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Affective neurofeedback training allows for the self-regulation of the putative circuits of

emotion regulation. This approach has recently been studied as a possible additional

treatment for psychiatric disorders, presenting positive effects in symptoms and

behaviors. After neurofeedback training, a critical aspect is the transference of the learned

self-regulation strategies to outside the laboratory and how to continue reinforcing these

strategies in non-controlled environments. In this mini-review, we discuss the current

achievements of affective neurofeedback under naturalistic setups. For this, we first

provide a brief overview of the state-of-the-art for affective neurofeedback protocols.

We then discuss virtual reality as a transitional step toward the final goal of “in-the-

wild” protocols and current advances using mobile neurotechnology. Finally, we provide

a discussion of open challenges for affective neurofeedback protocols in-the-wild,

including topics such as convenience and reliability, environmental effects in attention

and workload, among others.

Keywords: neurofeedback, emotion regulation, virtual reality, naturalistic, in-the-wild, brain-computer interfaces

1. INTRODUCTION

Neurofeedback is a sub-area of brain-computer interfaces (BCIs), in which the subject is trained
to achieve voluntary control of the ongoing neural activity in brain regions or circuits (Sitaram
et al., 2017; Watanabe et al., 2017; Thibault et al., 2018). For this, the user is presented with real-
time feedback related to brain activity and must develop and optimize self-regulation strategies to
improve the control performance (Strehl, 2014; Sitaram et al., 2017). Applications of neurofeedback
range from performance optimization in sports (Mirifar et al., 2017) to clinical applications, where
themain objective is to target abnormal functional structures to reduce or even eliminate symptoms
(Thibault et al., 2018).

One field that can benefit from neurofeedback protocols is psychiatry (Kim and Birbaumer,
2014; Arns et al., 2017; Thibault et al., 2018). A common approach in these cases is affective
neurofeedback (Linhartová et al., 2019), where the protocols target putative mechanisms of
emotion regulation (Lindquist et al., 2012, 2016). Recent studies described promising results from
neurofeedback training in patients with affective disorders, such as major depressive disorder
(MDD) (Trambaiolli et al., 2021a). Moreover, recent studies show that neurofeedback training can
lead to symptom improvements that last for weeks after intervention (Rance et al., 2018). Other
observed benefits include the normalization of dysfunctional structures and plastic reorganization
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of intrinsic functional connectivity (Hampson et al., 2011;
Scheinost et al., 2013) and directed effective connectivity (Zotev
et al., 2011, 2013).

One crucial step for neurofeedback-based therapies is
transferring the learned self-regulation strategies to real-life
situations, outside of the overly controlled experimental setups
(Brühl, 2015; Thibault et al., 2018). This approach is of particular
importance to affective neurofeedback experiments since real-life
scenarios most likely will include distractors, stressors, or other
confounds that could affect the learned self-regulation strategies
(Kadosh and Staunton, 2019). In this context, naturalistic setups
are of extreme relevance to evaluate affective neurofeedback
feasibility as a potential therapeutic approach. Although rare,
neurofeedback and BCI experiments have been studied in the
real-world (also referred to as “in-the-wild”) (Kosmyna, 2019).
Moreover, virtual reality (VR) environments provide immersive,
naturalistic experiences that can be used as an intermediate step
toward applications in-the-wild. This approach is supported by
computational (Renard et al., 2010) and instrumental (Cassani
et al., 2020a) advances in the BCI field, providing the necessary
tools to create neurofeedback protocols using VR.

This mini-review discusses the state-of-the-art of affective
neurofeedback protocols under naturalistic conditions and open
challenges in the field. For this, we first provide a brief
overview of affective neurofeedback protocols using different
neuroimaging modalities. We discuss the possibility of using
VR as a transitional step toward experiments in-the-wild and
evaluate current protocols using this feedback modality. Then,
we assess the status of neurofeedback experiments outside the
laboratory and discuss open challenges for developing affective
neurofeedback protocols in such conditions.

