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Background:The link between driving performance impairment and driver stress is

well-established. Identifying and understanding driver stress is therefore of major interest

in terms of safety. Although many studies have examined various physiological measures

to identify driver stress, none of these has as yet been definitively confirmed as offering

definitive all-round validity in practice.

Aims: Based on the data available in the literature, our main goal was to provide a

quantitative assessment of the sensitivity of the physiological measures used to identify

driver stress. The secondary goal was to assess the influence of individual factors (i.e.,

characteristics of the driver) and ambient factors (i.e., characteristics of the context) on

driver stress. Age and gender were investigated as individual factors. Ambient factors

were considered through the experimental apparatus (real-road vs. driving simulator),

automation driving (manual driving vs. fully autonomous driving) and stressor exposure

duration (short vs. long-term).

Method: Nine meta-analyses were conducted to quantify the changes in each

physiological measure during high-stress vs. low-stress driving. Meta-regressions and

subgroup analyses were performed to assess the moderating effect of individual and

ambient factors on driver stress.

Results: Changes in stress responses suggest that several measures are sensitive to

levels of driver stress, including heart rate, R-R intervals (RRI) and pupil diameter. No

influence of individual and ambient factors was observed for heart rate.

Applications and Perspective: These results provide an initial guide to researchers

and practitioners when selecting physiological measures for quantifying driver stress.

Based on the results, it is recommended that future research and practice use (i)

multiple physiological measures, (ii) a triangulation-based methodology (combination of

measurement modalities), and (iii) a multifactorial approach (analysis of the interaction of

stressors and moderators).
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INTRODUCTION

Identifying Driver Stress: A Safety and
Comfort Challenge
Driving is a complex activity that takes place in a dynamic
environment where safety critical situations abound. Therefore,
many driving situations can lead the driver to experience stress,
such as bad weather, low visibility, complex driver-environment
interactions, and particular driving routes (Hill and Boyle, 2007;
Rodrigues et al., 2015; Rastgoo et al., 2018). Although driver
stress can be experienced as positive (i.e., eustress), the focus
here is placed on its negative dimension (i.e., distress), which is
more critical for well-being and road safety (Chung et al., 2019).
Associated with negative emotions (e.g., anxiety, Kontogiannis,
2006, fear, Schmidt-Daffy, 2013, anger, Emo et al., 2016; Ooi
et al., 2018; Gotardi et al., 2019) and the subjective feeling
that the situation exceeds the individual’s coping abilities (Selye,
1976), distress can lead to poor driving performances and risky
behaviors (Matthews et al., 1998; Hancock and Desmond, 2001;
Ge et al., 2014; Rendon-Velez et al., 2016). Given the causal
relationship between distress and poor driving performance,
finding measures that are sensitive to the level of stress is crucial
if we are to gain a better understanding of this disturbed state and
develop future remediation and support strategies.

Driver stress has often been identified on the basis of
various subjective scales, including the Driver Stress Inventory
(Matthews et al., 1997) and Driver Behavior Inventory (Gulian
et al., 1989; Glendon et al., 1993). Although these scales have
proven useful for capturing the multifaceted nature of driver
stress, they may also be limited by individuals’ inaccuracy in
self-reporting stress levels. What is more, relationships with the
neuroticism dimension have been shown to account for some
of the inaccuracy of subjective stress ratings (McCrae, 1990;
Espejo et al., 2011). Driver stress has also been inferred to a
large extent from the analysis of driving behaviors, such as
steering wheel motion, speed, acceleration, braking, overtaking,
and lane keeping (Schießl, 2008; Rigas et al., 2012; Lanatà et al.,
2014; Miller and Boyle, 2015; Rendon-Velez et al., 2016; Lee
et al., 2017). Again, this method of identifying driver stress has
some disadvantages. In addition to being a discontinuous stress
measure, it can also be problematic in the context of automated
driving since the driver is intended to be replaced by automation,
leading to a decrease in driving behaviors (Lohani et al., 2019).
Unlike subjective assessments and analysis of specific driving
behaviors, physiological measures offer empirical evidence—
objective and continuous—of the stress response (Plarre et al.,
2011). Physiological measures thus offer a direct insight into
the psychological and physiological adaptability of individuals
dealing with stressful situations (Hancock and Warm, 1989).
Finally, physiological measures remain relevant for monitoring
driver stress during highly automated driving, during which
drivers are not continuously in physical control of the vehicle.

Historically, stress responses have been compared to alarm
states of the body, triggered by physical threats from the
environment and intended to prepare the body for action
(Selye, 1956). The alarm analogy provides a clear way of
understanding the role of the physiological mechanisms that

