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Background: In the last decades, the P300 Speller paradigm was replicated in

many experiments, and collected data were released to the public domain to

allow research groups, particularly those in the field of machine learning, to

test and improve their algorithms for higher performances of brain-computer

interface (BCI) systems. Training data is needed to learn the identification of

brain activity. The more training data are available, the better the algorithms

will perform. The availability of larger datasets is highly desirable, eventually

obtained by merging datasets from di�erent repositories. The main obstacle

to such merging is that all public datasets are released in various file formats

because no standard way is established to share these data. Additionally, all

datasets necessitate reading documents or scientific papers to retrieve relevant

information, which prevents automating the processing. In this study, we thus

adopted a unique file format to demonstrate the importance of having a

standard and to propose which information should be stored and why.

Methods: We described our process to convert a dozen of P300 Speller

datasets and reported the main encountered problems while converting them

into the same file format. All the datasets are characterized by the same 6 ×

6 matrix of alphanumeric symbols (characters and numbers or symbols) and

by the same subset of acquired signals (8 EEG sensors at the same recording

sites).

Results and discussion: Nearly a million stimuli were converted, relative to

about 7000 spelled characters and belonging to 127 subjects. The converted

stimuli represent themost extensively available platform for training and testing

new algorithms on the specific paradigm – the P300 Speller. The platform

could potentially allow exploring transfer learning procedures to reduce or

eliminate the time needed for training a classifier to improve the performance

and accuracy of such BCI systems.
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Introduction

Even after three decades of intensive research, most brain-

computer interface (BCI) experiments are conducted in isolated

and autonomous laboratories using proprietary software. These

circumstances usually result in small data sets collected with

different file formats. The IEEE-SA P2731 Working Group

(Easttom et al., 2021) seeks to overcome that limitation and

demonstrate the importance of having standard file formats and

repositories, allowing easy sharing of data and software tools.

This study aims to describe our process of combining datasets

from several BCI experiments, which have the same paradigm

and possess minimal differences. For this purpose, we chose a

typical P300 Speller paradigm because several datasets are widely

available in the public domain. The paradigm is characterized by

the same 6× 6 matrix of alphanumeric symbols (characters and

numbers), arranged as depicted in Figures 1, 2.

Furthermore, all datasets are collected by the same subset

of acquired signals (8 EEG sensors at the same recording

sites). The combination would allow testing of different

classifiers and machine learning (ML) algorithms, investigating

error distribution over the grid of the matrix and answering

meaningful questions (e.g., are errors uniformly distributed or

distinctly observable over the edges of the grid?), evaluating

different filtering procedures in the time or space domains, etc.

We reported some significant differences in the acquisition and

processing methods of the individual datasets and the main

problems encountered during their conversion to an adopted

file format. The conversion involved nearly a million stimuli

(e.g., flashing rows and columns), which combined about 7

thousand selections made by 127 individuals. Our future work

will extend the adopted format and conversion process to other

datasets, relaxing certain requirements but storing all necessary

information in data files. This would allow automating analysis

methods through reusable software tools. Therefore, this study

is a starting point (or a proof-of-concept) of the need for a BCI

standard file format and large-scale datasets.

The P300 is an event-related potential (ERP) elicited in

the decision-making process and reflects processes involved in

stimulus evaluation or categorization (Sutton et al., 1965). It can

be elicited using an oddball paradigm, in which low-probability

target items are mixed with high-probability standard (or non-

target) items. It manifests as a positive deflection in voltage with

Abbreviations: ARFF, Attribute-Relation File Format; BCI, Brain-Computer

Interface; DF, Data File; DP, Descriptive Paper; ERP, Event-Related

Potentials; FAIR, Findability, Accessibility, Interoperability, and Reuse; FTF,

Formatted Text File; ISI, Inter Stimulus Interval; ICT, Information and

Communication Technologies; JSON, JavaScript Object Notation; LA,

Logical Alphabet; LS, Logical Symbol; ML,Machine Learning; SA, Semantic

Alphabet; SP, Scientific Publication; SS, Semantic Symbol; TTI, Target to

Target Interval; XML, eXtensible Markup Language.

a latency of about 300ms. Farwell and Donchin (1988) exploited

the P300 component to create a system that allows people to

make selections from items displayed as individual elements of

a matrix and to use those selections to communicate without

using the natural pathways of nerves andmuscles (Wolpaw et al.,

2000) but just their electrical brain activity. This communication

system is called P300 Speller.

In such a paradigm, a user is positioned in front of

a computer screen where symbols (such as characters and

numbers) are displayed, as shown in Figures 1, 2. Then, entire

rows and columns start flashing in a pseudo-randomized order

while the user is attending to a specific alphanumeric character.