2. CURRENT STATUS OF AFFECTIVE

NEUROFEEDBACK

Electroencephalography (EEG) was the first neuroimaging
method used in developing affective neurofeedback protocols,
with the first case reports dated from the 1990s (Rosenfeld et al.,
1996; Baehr et al., 1997; Earnest, 1999). Usually, these protocols
target the activity in prefrontal portions of the scalp. For example,
the most common approach relies on possible asymmetries in
channels over the prefrontal regions of the scalp (Choi et al., 2011;
Peeters et al., 2014; Quaedflieg et al., 2016). This methodology
assumes that the hyper- and hypo-activation of opposite
hemispheres indicate the valence experienced during emotion
regulation (Harmon-Jones et al., 2010) andmay reflect symptoms
in psychiatric patients (Thibodeau et al., 2006). Controlled
experiments show that alpha asymmetry neurofeedback training
may reduce negative mood and anxiety in healthy subjects
(Quaedflieg et al., 2016; Mennella et al., 2017), as well as relieve
depressive symptoms in patients with MDD (Choi et al., 2011;
Wang et al., 2019). More examples of EEG-based neurofeedback
include the control of alpha or beta bands over the parietal cortex
(Escolano et al., 2014; Wang et al., 2019), sensorimotor rhythms
(Lee et al., 2019), frequency ratios (Lee et al., 2019), among others.

With the advent of functional magnetic resonance imaging
(fMRI), neurofeedback protocols were able to target more
precisely the putative mechanisms of emotion regulation
(Lindquist et al., 2012, 2016). In this context, different approaches
were developed over the years, including protocols targeting
the self-regulation of single regions of interest (ROIs) within
these networks (Zotev et al., 2011; Young et al., 2014, 2017),
multiple regions (Johnston et al., 2010, 2011; Linden et al., 2012;
Mehler et al., 2018), or the functional connectivity between areas
(Koush et al., 2017). In these cases, common targets include areas
such as the lateral and medial prefrontal cortex (PFC), anterior
cingulate cortex (ACC), insular cortex (IC), amygdala, among
others (Linhartová et al., 2019). For instance, protocols targeting
the amygdala self-regulation led to mood changes in healthy
subjects (Zotev et al., 2011), and reduced symptoms in patients
with MDD (Young et al., 2014, 2017). Moreover, functional
connectivity reorganization was observed in these patients (Yuan
et al., 2014; Young et al., 2018), as well as in subjects with
post-traumatic stress disorder (PTSD) (Misaki et al., 2018). In
approaches targeting multiple regions, although healthy subjects
did not report changes in mood after training (Johnston et al.,
2011), patients with MDD showed symptom improvement after
multiple training sessions (Linden et al., 2012; Mehler et al.,
2018), with benefits persisting at follow-up (Mehler et al., 2018).

The neurofeedback approach used by EEG and fMRI,
although based on different methodologies, presents correlated
neural mechanisms. For instance, the self-regulation of the
amygdala during neurofeedback also engages brain structures
from the frontal cortex (Zotev et al., 2013). Furthermore, studies
with simultaneous EEG and fMRI recordings demonstrate an
existing association between the amygdala self-regulation and
the frontal EEG asymmetry (Zotev et al., 2016, 2018). In
this context, Zotev and colleagues recently proposed a hybrid
neurofeedback protocol, combining fMRI and EEG data during
emotion regulation and demonstrating its feasibility with healthy
subjects and MDD patients (Zotev et al., 2014, 2020; Zotev and
Bodurka, 2020).