underlie stress responses and facilitate fast action-oriented
reactions. Functionally, these mechanisms reflect a coactivation
of autonomic components resulting in sympathetic autonomic
stimulation and parasympathetic autonomic withdrawal, thus
minimizing a vagal “braking” action on the motor system
(Roelofs, 2017). Among physiological responses, cardiac
measures are generally favored by researchers and practitioners
for quantifying stress states. The most commonly used measures
to explore cardiac activity are heart rate and Heart Rate
Variability (HRV) (Alberdi et al., 2016). While heart rate focuses
on contraction frequency, HRV is a measure of the time that
elapses between contractions. The analysis of the time series
of beat-to-beat intervals provides additional information since
it reflects the heart’s ability to adapt to changes by detecting
and responding to stimuli over time (Acharya et al., 2006;
Kim H. G. et al., 2018). The idea is that an individual with a
low variability between heartbeats in a stressful context would
have a low capacity to deal with stressful stimuli. In a driving
context, a cardiac response to stressful stimuli is usually observed
through an increase in heart rate (Healey and Picard, 2005;
Lee et al., 2007; Cottrell and Barton, 2012; Guo et al., 2013;
Zhao et al., 2014; Reimer et al., 2016; Rendon-Velez et al., 2016;
Magana and Munoz-Organero, 2017; Antoun et al., 2018; Haouij
et al., 2018; Khattak et al., 2018; Gotardi et al., 2019; Heikoop
et al., 2019; Meesit et al., 2020) and a decrease in HRV (Lee
et al., 2007; Yu et al., 2016; Heikoop et al., 2017; Magana and
Munoz-Organero, 2017; Antoun et al., 2018; Rastgoo et al., 2019;
Tavakoli et al., 2020; Zhao et al., 2020). Other physiological
responses have also been studied as indexes of driver stress
levels, such as changes in electrodermal activity (Healey and
Picard, 2005; Cottrell and Barton, 2012; Pedrotti et al., 2014;
Eisel et al., 2016; Morris et al., 2017; Ooi et al., 2018; Paredes
et al., 2018; Zontone et al., 2020, 2021), breathing (Healey and
Picard, 2005; Rendon-Velez et al., 2016; Balters et al., 2018;
Haouij et al., 2018; Napoletano and Rossi, 2018; Heikoop et al.,
2019; Zhao et al., 2020), blood pressure (Yamakoshi et al., 2008;
Antoun et al., 2018), skin temperature (Yamakoshi et al., 2007,
2008; Zhao et al., 2020), muscle activation (Healey and Picard,
2005; Morris et al., 2017), pupil diameter (Pedrotti et al., 2014;
Rendon-Velez et al., 2016; Zontone et al., 2021) and electrical
brain activity (Kim S. et al., 2018; Halim and Rehan, 2020).
Despite the numerous physiological responses studied, none of
them has been validated as a definitive measure for identifying
driver stress. Therefore, the use of a measure is often guided
by practical and experimental design constraints (for a review
of the advantages and disadvantages of physiological measures
for assessing cognitive states in lab and real-world driving, see
Lohani et al., 2019). Nevertheless, we believe that it is necessary
for researchers and practitioners to base their measure selection
decisions on both the practical constraints and the sensitivity to
identify driver stress. Measure sensitivity refers to a measure’s
ability to discriminate between two levels of a psychological
state (e.g., high and low stress) (Hughes et al., 2019). To date,
the sensitivity of the driver stress measure has not been directly
evaluated. Therefore, there is a need to specifically study the
sensitivity of each physiological measure to driver stress to assist
researchers and practitioners in measure selection.
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Identifying Moderators of Driver Stress: A
Theoretical Approach
Stress is a psycho-physiological state resulting from the influence
of a stressor moderated by individual and ambient factors
(Folkman and Lazarus, 1984; Matthews, 2002). In an automotive
context, individual factors refer to the intrinsic characteristics
of the driver (e.g., personality traits, demographic criteria),
while ambient factors refer to the contextual effects (i.e., the
circumstances in which a stressor operates).

Among the individual factors that may influence driver stress,
age has probably been the most studied, particularly from a
subjective perspective using self-report scales (Hartley and El
Hassani, 1994; Simon and Corbett, 1996; Kloimüller et al.,
2000). Despite these extensive investigations, the direction of
the relationship between age and driver stress remains unclear.
Indeed, some studies have found greater stress levels in older
populations (Hill and Boyle, 2007) and explained this in terms of
lower cognitive and physical abilities. Conversely, other studies
have found lower stress levels in older populations (Langford
and Glendon, 2002), which they have explained in part in terms
of lower aggressiveness (Matthews et al., 1991; Westerman and
Haigney, 2000) and more extensive driving experience (Gulian
et al., 1990). Given the discrepancies at the subjective level,
physiological measures provide objective ways of determining
both the existence of the relationship and its direction. To our
knowledge, only one study has found an effect of age on acute
driver stress using physiological measures (Zhao et al., 2020).
However, given the small number of participants included in this
study (3 younger and 3 older), this effect deserves to be further
explored. Like age, gender is an individual factor whose effect on
driver stress is also debated. While some studies have found no
effect of gender on driver stress using subjective scales (Wickens
et al., 2015), others have reported higher stress levels in female
drivers than male drivers based on cardiac (Guo et al., 2013) and
hormone dosage measurements (Seeman et al., 1995).

In line with Hancock and Warm (1989), who recommended
considering in stress studies both the demand imposed by the
task and the type of environment, we suggest that automation
(manual vs. autonomous) and stressor exposure duration (short
vs. long-term) might be relevant factors when considering the
driving task demand, while apparatus type (real vehicle vs.
driving simulator) would make it possible to take account of
the type of driving environment. We believe these three ambient
factors to be of interest because they are either often debated in
the literature (e.g., automation and apparatus), or have been the
object of little direct study (e.g., stressor exposure duration).

Driving Automation
Interest in automated driving systems has grown over the last
decade, in particular to compensate for the human errors in
driving. More specifically in an automotive context, it is unclear
whether a fully automated vehicle increases or reduces driver
stress. Some authors have found positive effects of driving
automation by reducing distress and enhancing driver attention
(Funke et al., 2007), others have reported reduced driver stress
coupled with a decrease in workload (Stanton and Young,
2005), while yet others have argued that autonomous driving

increases driver stress due, in particular, to a lack of trust in
the autonomous vehicle (Morris et al., 2017). Consequently,
investigating this question would contribute to the development
of automated driving systems adapted to the profiles of drivers
and to given road situations.

Stressor Exposure Duration
The question regarding the existence of physiological differences
between short and long periods of driving under acute stress has
been little studied to date. A review of the literature came close
to addressing this question by examining physiological responses
to driver stress over short and long time periods (Antoun et al.,
2017). However, due to the small number of studies collected,
evidence of stress over a short time period was not revealed, thus
reducing conclusions. The question therefore remains open.

Apparatus Type
With respect to the apparatus, the question of whether a
driving simulator vs. a real vehicle is a valid way of studying
internal driver states, such as stress, is unresolved. If the validity
of simulators is confirmed, it is expected that observations
made in a driving simulator will be equivalent to those made
under real driving conditions. However, previous studies have
reported contradictory results which make it difficult to draw
clear conclusions. Taking the example of using mean heart
rate to investigate validity, studies have shown a good level of
correspondence between the simulator and the real road (Li et al.,
2013). In contrast, other studies have found higher heart rates
on real vehicles (Engström et al., 2005; Johnson et al., 2011). The
fact that another study found both an absence of difference and a
difference between the simulator and the real road depending on
the driving situation, i.e., speed maintenance task and exposure
to road hazards, respectively (Gemonet et al., 2021), further
raises the question of the validity of the driving simulator for
identifying driver stress in any driving situation.

Aims
We undertook a meta-analysis of the existing literature
investigating driver stress, first to address, at a practical level,
the difficulty researchers and practitioners have in selecting
physiological measures for quantifying driver stress, and second,
to gain insights into the relationship between driver stress and
its moderators. The objectives were three-fold: (i) to investigate
the sensitivity of each physiological measure used to quantify
driver stress, (ii) to assess the moderating effect of the population
type on driver stress, and (iii) to identify whether driver stress is
influenced by ambient effects in the environment in which the
driving task takes place.

