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The complexity of concurrent cerebral processes underlying driving makes such

human behavior one of the most studied real-world activities in neuroergonomics.

Several attempts have been made to decode, both offline and online, cerebral activity

during car driving with the ultimate goal to develop brain-based systems for assistive

devices. Electroencephalography (EEG) is the cornerstone of these studies providing the

highest temporal resolution to track those cerebral processes underlying overt behavior.

Particularly when investigating real-world scenarios as driving, EEG is constrained by

factors such as robustness, comfortability, and high data variability affecting the decoding

performance. Hence, additional peripheral signals can be combined with EEG for

increasing replicability and the overall performance of the brain-based action decoder.

In this regard, hybrid systems have been proposed for the detection of braking and

steering actions in driving scenarios to improve the predictive power of the single

neurophysiological measurement. These recent results represent a proof of concept of

the level of technological maturity. They may pave the way for increasing the predictive

power of peripheral signals, such as electroculogram (EOG) and electromyography

(EMG), collected in real-world scenarios when informed by EEG measurements, even

if collected only offline in standard laboratory settings. The promising usability of such

hybrid systems should be further investigated in other domains of neuroergonomics.

Keywords: hybrid systems, action prediction, driving, EEG, EMG, EOG

INTRODUCTION

Today’s human at work is asked to continuously interact with objects and the environment to
perform a wide variety of tasks. In this regard, the research field of neuroergonomics aims to
unravel the neural bases of those neurophysiological processes involved in the interaction between
the user and a technical system during everyday life activities (Parasuraman, 2003; Dehais et al.,
2020; Gramann et al., 2021).

Because of its complexity, one of the main real-world activities targeted by neuroergonomics
is driving (Navarro et al., 2018). Studies demonstrated that driving behavior is the final result of
simultaneous mental processes such as attention, decision-making, vigilance, motor, and cognitive
control (Calhoun et al., 2002; Calhoun and Pearlson, 2012). Driving activity can cause drowsiness,
fatigue, and an increase in workload, and it is one of the primary causes of death worldwide
(Borghini et al., 2014). In order to assure road safety, it becomes fundamental to have a deep
understanding of those mental processes underlying the interactions existing among the driver,
the car, and the external environment to predict human behavior resulting in steering and braking
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actions. In recent years, driving scenarios have been enriched
by technological advancements in designing autonomous cars
(Badue et al., 2021). However, even if intelligent systems
can execute actions on behalf of the driver, the correctness
of these choices can only be evaluated once we understand
those mechanisms underlying the driver’s behavior in simulated
and real traffic scenarios. In this regard, expertise could be
an essential factor worth considering since evidence collected
among professional and non-expert drivers suggest that the
two populations share basic neurophysiological mechanisms,
whereas the expertise subtending exceptional driving abilities
may be associated with specific morphological and functional
cerebral architecture changes (Bernardi et al., 2013, 2014).

For this reason, several pieces of research have been
conducted to identify the neural basis of transportation and
car driving. A recent meta-analysis presents a neuroergonomic
framework according to which the neural bases of driving
behavior are categorized into strategical (i.e., navigation), tactical
(i.e., overtaking), and operational (steering and braking) tasks
(Navarro et al., 2018).

In this context, developing efficient brain-based systems
for the real-time decoding of brain processes underlying
driver’s behavior would be highly beneficial for the design of
assistive devices.

This perspective provides a succinct overview of the literature
about hybrid systems used for action prediction and the related
limitations. Then, it presents the results related to car driving
scenarios as proof of the level of technological maturity achieved
in the last years. In this context, driving actions are predicted
(i) exploiting secondary tasks eliciting cerebral activity related
to a higher level of motor control and (ii) by measuring neural
correlates of motor preparation as a marker of braking and
steering actions and. This methodological approach could benefit
additional ecological scenarios in neuroergonomics, such as
telerehabilitation and occupational safety.

FROM EEG-BASED ACTION DECODERS
TO HYBRID SYSTEMS

Electroencephalography (EEG) is one of the most used
techniques for monitoring brain signals in operational
environments. This measure provides the variation of electrical
potentials on the scalp surface, generated by the summation of
post-synaptic potentials within cortical layers (Biasiucci et al.,
2019). Electroencephalography has the critical advantage of
tracking brain dynamics with millisecond accuracy and is used
in real-world scenarios for neuroimaging studies outside the lab.
The evolution of technology allowed the removal of wires and
produced wearable and long-lasting recording devices, enabling
a wide range of experiments in real-world settings (Debener
et al., 2012; Mihajlović et al., 2015; Mullen et al., 2015; Casson,
2019).