Figure 1 illustrates an example of one sequence of 12 stimuli

in which all rows and columns flash only once. If the user is

attending to the letter “P”, then a P300 response should be

elicited by flashing the fourth and eleventh target (T) stimuli but

not by the other 10 standards (S) stimuli. Other than the P300,

another component called the N200 – a negative deflection with

a latency of around 200ms – is elicited by visual stimulation.

By analyzing the responses after each row and column

flashing, as indicated in Figure 2, it is possible to identify which

row and column contain the P300 component and then, at

their interception, determine the character the user wants to

select. However, several iterations should be provided for each

character selection as the signal-to-noise ratio is low, and some

processing (e.g., averaging, voting) could improve P300 (and

N200) detection. Following the conventions of neurophysiology,

the positive y-axis is directed downwards.

ML algorithms are extensively used to identify the P300

component. The identification needs a data-based training

procedure to recognize the elicited brain activation. This

procedure, called calibration, is sometimes repeated for each

subject (i.e., the user) having dedicated recording sessions,

implying that a BCI system cannot be utilized immediately and

requires some time to be configured. Because of inter- and intra-

subject variability, the calibration may last significantly long.

In the last decades, the original P300 Speller paradigm

from Farwell and Donchin (1988) was replicated in many

experiments (Krusienski et al., 2008; Guger et al., 2009; Aricò

et al., 2014; Lu et al., 2020) and, in some cases, collected data were

released to the public domain. The freely available data allows

several research teams, particularly those in the field of ML,

to develop and test various new techniques to improve users’

communication speed and system stability.

During the last years, the availability of larger datasets has

allowed several advances in thematter of automatic classification

by, specifically, enhancing Deep Learning (DL) capabilities

(Bengio et al., 2021). Furthermore, it is widely accepted that ML

algorithms need a significant amount of data to achieve high-

accuracy results (Alzubi et al., 2018) and that data collection

is a critical step for different communities when developing

classification models (Roh et al., 2019). Therefore, it is expected

that by collecting and mixing data from other labs, the training
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FIGURE 1

One example sequence of flashing rows and columns. Each of six rows and six columns flashes once while a user attends to the “P” character.

Flashes of the 3rd row and 4th column containing the target (T) stimuli (i.e., “P”) evoke a response that can be measured in the EEG as the P300

component. Flashes relative to the 10 standards (S) do not evoke this response.

FIGURE 2

Example of evoked potentials observed after each row and

column flashing while a user wanted to select the “P” character.

The elicited responses after the 3rd row and 4th column Target

(T) stimulations di�er from those of other rows and columns (S,

Standard). Positive y-axis directed downward.

procedures ofML algorithms for BCI systems could be improved

by reducing or even eliminating the P300 calibration and

increasing the overall system performance. However, the main

obstacle to creating large databases is that all public datasets

are released in different file formats, most likely those used

by the contributors. This occurs because there is no standard

way to share them. Additionally, almost all public datasets

need humans to read documents and/or scientific papers to

retrieve relevant information, preventing software automation.

Currently, datasets must be converted into a unique file

format for merging and processing. This procedure is time-

consuming as different software tools must be implemented

for each of the datasets, and several documents/papers must

be read to retrieve the desired information. An example

attempt to enhance accessibility to different BCI datasets is

the MOABB project (Jayaram and Barachant, 2018) which also

includes P300 datasets collected from varying experiments but

in different settings.

Within the scope of this study, we adopted a unique file

format to demonstrate the importance of having a standard

and to propose which information should be stored and why,

following the ongoing activity of the IEEE-SA P2731 Working

Group (Easttom et al., 2021). We then described our process

of converting 11 datasets of P300 Speller. All the datasets

are characterized by the same 6 × 6 matrix of alphanumeric

symbols, as depicted in Figure 2, due to being the most popular

setting in P300-based BCIs and by the same subset of acquired

signals (8 EEG sensors at the same recording sites: Fz, Cz, Pz, Oz,

P3, P4, PO7, and PO8).

The entire process could be easily extended to datasets

of other P300 paradigms, even non-matrix-based ones with

sufficient definitions of a mapping between stimuli and actions

toward an external environment (e.g., character selection,

demotics, wheelchair control, etc.). For simplification, we

focused, however, on the datasets derived from the same matrix

of the P300 paradigm with the same set of EEG sensors.

We reported the main problems relating to their conversion

into the adopted file format and the main differences in their

acquisition and processing methods. We converted nearly a

million stimuli (e.g., flashing rows and columns) relative to

more than 6800 symbols spelled by 127 subjects. The converted

files constitute the most extensive available BCI P300 Speller

database, which can be used to train and test newML algorithms

later. This could allow exploring transfer learning approaches,

which store knowledge gained when training one or more

subjects and apply the knowledge to a different population

of users. Moreover, this could reduce or eliminate the time

necessary to train an ML algorithm at every recording session

and improve the systems’ performance and accuracy. The

study also aims to illustrate the main variations among the

datasets and describe some difficulties in retrieving information

necessary for processing them. Such description would provide

insights to propose standards that adhere to the FAIR principles

(Findability, Accessibility, Interoperability, and Reuse of digital

assets) (Wilkinson et al., 2016) and demonstrate their relevance.