METHODS

Search Strategy
This meta-analytical review was conducted in accordance with
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Moher et al., 2009).

Two investigators searched for articles in the electronic
database, Google Scholar. The only limitation in terms of
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date was publication prior to February 2021. The following
search terms were used: “{[(driver OR driving) AND (stress OR
distress)] OR [(car) AND (stress OR distress)]}.” These were then
combined with additional terms related, first, to fields of research
in which driver stress has been addressed: “psychological,”
“physiological,” “behavior,” “detection,” “recognition” and,
second, to the response of interest: “acute,” “response,” “change.”
In addition, a snowballing approach (Wohlin, 2014) was
used to retrieve additional references. Duplicate records were
systematically removed.

Each record was then screened (title, abstract and keywords)
by the investigators in order to apply the eligibility criteria. The
same procedure was carried out for the full-text articles. Any
discrepancy between the investigators was resolved by discussion
with a third investigator. The study selection process is described
in Figure 1 (PRISMA diagram).

Eligibility Criteria
We used the PICOS approach (Moher et al., 2015) to
define the characteristics of studies eligible for inclusion in
terms of population, interventions, comparators, outcomes and
study design.

Population
Non-professional car drivers of all ages and genders, with
no evidence of psychological or neurological disorders,
were included.

Interventions
Stress interventions included driving tasks performed under high
stress. Although the definition of “stress” or “high stress” is
presumably a reflection of each author’s particular standpoint,
and the term has thus certainly been interpreted in many
different ways, we decided to use Matthews’ (2002) definition of
driver stress to study similar stress interventions. Driver stress is
thus interpreted as a psychological construct resulting from the
stressful situation (involving stressors and ambient factors) and
individual factors. Therefore, interventions in which driver stress
was not a psychological construct but the product of physical
action on the body were excluded. This was the case for stress
interventions involving cold temperatures, pain, chronic illness,
driving for long periods and monotonous driving periods.

Comparators
Comparators for the stress interventions were driving tasks
performed under low stress.

Outcomes
All the included studies estimated driver stress based on
physiological measures. All physiological outcomes were
quantitatively reported as raw data or as means and standard
deviations to allow the calculation of effect sizes. All physiological
outcomes had been observed in at least three drivers.

Study Design
Only peer-reviewed quantitative physiological studies written
in English were included in the analyses. All included studies
contained a physiological measure also found in at least one

other study to make it possible to compile the data required for
a meta-analysis.

Data Extraction
For each included study, two investigators independently
extracted the following data: demographic variables (sample
size, mean age and gender ratio), ambient variables (apparatus,
driving automation and stressor exposure duration), stress
interventions and comparators (i.e., pairwise comparisons
including a high stress intervention vs. a low stress intervention),
statistical indices for the stress interventions and comparators
(means and standard deviations) and type of physiological
measure used.

When data was missing, the corresponding authors were
contacted and asked for additional data. The WebPlotDigitizer
software (Rohatgi, 2014) was also used to extract numerical
values from the plot when numerical means and/or standard
deviations were not reported.

For each included scientific paper in which driver stress was
assessed in multiple population groups (e.g., older and younger
participants), each pairwise comparison belonging to a given
group was treated as a separate and independent study. As a
result, and for the sake of clarity, we will use the term “study”
in the following sections to refer to a pairwise comparison
into a given group and not to the scientific paper from which
it was derived. In addition, in studies that reported multiple
stress interventions in the same population, the various stress
interventions were averaged when raw data was available. This
precaution was taken to avoid introducing an error due to
the non-processed correlation between the condition effects
estimated from multiple comparisons (Higgins et al., 2011). If
raw data was not available, the highest-stress intervention was
retained and the others were excluded. Although the strategy
for selecting interventions is less recommended than combining
interventions, it is generally difficult to obtain the raw data from
each study, as would be required in order to compute the overall
mean and standard deviation.

Meta-Analyses
Nine meta-analyses were conducted separately, one for each
physiological measure. All analyses were carried out using JASP
software (version 0.14.0.0). Due to different experimental designs
and sample characteristics across included studies, we used
random-effects models in an attempt to generalize our results
beyond the studies included in our meta-analyses (Borenstein
et al., 2010).

In keeping with previous studies that have tackled the issue
of the sensitivity of physiological measures (Matthews et al.,
2015; Hughes et al., 2019), we used effect size to determine
the sensitivity of each measure of driver stress. Cohen’s d
effect size with 95% confidence intervals (95% CI) were first
calculated for each study (i.e., for each pairwise comparison)
based on the means, standard deviations and sample sizes
(Cohen, 1988). Given the small sample sizes, Hedges’ g was
subsequently preferred to Cohen’s d (Durlak, 2009). Hedges’ g
uses pooled weighted standard deviations instead of the pooled
standard deviations used by Cohen’s d. Mathematical equations
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FIGURE 1 | PRISMA flowchart describing the methodology and search results. LF/HF, ratio of low frequency to high frequency; RMSSD, root mean square of

successive differences among successive R-R normal intervals; RRI, means of R-R intervals; SDNN, standard deviation of normal R-R intervals.

used to compute effect size for each study are presented in the
Supplementary Material 1. All effect sizes calculated for each
study and corresponding to the same physiological measure were
then aggregated to derive an overall summary effect size. A
positive summary effect size indicated a positive effect of the
stress intervention on all physiological measures except for HRV
time-domain features (RRI, RMSSD and SDNN), for which a
negative summary effect size suggested a positive effect of the
stress intervention. Using Cohen’s interpretation guidelines, the
magnitude of the overall summary effect size was considered as
small up to 0.2, medium up to 0.5, and large up to 0.8 (Cohen,
1988). The α level for significance was set at p < 0.05.

To quantify heterogeneity of the overall summary effect size,
i.e., the inconsistency of effect sizes across a set of studies (Del
Re, 2015),Q-statistic, I²-statistic and τ ² were explored.Q-statistic
indicated the statistically significant presence of heterogeneity
between effect sizes, I²-statistic estimated the proportion of
heterogeneity (low if I² = 25%, moderate if I² = 50%, large if
I² = 75%), and τ ² referred to the absolute value of true variance
across studies.