The integration of EEG-based action predictions into the
control of an assistive technology device, such as a car, would
have the great advantage of detecting, as early as possible, the
movement preparation and execution, both in a laboratory and

in more natural environmental settings. However, despite the
noteworthy technological advancement of the last decade, there
are still several issues that limit the utilization of the EEG for
the real-time monitoring of actions in working environments.
For instance, there is the need to improve the EEG hardware to
obtain recordings more robust to artifacts and longer battery life
and produce smaller devices to be socially accepted by everyone.
Other psychophysiological and technological constraints make
this prediction hard to achieve in real-life scenarios. Factors
such as attention, memory load, fatigue, and competing cognitive
processes (Gonçalves et al., 2006; Käthner et al., 2014; Calhoun
and Adali, 2016), as well as user’s individual characteristics such
as lifestyle, gender, and age (Kasahara et al., 2015) influence
brain dynamics producing significant intra- and inter-subject
variability (Saha and Baumert, 2020; Saha et al., 2021). Common
EEG artifacts generated by muscles and eye movements,
impedance shifts, environmental noise are typically amplified in
real-world scenarios, sensibly affecting the quality of EEG signals
during real-time monitoring (Waard, 1996; Zander et al., 2017;
Lohani et al., 2019). Also, wearing an EEG device for users within
operational environments could be uncomfortable and lead to
the corruption of the underlying brain processes. Although the
technology provides researchers with high-impedance systems
equipped with active shielded electrodes for mobile applications,
these devices do not solve all the mentioned issues intrinsically
characterizing all ecological environments. This low signal-to-
noise ratio returned by raw EEG data requires the use of a range
of conceptually very different and computationally expensive
algorithms to extract significant temporal and frequency EEG
features (Müller et al., 2004; Lotte et al., 2007, 2018; Krusienski
et al., 2011; Bellotti et al., 2019). These algorithms often are
demanding in terms of calibration because requiring large
training sets and are not robust to real-life environmental
noise affecting EEG recordings. Other issues relate to the high-
dimensionality and non-stationarity of the EEG data, impacting
the classification performance (Lotte et al., 2018). In addition,
most of the classification methods used in the literature are
applied for offline EEG analyses, thus requiring the improvement
of this methodology for online applications to guarantee a
computational efficiency for the real-time decoding of the brain
activity. Hence, the computing hardware and software must
warrant a sufficiently high performance and low latency to
preserve the earliness of prediction (Wöhrle et al., 2017).

Hence, different physiological, behavioral, and technical data
can be combined to improve the reliability of EEG-based
predictions and their fully automated application for supporting
the user in self-paced movements in critical environments.
For example, the prediction of actions onset based on EEG
analysis can be improved by the design of hybrid systems
simultaneously monitoring additional peripheral signals, such
as electroculogram (EOG) and electromyographic (EMG) data,
depending on the context requirements (Kirchner et al., 2014).
The hybrid concept was introduced in the field of the Brain
Computer Interfaces (BCIs), exploiting advantages of different
physiological signals and computational approaches to finally
achieve specific goals better than a conventional EEG based
system, such as improving the overall classification rate or
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reducing the rate of false positives (Pfurtscheller et al., 2010;
Li et al., 2019). Hybrid systems should rely at least on one
brain signal in the form of electrical, magnetic, or hemodynamic
changes, and at the same time, they can incorporate peripheral or
external signals to improve the whole system’s performance. For
instance, combinations of eye movement signals with neuronal
signals usually are utilized for hybrid EEG–EOG BCIs (Usakli
et al., 2009, 2010; Ma et al., 2015; Hong and Khan, 2017). Hence,
the design of hybrid systems can improve the action prediction
performance depending on the particular application.