More recently, the use of functional near-infrared
spectroscopy (fNIRS) has been explored (Ehlis et al., 2018;
Kohl et al., 2020). Protocols targeting areas such as the
dorsolateral PFC (dlPFC) (Marx et al., 2015; Hudak et al.,
2017; Kimmig et al., 2019) and the orbitofrontal cortex (OFC)
(Li et al., 2019) have been studied in healthy subjects and
psychiatric populations, although not necessarily targeting
emotion regulation. However, several studies using multivariate
pattern recognition approaches demonstrated that fNIRS signals
from the PFC are sufficient to decode affective processing during
the visualization of pictures (Hosseini et al., 2011; Trambaiolli
et al., 2018b, 2021b) and videos (Bandara et al., 2018; Hu et al.,
2019), as well as during autobiographical affective imagery
(Tai and Chau, 2009; Trambaiolli et al., 2018b, 2021b). In
this context, Trambaiolli et al. (2018a) proposed a decoding-
based affective neurofeedback protocol recalling positive
autobiographical memories. Healthy participants were able to
achieve satisfactory control of their prefrontal and occipital
neural activity. However, further testing of this approach in
clinical samples is still needed.
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3. VIRTUAL REALITY AS A TRANSITIONAL

STEP

Virtual reality (VR) is an immersive three-dimensional graphical
system that provides the sense of presence in the virtual world
(Burdea and Coiffet, 2003). This sensation can be experienced
by real-time interactions with the synthetic environment (Lotte
et al., 2012). To improve the level of interaction, one may also use
information from the participant, including body movements or
physiological responses (Kritikos et al., 2021). This technology
has been investigated as a potential therapeutic approach for
neuromotor rehabilitation (Massetti et al., 2016; Ravi et al.,
2017), or as an exposure therapy in psychiatry (Maples-Keller
et al., 2017; Deng et al., 2019). Moreover, it also allows for
investigations combining VR and neuromodulatory technologies
(Cassani et al., 2020b). Even though the VR scenario emulates a
real-world situation, the experimenter still has control over the
environment, and the session can be stopped at any time the
patient is uncomfortable (Maples-Keller et al., 2017). Thus, it
provides advantages in experimental manipulation and control
not previously available.

When combined with neurofeedback, VR can be used to
evaluate how a less controlled environment influences the
neurofeedback protocol, as well as the learned strategies.
For instance, different neurofeedback protocols for attention
training included a virtual classroom environment (Rohani and
Puthusserypady, 2015; Hudak et al., 2017). In BCI protocols
using EEG-based P300 signals, participants were able to control
the system even in the presence of distracting elements
(Rohani and Puthusserypady, 2015). In an fNIRS-based protocol,
participants that learned how to self-regulate their hemodynamic
signal in the dlPFC showed improved performance in inhibitory
control tasks after training (Hudak et al., 2017).Moreover, a study
comparing two-dimensional (2D) and three-dimensional (3D)
VR feedback showed higher learning rates in the 3D-VR group
(Berger and Davelaar, 2018).

Specific to affective neurofeedback, few protocols can be found
in the literature using VR as a feedback tool. For instance,
Lorenzetti et al. (2018) proposed a proof-of-concept fMRI-
based experiment, with feedback provided by changing the
color of the VR scenario. Participants were trained to self-
regulate their neural activity in an ROI-based (amygdala) or
decoding-based neurofeedback while inducing and sustaining
complex emotions, such as tenderness and anguish. Although
showing the technical feasibility of incorporating VR to affective
neurofeedback, the color-changing scenario did not properly
emulate a real-world situation.

On the other hand, the study from Aranyi et al. (2016)
trained healthy participants to cheer up a virtual agent using
the self-regulation of the asymmetry of fNIRS oxyhemoglobin
concentrations in the dlPFC (this dataset is currently publicly
available for future investigations; Charles et al., 2020). In a
different study, Yamin et al. (2017) trained participants with
depth electrodes in the amygdala to down-regulate this region
while receiving feedback from virtual agents in a waiting room
environment. In both experiments, participants were able to
self-regulate the desired ROIs while receiving feedback in the VR

setup. Moreover, the feedback provided is more consistent with
possible situations faced by patients in real life.

4. TOWARD AFFECTIVE

NEUROFEEDBACK IN-THE-WILD

Neurofeedback protocols in-the-wild will allow for the continuity
of the training outside of the research or clinical environment.
This will ensure the reinforcement or adaptation of the developed
strategies for the maintenance of long-term benefits.