Publication bias was first assessed by visually inspecting the
funnel plots. If an asymmetry was detected, a rank correlation
test and an Egger’s regression test (Egger et al., 1997) were run
to assess the significance of the publication bias. Finally, the file
drawer issue was assessed by Rosenthal’s fail-safe N (Rosenthal,
1979). Fail-safe N refers to the number of studies that would have
to be included in order to indicate that the stress intervention
had no effect and that would be necessary for the meta-analysis to

become non-significant. The file drawer problem was considered
to be minor when the observed significance of fail-safe N was
lower than the target significance level (p= 0.05), thus suggesting
that the outcome of the meta-analysis was not affected by
potential bias.

Moderator Analyses
Moderator analyses were undertaken if each measure met
the three eligibility criteria: (1) significant summary effect
size, (2) significant heterogeneity in summary effect size and
(3) sufficient number of available studies (k ≥ 5) to allow
comparisons (Hughes et al., 2019). Meta-regressions were used
when the factors studied were continuous variables, while
subgroup analyses were conducted when the factors examined
were categorical variables.

Individual Factors
Age and gender—two individual factors—were investigated by
running meta-regressions to assess their moderating effect on
driver stress.

Ambient Factors
The influence of three ambient factors on driver stress was
studied by proceeding to subgroup analyses. These factors were:
apparatus, driving automation and stressor exposure duration.
In order to study the effect of apparatus type, a first subgroup
was formed by pooling studies performed in a real vehicle while
a second subgroup included studies performed in a driving
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simulator. Two independent analyses were then run to compute
a summary effect for each subgroup. Finally, we analyzed
whether the two summary effect sizes differed significantly,
first by looking for overlaps between their confidence intervals
and second by using a Wald-type test. The same procedure
was repeated to explore driving automation and thus compare
studies conducted in manual driving (first subgroup) and in
fully autonomous driving (second subgroup). Again, the same
procedure was used to investigate stressor exposure duration
by comparing studies involving short-term exposure (first
subgroup) and long-term exposure (second subgroup). The
subgroups were formed by arbitrarily setting a threshold at 10
mins so that exposure times below the threshold comprised the
first subgroup and exposure times above the threshold comprised
the second subgroup.

RESULTS

Search Results
The primary search yielded 474 records. After screening each
record, 332 abstracts were excluded in line with the eligibility
criteria. The remaining 142 studies were then assessed for
eligibility based on full-length articles. Finally, 26 references
were included and distributed across 9 meta-analyses to permit
independent exploration of 9 physiological measures (Healey and
Picard, 2005; Schießl, 2008; Cottrell and Barton, 2012; Miller
and Boyle, 2013; Manseer and Riener, 2014; Pedrotti et al., 2014;
Zhao et al., 2014, 2020; Chen, 2015; Rendon-Velez et al., 2016;
Yu et al., 2016; Heikoop et al., 2017, 2019; Magana and Munoz-
Organero, 2017; Morris et al., 2017; Haouij et al., 2018; Khattak
et al., 2018; Napoletano and Rossi, 2018; Ooi et al., 2018; Paredes
et al., 2018; Gotardi et al., 2019; Rastgoo et al., 2019; Meesit et al.,
2020; Tavakoli et al., 2020; Zontone et al., 2020, 2021) (Figure 1).

Characteristics of Studies
A qualitative review of the literature indicated that driver
stress was indexed by breathing rate in 7 studies (156 drivers),
electrodermal activity in 7 studies (187 drivers), heart rate
in 25 studies (501 drivers), the ratio of Low-Frequency
to High-Frequency heart rate variability (LF/HF) in 10
studies (140 drivers), the root mean square of successive
differences among successive R-R normal intervals (RMSSD)
in 6 studies (101 drivers), means of R-R intervals (RRI)
in 5 studies (46 drivers), the standard deviation of normal
R-R intervals (SDNN) in 6 studies (95 drivers), pupil
diameter in 3 studies (83 drivers), and trapezius muscle
tension in 2 studies (38 drivers). The characteristics of
the studies included in the meta-analyses are detailed in
Supplementary Material 2.

Meta-Analyses
The analyses indicated that several physiological measures
changed significantly with stress interventions, thereby
suggesting a change in drivers’ stress state (Table 1). Indeed,
heart rate [g = 0.42 (0.14 to 0.69), p < 0.001] and pupil diameter
[g = 0.46 (0.02 to 0.90), p < 0.05] revealed significant moderate
increases, while RRI, a time-domain feature of HRV, indicated

a significant moderate decrease [g = −0.42 (−0.84 to 0.01), p
= 0.05] when performing a high-stress driving task compared
to a low-stress driving task. In contrast, no significant effects
were observed between high-stress and low-stress driving for
other measures, including breathing rate [g = −0.27 (−0.76
to 0.22), p = 0.29], electrodermal activity [g = 0.96 (−0.05 to
1.98), p = 0.062], LF/HF [g = 0.60 (−0.22 to 1.43), p = 0.15],
RMSSD [g = −0.06 (−0.34 to 0.22), p = 0.67], SDNN [g =

−0.19 (−0.47 to 0.10), p = 0.20] and trapezius muscle tension
[g = 0.04 (−0.42 to 0.49), p = 0.87]. Among the measures that
were found to be significantly sensitive to driver stress, i.e.,
heart rate, pupil diameter and RRI, none of them showed a real
advantage over the others, as indicated by the overlap in their
confidence intervals.

The Q-statistics indicated a significant heterogeneity between
effect sizes for breathing rate [Q= 20.3, p < 0.01], electrodermal
activity [Q = 67.7, p < 0.001], heart rate [Q = 127.7, p
value < 0.001] and LF/HF ratio [Q = 71.7, p value < 0.001].
The degrees of heterogeneity for these measures, subsequently
quantified using the I²-statistic, were found to be moderate to
large [Breathing rate: I² = 66.0% (16.1 to 94.8); Electrodermal
activity: I² = 94.0% (84.4 to 98.9); Heart rate: I² = 75.3%
(61.3 to 90.6); LF/HF: I² = 89.6% (77.0 to 96.9)]. Considering,
first, the moderate to large degrees of uncertainty of I²-statistics
and, second, the amount of true variance between studies for
these measures [Breathing rate: τ ²= 0.23; Electrodermal activity:
τ ² = 1.69; Heart rate: τ ² = 0.34; LF/HF: τ ² = 1.52], we
suspect that a large proportion of the observed variance reflected
true heterogeneity.

