmacophore models
created based on other anti-migraine drugs and the LigandScout
tool (Wolber and Langer, 2005) to screen the ZINC database and
two other custom-made compound libraries for new KCNK18
inhibitors. The top-ranked compounds were subsequently analyzed
using docking with the AutoDock software (Trott and Olson, 2009;
Eberhardt et al., 2021), and the top four molecules were chosen
for further assessment in binding experiments. Based on docking
and drug likeness analysis, newly identified compounds (PB-
408318540, PB-415019010, PB-414901730, PB-414901692) were
proposed as potential drug molecules to target KCNK18, opening
up a therapeutic option for the treatment of migraine occurrences.

In another study, Krueger et al. (2009) tested various
ligand-based VS procedures to discover new hits for the
N-Methyl-D-Aspartate (NMDA) receptor. NMDA receptor is an
ion channel that is found in neurons and activated upon binding
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FIGURE 4

V-SYNTHES approach to modular screening of Enamine REAL Space. The flow chart from left to right provides a broad outline of the 4-step
algorithm developed by Sadybekov et al. (2022).

of glutamate and glycine. Both the hypo- and hyperfunctioning
of NMDA is involved in various neurodegenerative diseases,
such as schizophrenia, Parkinson’s disease, and Alzheimer’s
disease (Lin and Lane, 2019). The glycine binding site of the
NMDA receptor represents a promising strategy for inhibitor
design (Parsons, 2001). Thus, after analyzing all commercially
available compound libraries, Krueger et al. (2009) obtained
∼4.6 million molecules to screen against the NMDA receptor’s
glycine site. The authors used 2D and 3D descriptors for
screening as well as ligand docking with Glide SP (Friesner
et al., 2004) and Glide XP (Friesner et al., 2006), pharmacophore-
based and QSAR-based models, and 3D shape search strategies.
From each method 500 molecules were extracted, and 201
of them proceeded into in vitro testing. While most of the
newly identified molecules exhibited a low activity in the
micromolar range, all the applied methods were able to derive
compounds with novel scaffolds and a high percentage of
true actives.

Ion channel researchers have also harnessed machine learning
techniques during the early stages of analgesic discovery. This
includes identifying novel genes and pathways linked to both
acute and chronic pain (Chidambaran et al., 2020), as well
as predicting inhibitors for the NaV1.7 sodium channel, an
important target for the treatment of pain. To simplify the
prediction of novel multi-target analgesics or drug combinations
for pain management, an extensive pain-focused chemogenomics
knowledge base has been established. This comprehensive resource
incorporates existing analgesics, the 3D structures of pain-related
targets, and compounds associated with these target proteins (Kong
et al., 2020).

Virtual drug discovery with deep
generative models

Deep learning is not only used for speeding up VS methods,
but is also a driver for the field of generative drug design (also
referred to as de novo drug design). In generative drug design,
novel chemical molecules with desired chemical and biological
properties are generated from scratch, aiming to find new bioactive
and synthesizable molecules in a time- and cost-efficient manner.
Briefly, the essence of a generative model is to learn the distribution
of molecules presented in a training set and generate new
molecules for one or multiple targets which are different from
those in the training set (Zeng et al., 2022). Combined with
evolutionary algorithms or reinforcement learning, the properties
of the generated molecules can be further optimized to satisfy
different design objectives (Tan et al., 2022). Generative drug design
is a relatively new field but could offer advantages compared to
conventional VS with regard to the time and cost required for
navigating the large chemical space. In a remarkable study by
Zhavoronkov et al. (2019) deep generative drug design enabled the
discovery of novel potent small molecule inhibitors of the discoidin
domain receptor 1 (DDR1) with nanomolar inhibitory efficacy in
only 21 days.

The representation of molecules employed by the generative
model can be in many forms (David et al., 2020). Many methods
use the Simplified Molecular Input Line Entry System (SMILES)
(Weininger, 1988) to represent molecules as sequence of characters.
From the sequences of SMILES characters as input, language
processing neural networks such as recurrent neural networks
(RNNs) learn to predict one character at a time, based on the
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proceeding portion of the sequence and a probability distribution.
From the learnt probability distribution new SMILES strings can
be sampled (Gupta et al., 2018). However, this approach has one
or more limitations. The generated SMILES may not represent a
chemically feasible structure, and even a single character change
in a SMILES code can change the underlying molecular structure
significantly. To overcome these limitations, approaches using
graph-based (Li et al., 2018; Xia et al., 2019) and 3D molecule
representations (Xie et al., 2022) have been developed. In addition
to RNNs (Gupta et al., 2018; Segler et al., 2018), other generative
design algorithms include variational autoencoder (VAE) (Gómez-
Bombarelli et al., 2018), generative adversarial network (GAN)
(Abbasi et al., 2022), transformer models (Liu et al., 2023), and
generative models combined with reinforcement learning (RL)
(Popova et al., 2018; Liu et al., 2021; Govinda Bhisetti, 2022).