MEG and fMRI have the highest spatial resolution among
the most popular non-invasive neurofeedback protocols. Recent
advances in the development of portable scanners (Boto et al.,
2018; Wald et al., 2020; Zhang et al., 2020) bring hope to
applications in the mid- and long-term future. However, the
physical restraints associated with current equipment make
in-the-wild experiments impractical (Sulzer et al., 2013). In
this context, to increase the portability of a neurofeedback
system, the use of mobile or wireless EEG and fNIRS devices
emerge as a possible solution (Hondrou and Caridakis, 2012;
Pinti et al., 2018; Quaresima and Ferrari, 2019). Comparative
studies show that mobile EEG devices have similar accuracy
to over the bench equipment (De Vos et al., 2014; Ries et al.,
2014), and its applications include studying neural correlates of
motor behavior (Packheiser et al., 2020), attention monitoring
(Ladouce et al., 2019), andmental statemonitoring in ambulatory
conditions (Albuquerque et al., 2020; Parent et al., 2020).
However, these devices require more pre-processing and filtering
steps to compensate for biological artifacts (for instance, ocular
and muscular activity) or instrumental and environmental
noises (electrode misplacement, electrical, and radio-frequency
interference, among others) (Fairclough and Lotte, 2020). Mobile
fNIRS devices have also been tested in-the-wild, for instance,
while walking (Doi et al., 2013; Mirelman et al., 2014; Maidan
et al., 2016), playing table tennis (Balardin et al., 2017b), or
playing violin (Vanzella et al., 2019). Similar to EEG, mobile
fNIRS have to account for muscular artifacts (Balardin et al.,
2017a), as well as instrumental and environmental noises such
as optical decoupling and local luminance (Pinti et al., 2018).
These approaches can also be combined into hybrid protocols,
which have the advantage of combining multiple aspects of
neural activity (for example, electric and hemodynamic changes)
(Pfurtscheller et al., 2010; Müller-Putz et al., 2011, 2015). In this
context, researchers have been developing mobile, and modular
multimodal sensors combining EEG and fNIRS channels (von
Lühmann et al., 2016).

Studies investigating the feasibility of affective neurofeedback
protocols in-the-wild are still rare. However, studies using
similar approaches in-the-wild, such as brain-machine interfaces
(BMI), can be found in the literature. For instance, healthy
participants were able to control the directions of a wheelchair
based on P300 (Iturrate et al., 2009), steady-state visual evoked
potentials (SSVEP) (Müller et al., 2013), or P300+SSVEP
signals combined (Li et al., 2013). Moreover, using a stimulus-
independent design, paraplegic patients learned to control a
lower limb exoskeleton during gait using a motor imagery
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protocol (Donati et al., 2016). These examples provide a rationale
for the possibility of experimenting with affective neurofeedback
protocols in-the-wild.

5. CHALLENGES FOR AFFECTIVE

NEUROFEEDBACK IN-THE-WILD

Although presenting promising results in controlled
environments, current affective neurofeedback protocols face
several methodological challenges for real-world applications
(Kosmyna, 2019). If neglected, these aspects will become a
barrier for in-the-wild setups, and cause frustration and lead
to discontinued training. Due to these caveats, some of these
challenges are listed, and potential solutions are discussed next.

5.1. Convenience
The physical limitations experienced during current protocols
play a fundamental challenge for naturalistic experiences. For
instance, fMRI protocols are physically restrictive, and the user
may experience claustrophobia during the session (Sulzer et al.,
2013). On the other hand, EEG- and fNIRS-based protocols may
require a relatively long time for the cap preparation (positioning,
conductive gel, calibration, among others). It also results in
residual gel over the participant’s head after the session. In
this context, the use of dry and active electrodes is a possible
alternative to reduce the inconvenience of the setup preparation
(Lopez-Gordo et al., 2014). For instance, commercially available
EEG headbands using dry electrodes were successfully employed
in emotion classification in the lab (Arsalan et al., 2019), as well as
during attention training neurofeedback (Kovacevic et al., 2015)
and stress monitoring (Parent et al., 2020) experiments in-the-
wild. Thus, these types of setups should be further explored for
affective neurofeedback in-the-wild.