Publication bias investigated by visually inspecting funnel
plots for significant measures revealed no asymmetries
(Figure 2). The absence of bias was then confirmed by standard
rank correlation tests, Egger’s regression tests, and fail-safe N
analyses [Heart rate: Kendall’s τ = 0.25, p = 0.10, Egger: z =

0.99, p = 0.32, Fail-safe N = 350, p < 0.001; RRI: Kendall’s τ =

−0.32, p = 0.45, Egger: z = −1.26, p = 0.21, Fail-safe N = 4, p
< 0.05; Pupil diameter: Kendall’s τ = 0.33, p = 1.00, Egger: z =
1.05, p= 0.29, Fail-safe N= 5, p < 0.01].

Moderator Analyses
To determine the extent to which physiological measures are
sensitive to individual and ambient factors, we carried out a series
of moderator analyses using subgroups and meta-regressions.
Only heart rate met the three eligibility criteria required to
conduct moderator analyses: significant summary effect size [g
= 0.42 (0.14 to 0.69), p < 0.001], significant heterogeneity in
summary effect size (Q= 127.7, p< 0.001), and sufficient number
of available studies (k= 25 ≥ 5).

Individual Factors
The moderating effects of age and gender on driver stress were
explored (Table 2). Meta-regressions revealed no effect of age (β
=−0.015, p= 0.22) or gender (β =−0.003, p= 0.48).

Ambient Factors
We assessed the moderating effects on driver stress of three
ambient factors: apparatus, driving automation and stressor
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TABLE 1 | Outcomes of the meta-analyses.

Physiological measure Sample size Heterogeneity Global effect size

k N Q-statistic I²-statistc (%) t² Hedges’ g 95%CI p-value

Breathing rate 7 156 20.3** 66.0 0.23 −0.27 [−0.76; 0.22] 0.29

Electrodermal activity 7 187 67.7*** 94.0 1.69 0.96 [−0.05, 1.98] 0.062

Heart rate 25 501 127.7*** 75.3 0.34 0.42 [0.14; 0.69] <0.001***

LF/HF 10 140 71.7*** 89.6 1.52 0.60 [−0.22; 1.43] 0.15

RMSSD 6 101 0.60 0.00 0.00 −0.06 [−0.34; 0.22] 0.67

RRI 5 46 6.51 0.00 0.00 −0.42 [−0.84; 0.01] 0.05*

SDNN 6 95 0.99 0.00 0.00 −0.19 [−0.47; 0.10] 0.20

Pupil diameter 3 83 1.85 20.4 0.038 0.46 [0.02; 0.90] <0.05*

Trapezius muscle tension 2 38 0.11 0.00 0.00 0.04 [−0.42; 0.49] 0.87

LF/HF, ratio of low frequency to high frequency; RMSSD, root mean square of successive differences among successive R-R normal intervals; RRI, means of R-R intervals; SDNN,

standard deviation of normal R-R intervals; k, number of studies; N, number of drivers; Q, I² and τ ², statistics used to evaluate heterogeneity of variance; Hedges’ g, statistic used to

calculate effect size for small sample size; CI, confidence interval; p-value, level of significance. *p< 0.05, **p< 0.01, ***p< 0.001.

FIGURE 2 | Visualization of funnel plots.

exposure duration (Table 3). The first ambient factor tested was
the apparatus. No significant change in heart rate was observed
between driving tasks performed in the real-vehicle and driving
tasks performed in a driving simulator [gReal = 0.37 (0.00 to 0.74),
gSimulator = 0.41 (0.11 to 0.71)], as revealed by the overlapping
of their confidence intervals. These observations were reinforced
by the Wald-type test, which did not indicate any significant
difference between the two summary effect sizes (zApparatus =

0.44, p= 0.66).
The second ambient factor we assessed was driving

automation. Although heart rate showed a greater overall
effect size when stress intervention was performed in manual
driving [gManual = 0.47 (0.16 to 0.77)] compared to fully
autonomous driving [gFullyautonomous = 0.09 (−0.33 to 0.51)], the
overlap in the confidence intervals suggested that the difference
was not statistically significant. In addition, the results of the
Wald-type test indicated similar summary effect sizes between
manual and autonomous driving (zAutomation = 0.87, p= 0.38).

The third ambient factor assessed was the stressor exposure
duration. No significant cardiac difference was noticed between

short and long-term stress exposure [gshort = 0.44 (0.10 to 0.79,
gLong = 0.22 (−0.05 to 0.49)]. The lack of significance was indeed
supported by the Wald test result (zDuration = 0.31, p= 0.76).

DISCUSSION

To our knowledge, these are the first meta-analyses to investigate
(i) the sensitivity of each physiological measure in quantifying
driver stress, and the moderating effect of (ii) population type
and (iii) driving ambient on driver stress. The main finding
is that moderate physiological changes were initiated by stress
interventions, suggesting that heart rate, RRI—a time-domain
HRV feature—and pupil diameter are sensitive measures for
quantifying driver stress. Driver stress indexed by heart rate
showed no moderating effect of age, gender, apparatus, driving
automation or stressor exposure duration. Below, we provide a
summary and interpretations of the results, discuss implications
for future research and present the main limitations of the
reported work.
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TABLE 2 | Outcomes of individual factors.

Individual factor physiological measure Sample Size Heterogeneity Global effect size

k N Q-statistic I²-statistc (%) t² Hedges’ g β SE p-value

Age

Heart Rate 24 491 114.2** 75.1 0.34 0.91 −0.015 0.45 0.22

Women

Heart Rate 24 491 124.4** 76.9 0.36 0.55 −0.003 0.24 0.48

k, number of studies; N, number of drivers; I², τ ² and Q, statistics used to evaluate heterogeneity of variance. Hedges’ g, statistic used to calculate effect size for small sample size; β,

non-standardized beta coefficient; SE, standard error; p-value, level of significance. **p< 0.01.

TABLE 3 | Outcomes of ambient factors.

Ambient factor Physiological measure Sample size Heterogeneity Global effect size

k N Q-statistic I²-statistc (%) t² Hedges’ g 95%CI SE p-value

Apparatus

Real vehicle Heart Rate 16 256 97.6** 73.4 0.41 0.37 [0.00, 0.74] 0.19 0.053

Driving simulator Heart Rate 9 245 24.4** 57.4 0.11 0.41 [0.11, 0.71] 0.15 <0.01**

Automation

Manual Heart Rate 22 457 124.0** 78.0 0.39 0.47 [0.16, 0.77] 0.16 <0.01**

Fully autonomous Heart Rate 3 44 0.2 0.0 0.00 0.09 [−0.33, 0.51] 0.21 0.67

Duration

Short-term Heart Rate 17 391 108.3** 79.9 0.40 0.44 [0.10, 0.79] 0.18 <0.05*

Long-term Heart Rate 8 110 15.1* 0.0 7.57e-6 0.22 [−0.05, 0.49] 0.14 0.115

k, number of studies; N, number of drivers; I², τ ² and Q, statistics used to evaluate heterogeneity of variance; Hedges’ g, statistic used to calculate effect size for small sample size; CI,

confidence interval; SE, standard error; Apparatus, real vehicle vs. driving simulator; Automation, manual vs. autonomous driving; Duration, short-term vs. long-term exposure to the

stressor; p-value, level of significance. *p< 0.05, **p < 0.01.