Electroencephalography and EMG signals can be used to
predict movements before the action onset reliably, showing
that multimodal machine learning approaches can be potentially
used to control an electronic device (Kirchner et al., 2014;
Wöhrle et al., 2017). Unimodal EEG-based predictions can be
achieved earlier with respect to unimodal EMG-based prediction,
thus suggesting that EEG is more suitable for providing
the user the feeling that a device delivers support on time
without significant delay. Also, EEG analysis leads to more
false positives than EMG due to the higher signal-to-noise ratio
characterizing such neural data. In addition, which signals are
relevant at which state of movement planning and execution
have been systematically investigated with machine learning
approaches to predict movement targets (Novak et al., 2013).
This study reports that each sensing modality has its peculiarities.
Electroencephalography is suitable for very early prediction or
if the user cannot perform the movement. Electromyography
and hand position are accurate after limb motion onset. Eye-
tracking is accurate at motion onset, but it is not able to predict
motion dynamics. Combining EEG and EOG results in higher
accuracy than using a unimodal approach and is convenient
since the two signals are often measured together. Augmenting
EMG with eye-tracking allows predictions to be made earlier
than with only EMG. However, this research field is not mature
yet to make precise comparisons of performance and calibration
times between machine learning approaches for unimodal and
multimodal measurements.

Several challenges also characterize these hybrid systems. One
of the significant issues in this research is identifying the best
combinations of signals to reach the best prediction performance
since the optimal combination could differ across users and
experimental scenarios. Variables including system complexity,
cost, user workload have to be evaluated when comparing hybrid
systems with unimodal predictions. From the user’s point of
view, the complexity of hybrid systems is usually higher than
that of conventional single modality recordings because they
are required to wear multiple brain and body sensors. User
acceptability is a crucial criterion that needs to be considered in
designing and implementing such systems (Pfurtscheller et al.,
2010; Li et al., 2019).

HYBRID SYSTEMS IN CAR DRIVING
SCENARIOS

In the field of driving research, several studies addressed the issue
of action detection and prediction based on the discrimination of

different EEG features in simulated (Haufe et al., 2011; Gheorghe
et al., 2013; Khaliliardali et al., 2015; Kim et al., 2015; Vecchiato
et al., 2018, 2020, 2021) and real driving scenarios (Haufe et al.,
2014; Zhang et al., 2015).

A few studies used secondary tasks to elicit neural features
predicting steering during simulated and real car driving. In
particular, the contingent negative variation (CNV) potential was
generated by a go/no-go task to investigate the decoding of drive
and brake events (Gheorghe et al., 2013; Khaliliardali et al., 2015).
Results suggested that these actions can be discriminated around
320ms before the movement with a classification performance of
0.77. In addition, Zhang et al. (2015) described an online event-
related negativity (ERN) classifier to predict steering events,
guided by a directional cue, both in a laboratory and real
car driving scenarios. In both experimental conditions, they
discriminated correct by error trials 480 and 700ms after the
directional cue. The classification performance is 0.70, but
the computational timing cost is not reported, so the time
interval between the directional cue and the classifier decision
is unknown, and therefore whether it comes before or after the
actual movement execution.

Other studies investigated the driver’s action without using
external cues with the advantage of limiting the additional
driver’s mental load. Haufe et al. (2011) explored pseudo-online
emergency braking detection and evaluated that such a system
in a simulation environment could eventually detect foot action
around 130ms before its onset. The possibility to decode self-
generated actions detecting steering was also assessed, and in
particular, whether the driver would perform a lane change
in a simulated highway was predicted about 800ms earlier
the action onset with a true positive rate of 74.6% (Gheorghe
et al., 2013). In addition, Vecchiato et al. (2018) identified an
EEG independent component associated with the fronto-central
electrodes exhibiting synchronization of theta EEG rhythm
around 800ms before the braking onset.

In line with the concept of hybrid systems, Kim et al.
(2015) proposed a combination of EEG features in the time
and frequency domains to distinguish three different kinds of
stimulus-driven brake situations (i.e., sharp, soft, no brake).
This study reported the highest EEG response-locked decoding
performance at−480 and−420ms distinguishing sharp and soft
braking from no braking, respectively. It was harder to classify
sharp and soft braking conditions with the same method (largest
difference at −160ms), which returned lower performance than
a classifier based on EMG features. There were also significant
results with hybrid decoding systems in a real car scenario where
participants were asked to drive on a non-public test track (Haufe
et al., 2014). They reported that a hybrid (EEG and behavioral
features) classifier detected emergency braking even earlier than
the laboratory setting (around 300ms before the braking onset)
(Haufe et al., 2011).

Moreover, in order to characterize the relative contribution
of the EEG associated with the preparation of natural and self-
initiated steering actions while driving to investigate its predictive
power, the EEG related to continuous steering during the
driving simulation was tested by means of canonical correlation
analysis (CCA) and a linear lagged regression approach (LLR) to
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FIGURE 1 | NON-ECO frame. Time-frequency EEG patterns collected during left (A) and right (B) non-ecological steering, as well as their statistical comparison (C).