5.2. Feedback Modality
The feedback modality is important during reinforcement
learning. For studies using VR, visual feedback seems to be
an obvious choice. However, for in-the-wild applications, the
best feedback approach is still an open question. One portable
option would be using a laptop for real-time data processing
and providing visual feedback, but other mobile devices, such
as cellphones and tablets, should be explored. For instance,
stimulus-dependent BCI protocols are already possible using
these devices (Wang et al., 2013; Jijun et al., 2015). Although
not typical for affective neurofeedback, other feedback modalities
should be explored in-the-wild (Sitaram et al., 2017). For
instance, haptic and auditory feedback could be integrated
with current wearable technologies, such as smartwatches and
headphones, respectively.

5.3. Attention and Workload Variations
Under naturalistic conditions, the neurofeedback protocol will
need to consider different effects caused by the environment. For
instance, environmental distractions may influence the attention,
stress levels, andmental workload, leading to physiological noises
such as abrupt changes in EOG and EMG signals caused by
reflexive eye movements or muscular responses (Theeuwes et al.,

1998; de Wied et al., 2006). Moreover, our brain is continuously
processing environmental information, so involuntary neural
patterns will also be caused by the environment (Engelien et al.,
2000; Boly et al., 2004). As previously mentioned, multimodal
approaches could be a solution combining biosignals from
different sources to separate the desired neural signal from
physiological noises (Pfurtscheller et al., 2010; Müller-Putz et al.,
2011, 2015). Additionally, hybrid systemsmay be used tomonitor
levels of stress and mental workload to adapt the neurofeedback
algorithm (Albuquerque et al., 2020; Parent et al., 2020). For
instance, the study from Falk et al. (2010) evaluated the effects of
physiological and auditory noises emulating real-world situations
during tasks commonly used in BCI experiments. After using
compensatory algorithms, participants were able to control the
BCI system with performances similar to the silent conditions. In
a different scenario, the incorporation of error-related potentials
in the BCI algorithm also led to optimized training results
(Chavarriaga et al., 2014; Spüler and Niethammer, 2015).

5.4. Algorithm Robustness
As previously described, EEG and fNIRS are the most commonly
used neuroimaging modalities in-the-wild. However, these
technologies are prone to non-neural physiological noises, such
as electromagnetic fields for EEG and environmental light
sources for fNIRS (Fatourechi et al., 2007; Strait and Scheutz,
2014; Minguillon et al., 2017). Such noise sources require robust
artifact removal algorithms (Fairclough and Lotte, 2020), for
example using adaptative filters (Rosanne et al., 2021), or real-
time independent component analysis (ICA) (Mayeli et al., 2016;
Val-Calvo et al., 2019). Additionally, these algorithms should be
simple and computational cost-effective, once they will ultimately
be implemented and run in portable devices.

5.5. Decoding Performance
Some neurofeedback protocols use decoding-based approaches
(Taschereau-Dumouchel et al., 2020), which allow the bi-
directional (up and down) self-regulation of multiple regions
or channels, leading to differential plasticity changes in specific
subgroups of neurons (Shibata et al., 2019). This approach may
require multiple training/calibration blocks before the algorithm
starts to identify the user’s neural patterns. Although a recent
survey shows that while the participants are comprehensive about
the need for training blocks during the first session (Kosmyna,
2019), it may become a problem for long-term usage. Also,
under naturalistic setups, the decoder is likely to present higher
intra-session variability given the shifts in attention and stress
levels, mental workload, or environmental noises, as mentioned
above. In this context, alternatives such as the use of subject-
independent protocols (Ray et al., 2015; Trambaiolli et al.,
2021b), artificially generated training samples (Lotte, 2015),
or self-recalibrating classifiers (Bishop et al., 2014) have been
explored. Moreover, these approaches will be facilitated given
recent efforts to create open-access big-databases from decoding-
based neurofeedback (Cortese et al., 2021), or affective decoding
experiments (Abadi et al., 2015; Lan et al., 2020).
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5.6. Non-specific Effects
Although showing potential benefits in specific clinical
populations, the results from neurofeedback training can
be driven by non-specific effects (Ros et al., 2020). For
instance, similar to other clinical interventions, patients under
neurofeedback training may present clinical improvement due
to placebo effects (Thibault and Raz, 2017; Thibault et al., 2017).
Also, other areas composing large-scale networks may present
variations in addition to the targeted region of interest (Mayeli
et al., 2020). In the context of protocols under naturalistic
conditions, the participant may show improvement in mood
and anxiety symptoms based on the enriched environment or
interaction with the high-tech setup. In this context, studies
investigating affective neurofeedback in naturalistic setups must
follow proper designs for control groups and measures (Sorger
et al., 2019), and adequate reporting practices (Ros et al., 2020).