Summary and Interpretation of the Results
Considering the overall effect sizes and their confidence intervals
in order to judge the significance of an effect, and thus
the sensitivity of a measure, we identified three physiological
measures that are sensitive enough to quantify driver stress,
namely heart rate, RRI and pupil diameter. The fact that both
heart rate and RRI are both sensitive is consistent since heart
rate is derived from RRI. It should be noted that of the three
sensitive physiological measures (i.e., heart rate, RRI and pupil
diameter), none was found to have a significant advantage
over any other in identifying driver stress. While these three
measures showed sensitivity to driver stress, the other measures
did not (i.e., breathing rate, electrodermal activity, LF/HF,
RMSSD, SDNN and trapezius muscle tension). However, this
does not mean that they are not sensitive. At this stage, we
cannot conclude about the lack of sensitivity of these measures.
It is indeed possible that the sample size for each of these
measures is too small and/or presents too much heterogeneity
across studies, which would prevent revealing a sensitivity to
driver stress.

Only heart rate warranted moderator analysis because it
was the only measure that met all the eligibility criteria.
However, individual moderators (age, gender) and ambient
moderators (apparatus, driving automation, stressor exposure

duration) did not reveal any significant change in heart rate.
Despite this, it is very likely that there are moderators of the
stress response given the considerable heterogeneity (i.e., high
values of Q, I² and τ ²) observed in the effect sizes. Possible
explanations regarding the lack of physiological change are
provided below.

Individual Modulators
Age and Gender
Although it is well established that individual factors have an
impact on stress appraisal (Matthews, 2002), the results regarding
the direction of the relationship between individual factors and
driver stress have often been contradictory. For example, studies
have shown greater stress levels in older populations (Hill and
Boyle, 2007), while others have observed lower stress levels in
older populations (Langford and Glendon, 2002). Therefore, the
aggregation of studies with opposite results in the same meta-
analysis could explain our findings about the lack of an age effect
on driver stress. Nonetheless, this does not mean that there is
no real moderating effect of age. Indeed, the driving experience,
closely linked to age (Gulian et al., 1990), can influence the driver
stress response, as observed through the stronger correlations
between age and all dimensions of driver stress (DBI scales) when
driving experience is statistically controlled (Westerman and
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Haigney, 2000). Also, cognitive decline has been mentioned as a
possible explanation for greater stress levels in older populations,
which is highlighted, in particular, by a drop in “alertness
and anticipation” and an increase in “driving dislike” with age
(Westerman and Haigney, 2000). Therefore, the unifactorial
approach (i.e., investigating factors one by one) might mask
the true effect of moderating factors (e.g., age and gender, lack
of experience or negative experiences, awareness of cognitive
decline) by not taking account of their interdependence. This is
in line withMatthews’ (2002) transactional theory of driver stress,
according to which driver stress is the result of transactional
relationships between several factors.

Ambient Modulators
Apparatus
Although stress studies conducted in a driving simulator offer a
more controlled and safe approach, they might nevertheless be
poorly representative of the stress experienced under real and
ecological conditions. Our results a priori seem to contradict
this criticism since they suggest that stress induced in a driving
simulator and measured by heart rate is indeed representative
of stress experienced in real conditions. Indeed, the lack of
change in heart rate between driving simulator studies and real
vehicle driving studies was observed through similar overall
effect sizes, similar standard errors and a non-significant Wald-
type test. However, the significant heterogeneity in effect sizes,
observed in both simulator and real-road studies, indicates that
additional factors explain the overall effect size. We believe that
these factors are related to differences in experimental designs,
and in particular in the stressful stimuli used. In addition, it
cannot be excluded that the nature of the stimuli used and the
experimental designs also differ between studies conducted on
driving simulators and in real-vehicles. Thus, we can legitimately
ask whether the internal driver states we measure in driving
simulators and in real road conditions are the same, and if
the response to stressful stimuli in real car driving is not
shaped by additional safety concerns, among other factors.
This is why Milleville-Pennel and Charron (2015) raised the
question: “Can we consider that the same cognitive functions
are involved in simulated driving and in real car driving?.”
Furthermore, previous studies have compared internal driver
states (not exclusively stress) in simulated and real-world driving
using the same stimuli and have measured these states using
heart rate (Engström et al., 2005; Johnson et al., 2011; Li et al.,
2013; Gemonet et al., 2021). However, no consensus has been
reached due to conflicting results. Given both our results and
the discrepancy between results in the literature, we recommend
further investigating driver stress in both simulated and real
vehicle driving using experimental designs that are as similar as
possible, i.e., including the same hazardous or stressful stimuli,
same driving environment and same participants when doing
driving simulator validation studies.

Automation
The lack of difference in measures of heart rate between manual
and autonomous driving—indicated by a non-significant Wald-
type test—indicates a priori that driver stress is not influenced

by driving automation. Nonetheless, the effect size of stress
interventions was significant in manual driving (g = 0.47, p <

0.01∗∗), while it was non-significant in autonomous driving (g =
0.09, p = 0.67). Taken together, the lack of difference observed
between manual and autonomous driving may be due to the
small number of included studies that investigated autonomous
driving (k = 3). Although no reliable conclusion concerning the
possible influence of driving automation on driver stress can
be provided at this stage, further investigations of driver stress
in autonomous driving are strongly recommended to confirm
or refute this lack of effect. In cases where additional studies
confirm this lack of effect, it would be interesting to explore the
sources. Below, we put forward potential explanations for the
lack of an effect of autonomous driving that can be considered
as avenues of investigation. First, such a lack of effect may be
due to the different nature of the stressors, i.e., more arousing
and demanding in terms of cognitive and motor skills for manual
driving than for automated driving. Second, it may also be
explained by a reduction in driver stress during autonomous
driving. This explanation would be consistent with the hypothesis
of reduced vulnerability to stress during autonomous driving and
related to the decrease in workload (Stanton and Young, 1998,
2005). Third, the lack of effect of stress interventions may also
be due to drivers’ level of experience with automated driving
systems and their trust. As evidence of this, a relationship has
previously been found between reported trust in autonomous
driving and physiological stress (Morris et al., 2017). Fourth,
heart rate may not be a suitable indicator for detecting stress
in autonomous driving. Therefore, it would be interesting to
consider alternative measures, such as LF/HF ratio (Heikoop
et al., 2017) and electrodermal activity (Zontone et al., 2020), both
of which have already been used for stress detection purposes
during autonomous driving.