Since drug-likeness and synthetic accessibility are critical
parameters that decide about the success of drug candidates,
generativemodels have been trained to yieldmolecules with specific
properties. For example, RL with policy gradient for forward
synthesis (PGFS) was proposed as a method to generate molecules
that can be feasibly synthesized (Krishna Gottipati et al., 2020).
Furthermore, RationaleRL is a graph-based RL model that tries
to optimize a multi-objective target function, including properties
such as bioactivity against multiple proteins, drug-likeness, and
synthetic accessibility (Jin et al., 2020).

The application of deep generative drug design to ion
channels is still in its infancy. Schultz et al. (2021) reported

the use of deep generative models to design novel antagonists
targeting the phencyclidine (PCP) site of the N-methyl D-aspartate
receptor (NMDAR). NMDAR antagonists have demonstrated
therapeutic benefit in the treatment of neurological diseases such
as Parkinson’s and Alzheimer’s disease (Liu et al., 2019). The
authors applied a VAE-based method, called DarkChem (Colby
et al., 2020), for NMDAR antagonist design and developed
a library of potential NMDAR PCP site-targeting molecules.
From ∼200,000 compounds designed by DarkChem, 12 novel
compounds were found that passed all subsequent in silico

filtering techniques, including ligand docking, ADMET and
synthesizability predictions, drug-likeness filter, substructure and
similarity analyses, and were not available in existing public
chemical databases. This study provided an example of what
generative drug design on ion channels can achieve, although
chemical synthesis and experimental validation of the AI-generated
compounds were not performed.

To better meet the requirements of drug discovery, deep drug
design models are able to consider multiple design objectives.
Liu et al. (2021) demonstrated a RNN- and RL-based algorithm,
DrugEx, which achieves multi-objective molecule optimization to
generate molecules which are active toward one or multiple specific
targets while avoiding off-target effects with other proteins. DrugEx
was tested for the generation of molecules that should have high
affinity for adenosine receptor subtypes A1 and A2A but low or zero
affinity for the hERG potassium ion channel. Because drug-induced
blockage of the hERG ion channel can lead to severe cardiotoxicity,

FIGURE 5

Workflow of the DrugEx method for designing molecules with selectivity to A1 and A2A adenosine receptors but no a�nity for hERG. (1) New
molecules are sampled as SMILES based on the probability calculated by the RNN-based agent generator. (2) The SMILES are encoded into
descriptors and their a�nity for A1, A2A and hERG is predicted. (3) The predicted a�nities are transformed into a single value as the reward for each
molecule based on Pareto optimization. (4) For training the generative model, the SMILES and their rewards are sent back to the generator. Steps (1)
to (4) are repeated until convergence of the training process is reached. Reproduced from Liu et al. (2021) under permission of Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
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which has been one of themost common reasons for the withdrawal
of drugs from the market, hERG toxicity assessment methods
have been implemented in the early stages of drug discovery.
In the conceptualization of DrugEx, the authors used an RNN
as the agent and several machine learning prediction models as
environment which operate together in the RL framework. The
reward of each molecule is calculated from the Pareto ranking
obtained by considering the ML scores for all objectives in the
environment as well as a metric representing molecule chemical
diversity (Figure 5). The molecules generated by DrugEx covered
a larger chemical space compared to other drug design methods
and bore some similarity to known adenosine receptor ligands. The
approach can be relevant also for developing more selective ion
channel modulators.

Molecule design with deep generative models has brought
new momentum for drug discovery. If constantly improved and
further developed, these methods may be increasingly used for
ion channel drug discovery. However, current bottlenecks of AI
technologies, such as lack of availability of high-quality data
and limited interpretability of the model, currently restrict their
application and affect their performance.

Conclusion and perspective

The integration of computational methods such as VS and
deep learning holds great promise in revolutionizing the landscape
of drug discovery. These methods, by augmenting traditional
experimental high-throughput screening (HTS) techniques, offer
a multifaceted approach to drug development. VS techniques,
including hit expansion, scaffold hopping, and exploration of
uncharted chemical space, demonstrate the potential to uncover
novel lead compounds that might have been overlooked within
conventional screening libraries. Additionally, the predictive power
of computational methods in estimating essential pharmacokinetic
and toxicological properties facilitates early identification
of promising candidates, significantly streamlining the drug
discovery pipeline.

While computational methods offer remarkable insights, it
is crucial to acknowledge their synergy with experimental HTS
methods. The amalgamation of computational and physical
screening tests enriches our understanding of compound
behavior in complex biological systems. Physical tests provide
indispensable data, especially in relevant biological contexts, aiding
in the assessment of properties such as absorption, distribution,
metabolism, excretion, and toxicity (ADMET), which remain
challenging to simulate accurately computationally.

The continuous evolution of computational techniques
prompts us to consider the future of drug discovery. While
computational simulations are powerful tools offering
valuable insights, they are not yet poised to entirely replace
traditional physical screening tests. Instead, the synergy between
computational and experimental methods represents the most
potent approach. Combining computational and experimental
approaches in an iterative and integrative manner often leads to
the most effective and comprehensive results. As computational

methods advance, the question arises: will they eventually supplant
or significantly reduce the need for conventional physical screening
tests? This intriguing prospect awaits further exploration, marking
an exciting chapter in the ongoing narrative of scientific progress
in drug discovery.
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