5.7. Replicability and Reproducibility
Current neurofeedback studies still lack a detailed description
of online signal processing (Heunis et al., 2020), while recent
checklists do not address the detailed description of offline
analysis (Tursic et al., 2020). The accurate and detailed
description of experimental protocols and analytical methods is
crucial to ensure proper replication studies in the neurofeedback
field (Melnikov, 2021). This is particularly important for
experiments in-the-wild that will require extensive pipelines to
deal with new types of movement and environmental noises
(Fairclough and Lotte, 2020).

5.8. Neurofeedback Illiteracy
BCI illiteracy is a phenomenon in which 10–50% of BCI
users will not gain voluntary control of their neural activity
(Allison and Neuper, 2010; Edlinger et al., 2015). This concept
can also be expanded to neurofeedback protocols (Alkoby
et al., 2018). In this context, there is an increasing interest
for physiological or psychological predictors describing who
would benefit from neurofeedback training (Alkoby et al.,
2018). For example, several studies report functional neural
networks (Weber et al., 2011; Scheinost et al., 2014; Wan et al.,
2014; Trambaiolli et al., 2018a) and neuroanatomical differences
(Halder et al., 2013) are related to the neurofeedback literacy
in both healthy and clinical populations. Also, psychological
aspects as control belief, frustration, concentration, among
others, play an essential role during the training performance
(Alkoby et al., 2018; Kadosh and Staunton, 2019). However,
studies of illiteracy predictors are mainly based on experiments
under very controlled environments. How these predictors
will be affected during neurofeedback training in naturalist
setups remains unknown. Moreover, future investigations
should identify possible differences between responders in

controlled environments and responders under naturalistic
setups. For instance, those undergoing VR-based training might
experience cybersickness (Weech et al., 2019), which may
lead to a new illiteracy category. This way, proper training,
and transfer strategies will be developed for each group
of users.

6. CONCLUSION

Affective neurofeedback has been investigated as a potential
therapeutic tool in psychiatry, showing promising results in
many clinical samples. To advance this technology, the study
of neurofeedback protocols under naturalistic conditions is
necessary. It will optimize the transference of the learned
self-regulation strategies to real-world scenarios or extend
the neurofeedback training outside the lab. This mini-review
showed that VR setups are already being explored for affective
neurofeedback protocols and can be used as a transitional step
before investigations in-the-wild. Moreover, the rise of portable
EEG and fNIRS devices and the successful application of these
instruments for BCI protocols in-the-wild endorse the technical
feasibility of affective neurofeedback in such conditions. Besides
improving the strategy transference and continuous training,
designs that work in-the-wild could be a solution to bring
neurofeedback to patients who can not visit large imaging centers
for different reasons (location, mobility limitations, among
others). Moreover, these protocols and related training can be
expanded to non-clinical environments, including applications in
gaming, affective computing, sports performance, among others.
We close with a discussion on open challenges for neurofeedback
training in-the-wild, including: convenience and reliability of
the neurofeedback setup, environmental effects in attention and
workload, non-specific effects, and possible new neurofeedback
illiteracy categories.
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