Duration
The lack of change in heart rate between short-term and long-
term driving—highlighted by a non-significant Wald-type test—
suggests that the sensitivity of heart rate is not modulated
by the stressor exposure duration. However, the effect size of
stress interventions was significant in short-term driving (g =

0.44, p < 0.05∗), whereas it was non-significant in long-term
driving (g = 0.22, p = 0.115). Although additional studies
would be necessary to draw definitive conclusions concerning
the existence of cardiac differences depending on the duration
of driving under stress conditions, the disparity of the results
nevertheless enables us to put forward a first hypothesis. Indeed,
it is likely that our findings reflect the effect of the nature of
the stressors manipulated within each subgroup (short-term and-
long-term) and not the effect of the stressor exposure duration
and therefore the measurement time. We believe that event-
related and intense stressors are more likely to be studied over
short time periods than more diffuse and moderate stressors,
which would require longer measures in order to be detected
by cardiac sensors. Consequently, in the future, it would be
interesting to study the same stressors (i.e., same nature and
intensity) while varying only the cardiac measurement time. This
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would also address the question raised by Antoun et al. (2017)
about the existence of a threshold effect beyond which driving
in a given context would become significantly more stressful.
For exploratory purposes, a driving time cut-off of 10 mins was
arbitrarily set when forming the subgroups and it is possible
that other values might be more appropriate for highlighting
a potential moderating effect of stressor exposure duration on
driver stress.

Implications for Future Research and
Practice
Our results aim to shed light on driver stress-sensitive
measures in order to assist researchers and practitioners in
their measurement decisions. Based on our findings, three
physiological measures were found to be sensitive to driver
stress, namely heart rate, RRI and pupil diameter. Nonetheless,
we recommend that readers interpret our results (i.e., the
magnitude of the effects) in the context in which driver stress
was manipulated in the included studies. Indeed, as Mehler
et al. (2012) suggested, the sensitivity of measures may vary
depending on the specific tasks and individual states considered.
In addition, we encourage further investigation of the other
measures used, which may not have been able to reveal their
potential sensitivity in our study, in part because of the
limited number of studies and/or failure of studies to meet
eligibility criteria.

Considerations for future research and practice arise mainly
from the results of sensitivity and moderator analyses. We
found, first, that some measures did not exhibit sensitivity
to stress and that the studied factors did not highlight a
moderating effect on stress despite the large heterogeneity
in effect sizes. As a result, we recommend that researchers
and practitioners interested in exploring driver stress adopt
a 3-step approach in order to optimize the observation
of both physiological change reflecting sensitivity and
of moderating effects, and, more generally, to improve
the understanding of driver stress. The 3-step approach
consists of: (1) using multiple measures, (2) combining
measurement modalities (triangulation approach), and (3)
analyzing how factors (stressors and moderators) interact
(multifactorial approach). Below, we advocate these principles
for driver stress investigations, although they can also be
applied to the exploration of other psycho-physiological and
cognitive states.

Using Multiple Measures
First, researchers and practitioners should use multiple measures
to ensure that the physiological changes induced by stressors
are also actually observed. This approach would compensate for
the failure of some measures in some individuals or in some
study contexts. For example, Healey and Picard (2005) pointed
out that the electrodermal response may differ among drivers
due to variations in the number of sweat glands on the palms.
The question of the reliability of pupil diameter to index driver
stress also arises in real road contexts, where the measure can be
disturbed by many uncontrollable factors, such as light variation
and driver’s verbal output (Recarte and Nunes, 2003). According

to Mehler et al. (2012), no single physiological measure would
provide optimal sensitivity for capturing a given state in all
types of tasks. Second, using multiple measures in combination
would permit a more reliable identification of driver stress.
Indeed, Bernardi et al. (2000) supported the analysis of combined
measures after observing the influence of breathing on HRV
during simplemental and verbal activities. More specifically in an
automotive context, the influence of driver stress resulting from a
combination of physiological measures has also been investigated
(Ollander et al., 2016). The authors found that combining
cardiac, electrodermal and respiratory signals made it possible to
distinguish between resting and driving, while combining cardiac
and respiratory signals helped distinguish between low-stress
driving and high-stress driving (Ollander et al., 2016). Third,
the use of multiple measures and features would also provide
information about the sympathovagal balance, thus improving
knowledge of the psychophysiological mechanisms underlying
stress states. Some measures and features reflect the activity
of both autonomic components, while others mainly reflect
the activity of one of the two components. This knowledge
is also particularly interesting for remediation strategies, given
that Respiratory Sinus Arrhythmia (RSA) mainly reflects the
parasympathetic component (Berntson et al., 1993), that a low
RSA and anxiety are related (Thayer et al., 1996) and that it has
proved possible to progressively increase RSA using breathing
and biofeedback techniques (Climov et al., 2014).

Triangulation Approach
In the same way as other works which have previously reviewed
studies of stress (Alberdi et al., 2016), and driver stress in
particular (Rastgoo et al., 2018; Chung et al., 2019), we
advocate the joint use of physiological, subjective, and behavioral
measures to explore stress in driving. This approach, also called
triangulation (Denzin, 1978), permits the accurate observation
of a common phenomenon and enriches its explanation (Jick,
1979). Since such an approach captures the multidimensional
responses to stress (Matthews, 2002) at the physiological,
behavioral, emotional and cognitive levels, it will help us
differentiate between the various stress states experienced by
drivers. This will then make it possible to derive stress-sensitive
driver profiles (Pesle et al., 2018) and design driver stress
detection systems (Rastgoo et al., 2018).