The topography in the left part of the picture shows the average scalp map related to the cluster of independent components. ECO frame. ERSP for the EMG signals

(Continued)
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FIGURE 1 | collected during the non-ecological steering task (A–F), and cross-correlation results between EEG and EMG data (G–L). The first (second) row (from the

top) illustrates the EMG ERSP for the left (right) deltoid during left and right steering, as well as their statistical comparison. The third (fourth) row illustrates the

EEG-EMG cross-correlation values for the left (right) deltoid during left and right steering, and the statistical comparison of the two conditions. White lines depict the

left and right steering wheel angle profiles. Color bars indicate in blue (red) the decrease (increase) of EEG, EMG, and cross-correlation, as well as the statistical

differences corresponding to the decrease (increase) of such activity during the left (right) steering. White and black masks delimit the statistically significant portion of

the EEG, EMG, cross-correlation panels (adapted from Vecchiato et al., 2021).

identify the relative contribution of the EEG signals in steering
anticipation (Di Liberto, accepted). Results showed that the
combination of CCA-LLR analysis is valuable to disentangle
the relative contribution of behavioral and electrophysiological
components—within the EEG signals—for steering prediction in
a continuous driving simulation task. This result demonstrates
that brain-related EEG signals significantly improve the overall
decoding performance, showing that the significant contribution
in predicting steering comes from non-brain-related signals, such
as ocular and muscular components.

Brain and muscular activities underlying steering behavior
were also investigated with the final aim to increase the overall
ecology of the experimental setting (Vecchiato et al., 2021). In
particular, EEG feature predicting steering action and direction
elicited by responding to traffic signs displayed on a computer
screen was extracted and later exploited to increase the predictive
power of the EMG collected in a more ecological steering task,
such as a driving simulation. The desynchronization of the mu
rhythm during the motor preparation of non-ecological steering
cued by the traffic sign discriminated the muscular activity
of the deltoids, thus anticipating subject steering behavior of
1.5 s. In addition, the increase of EMG activity of the deltoids
anticipated the contralateral steering in both non-ecological
and ecological steering tasks of 200 and 500ms relative to
the action onset, making it possible to discriminate such a
driving behavior. Although these variations of EMG activity
appear before the action onset allowing for possible online
predictions, EEG data were used to increase the available time
to perform such a calculation. The identified non-ecological
EEG feature correlated with the ecological EMG activity of
the deltoids, providing an improvement of the discrimination
power of the steering side during driving simulation (Figure 1).
These findings show an approach to increase the ecology of
the experimental setting by limiting the invasiveness of the
neurophysiological measurements using surface EMG sensors
in the ecological scenario and combining neural data collected
in the non-ecological one. This approach provides a way to
monitor the user performance online through a simpler to
acquire muscular correlate when compared to neural data,
which could be recorded offline to increase the decoding
system’s performance without impacting the complexity of the
ecological setting.

CONCLUSIONS

The coupling between EEG, EMG, and ocular signals is
a valid mechanism for utilizing hybrid systems for the
detection and online prediction of driving actions, exemplifying
how it might be possible to complement information from

behavioral, physiological, and external sources to control the
level of assistance needed by the driver in that context
(Chavarriaga et al., 2018). This methodology could pave the
way for the utilization of hybrid systems based on neural
signals—collected in standard laboratory settings and processed
offline—having the role in improving the predictive power
of peripheral signals—collected in more ecological settings
and possibly processed online—correlated with the upcoming
action execution.

The predictive power returned by coupling the EEG with
peripheral signals demonstrated in car driving scenarios could
be further investigated in larger sets of actions to extend the
validity of this approach to other neuroergonomic areas. For
instance, this methodology could foster the spread of mobile
brain and body applications (Makeig et al., 2009; Gramann
et al., 2011) and BCI paradigms (Douibi et al., 2021; Saha
et al., 2021) onto several other contexts of our daily life.
The capability to remotely monitor in an ecological way an
individual’s action would have a tremendous impact in the
rehabilitation field (Nuara et al., 2021), with the possibility to
verify the compliance and adherence to treatment relieving the
patient and caregivers from a massive burden in terms of time
and costs. Applications could also extend beyond the clinical
realm, virtually to any fields where action surveillance would be
valuable for preventing harmful consequences. It is the case, for
instance, of the occupational safety of workers dealing in their
routine with unsafe practices, for whom the use of this ecological
methodology could reduce the likelihood of occupational
injuries during the performance of high-risk motor tasks
(Rizzolatti et al., 2021).
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