Multifactorial Approach
Our results showed no modulating effect of the studied
factors (age, gender, apparatus, driving automation, and stressor
exposure duration). As suggested above, these findings may
be partly due to our univariate approach, which considered
each factor independently. This statement is supported by a
recent study in which an effect of age on driver stress was
found using a multivariate approach (i.e., Principal Component
Analysis of physiological measures) (Zhao et al., 2020). This
type of approach has been supported by a number of different
studies which have observed dependencies between driver stress
and various individual and ambient factors, such as personality,
mood, coping strategies, age, gender, driving experience, time
of day in relation to the circadian rhythms (Langford and
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Glendon, 2002; Pesle et al., 2018). Our findings, alongside
those of previous studies, support the idea that the multivariate
approach advocated by Matthews et al. (2017) if we are to
achieve a holistic understanding of the moderators (individual
and ambient), stressors and outcomes of driving. Nonetheless,
this type of approach remains difficult to implement. In this
context, the multivariate approach should systematically call on
theoretical support, such as the T²SO (Time-Trait-Stressors-
Outcome) framework proposed by Matthews et al. (2017), to
facilitate understanding and test multivariate theories of driver
stress. In addition, the use of computational techniques would
facilitate the implementation of a multifactorial approach.

LIMITATIONS

Several Limitations Should Be
Acknowledged
Small Number of Studies
Although the random-effects models used for our meta-analyses
were designed to permit us to generalize our results beyond
the included studies (Borenstein et al., 2010), the small number
of studies nevertheless limits the scope of our interpretations.
Given the small number of studies, moderator analyses could be
performed for only one stress-sensitive physiological measure;
namely, heart rate. Therefore, it cannot be excluded that
the results and interpretations of the moderator analyses are
dependent on the physiological measure used, in this case heart
rate. Interpretations of each moderator are also limited by the
small number of studies within some moderator subgroups.
This reflects the fact that driver stress has not been sufficiently
investigated under specific driving conditions (e.g., autonomous
driving). One reason for the small number of studies included
in meta-analyses is the exclusion of driver stress studies that
used various algorithms to combine physiological signals (Singh
et al., 2011; Lanatà et al., 2014; Dobbins and Fairclough, 2018;
Bitkina et al., 2019; Hadi et al., 2019). Indeed, we focused on a
univariate approach to examine the sensitivity of independent
physiological measures. Another major reason is the lack of
information about the stress interventions in the studies (e.g.,
mean and/or standard deviation).

Use of Different Stressors
As driver stress has been interpreted in different ways by authors,
many stress interventions have been collected across studies (e.g.,
heavy traffic, complex driving maneuvers, surprising events).
Therefore, the effect sizes could be identified more precisely if
comparison groups included only highly similar stressors. The
wide variety of experimental designs found in the studies did not
allow us to achieve such granularity.

Highlight Sensitivity of Physiological Measures to

Driver Stress, but Not Selectivity (or Specificity)
The current study demonstrated the sensitivity—and not the
selectivity—of various physiological measures to driver stress.
Sensitivity refers to the capacity of an instrument to detect
changes in a given task or situation, whereas selectivity refers
to the sensitivity of an instrument only to differences in one

state (e.g., stress state) and not changes in other states (e.g.,
mental workload) (O’Donnell and Eggemeier, 1986; Matthews
et al., 2015). It is therefore entirely possible that the physiological
measures found to be sensitive to driver stress in this study
are also sensitive to other psycho-physiological and cognitive
states of the driver. Several factors (i.e., not only stressors)
would thus influence the autonomic nervous system responses.
Such observations would suggest a lack of selectivity of the
physiological measures to driver stress when the measures are
used alone and independently, i.e., without combining measures.
In favor of this assumption, let’s take the example of driver stress-
sensitive heart rate. Zontone et al. (2020) noted a systematic
difference in heart rate between manual and autonomous driving
under all conditions (stress and control), leading them to believe
that additional factors, unrelated to stress, were responsible for
the changes in heart rate. One of the most likely explanations for
these changes in heart rate is the significant influence of motor
activity during manual driving. Another possible explanation is
that mental workload influences cardiac response, which would
consequently be reduced with automation (Stanton and Young,
1998; Young and Stanton, 2002). In addition, Parent et al. (2019)
suggested that stress and mental workload would have similar
sources and effects. Given these common characteristics, the
use of a single physiological measure, in this case heart rate,
might be limited in its ability to infer a specific state (e.g.,
stress state) when several factors interplay (e.g., stress, mental
workload, motor activity). The current study investigated the
physiological measures alone and independently, therefore it
meets the criterion of sensitivity of the physiological measures to
driver stress but not selectivity. We believe that the investigation
of the selectivity of physiological measures to driver stress can
only be done by considering multiple driver states, including
multiple measures, combiningmultiple measurement modalities,
and performing an analysis of multiple explanatory factors.
Although this approach is highly challenging to implement, we
have good reason to believe that the multivariate approach is
the key to distinguishing each driver state, including driver
stress. In this sense, previous research has shown the specificity
of autonomic nervous system responses to basic emotions
when these emotions were examined using multivariate analyses
(Stephens et al., 2010). Given the importance of emotions
(e.g., anger, fear) in the driver’s stress response, multivariate
analyses might be a powerful tool to enable isolating stress from
other psychophysiological and cognitive states. Computational
techniques (e.g., preprocessing, feature selection, machine
learning) and neuroimaging techniques, which have recently
been shown to differentiate stress from workload (Parent et al.,
2019), might also contribute to distinguishing all these states.

CONCLUSION

This research relied on an empirical approach that aggregates
results from the literature to quantify the sensitivity of
physiological measures to driver stress. The results showed that
heart rate, RRI and pupil diameter were sensitive enough to
permit this. We believe that these findings could provide initial
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support for researchers and practitioners when deciding which
physiological measures to use to quantify stress while driving.

Future studies involving these measures, as well as HRV
features, electrodermal activity, breathing rate and trapezius
muscle tension, are necessary to draw conclusions about their
(lack of) sensitivity for quantifying driver stress. Given the
growing interest in achieving early detection, we recommend
using multiple physiological measures in order to ensure
and enhance the observation of stressor-induced physiological
changes. Indeed, the design of corrective or assistance solutions
that specifically target driver stress and that would be activated
as soon as stress emerges would be of interest in terms
of safety and comfort. In addition, in order to promote
a broad understanding of driver stress involving stressors,
modulators and outcomes, we recommend a triangulation-based
methodology (using subjective, behavioral and physiological
measures) combined with a multifactorial approach (studying
several factors simultaneously and jointly). Finally, functional
neuroimaging studies should be performed to explore the
neurophysiological correlates underlying driver stress states and
thus provide additional insights into these states.
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