Indeed, the lack of standards implies that each team distributes
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its datasets according to its internal format. This could lead

researchers with different backgrounds to interpret the same

information at various levels of relevance, meaning, and

even importance.

Finally, it is important to underline that this study should

not be considered a competition among the various teams

that generously provided the opportunity of analyzing their

datasets. Instead, we would like to thank all research teams that

shared their datasets to make this study possible and encourage

others to do the same to contribute to the growth of the BCI

research field.

Methods

To create a unique database by aggregating datasets from

several experiments, the entire process was divided into 6

main phases:

1) the identification of the information to be stored in the

data files of datasets;

2) the retrieval of P300 Speller dataset candidates suitable for

the study;

3) the exclusion of datasets from which all the information

defined in 1) cannot be retrieved;

4) the definition of a unique file format for holding all data

related to BCI;

5) the implementation of software tools to convert all datasets

into the defined format;

6) the development of software tools to retrieve and visualize

information from the datasets in the defined format.

The identification of the information to
be stored in files

The IEEE Standard Associations P2731 levels 0 and 1

specifications for BCI data storage were adopted (Bianchi

et al., 2021). They deal with the information that should be

stored in a file and not the technology to be used or any

software implementation. Although not yet standardized, the

specifications represent a work in progress and are used as a

proof of concept for this study. According to level 1, all the

information necessary to train a ML algorithm must be stored

in a file. This file should include all acquisition parameters

(level 0), the characters to be spelled, the encoder, the generated

stimuli (e.g., which row or columns flashed), the target and

standard stimuli and the timing of the beginning and end of

each stimulation sequence for selecting a character. At this

proof-of-concept stage, we omitted demographic information

because some datasets contain no such information or describe

the information poorly. For example, the language of the

subjects/patients could be deduced from the spelled words in

some cases but not in others. Furthermore, the age and sex of

subjects/patients are sometimes missing from datasets.

Data acquisition

As a subset of level 1, the IEEE P2731 level 0 specifications

were used for data acquisition. Besides the signals, the level

0 specification includes the required reference and ground

locations, sensor labels, sampling rate, and events such as

delivered stimuli. In the P300 Speller paradigm, the delivered

stimuli (i.e., the flashing rows and columns) are synonyms of

logical symbols (LS), while selected alphanumeric characters

are the semantic symbols (SS). Surprisingly, sensor labels are

often missing in data files but provided in additional documents

and/or papers, which also hold other information regarding the

used EEG apparatus and the electrode technology (e.g., active vs.

passive, dry vs. wet, etc.).

Pre-processing

The knowledge of what pre-processing the signals

underwent before their release is essential. As noted in

Sahonero-Alvarez et al. (2021), filtering in the frequency

domain is mainly used, as well as spatial domain filters

such as Independent Component Analysis (also allowing for

identification and removal of noise sources) or Laplacian

filtering. Due to the easy replication of most pre-processing

methods, sharing the signals un-processed would be a good

practice to minimize pre-processing methods’ implementation

effects and type (e.g., IIR vs. FIR filters). Furthermore, signals

are sometimes stored as short and segmented epochs, one for

each stimulus and of fixed duration, which can be too short as

compared to other datasets, thus preventing their comparison.

Moreover, if the interval across two consecutive stimuli is

smaller than the segmented epoch length, as in most cases,

data segments partially overlap, and then some samples are

stored several times, thus causing redundancy and larger files to

be downloaded.

The encoder: Classifiers

The logical alphabet for a given P300 system may be defined

according to the IEEE P2731 BCI functional model as the

outputs of the transducer (Bianchi et al., 2021), which oversees

the acquisition and processing of brain signals (Sahonero-

Alvarez et al., 2021). In most cases, the logical alphabet is

equivalent to the set of possible classifier labels (e.g., the 6 rows

and the 6 columns) and is used to solve ML problems. Such

outputs are computed, along with the pre-processing stage, by

executing classification tasks and are used by the encoder to

obtain the semantic alphabet: sequences of LS aremapped to a SS

(e.g., the pair Row3 Col4 maps the “P” character). This mapped

information is used to allow spelling. In practice, when authors
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propose a given BCI system, they also describe the implemented

encoding that comprises a set of algorithms for classification.

Some common classifiers for P300, according to Wang et al.

(2018) and Abiri et al. (2019) are Linear Discriminant Analysis,

Bayesian Regression Analysis, Stepwise Discriminant Analysis,

Support Vector Machines, and Artificial Neural Networks,

although, in recent years, there has also been an important

interest in Deep Learning based classifiers (Aggarwal and

Chugh, 2022). In any case, whichever the classifier is, the

parameters to reproduce findings and results are completely

required. Unfortunately, this information is not always made

available as it implies that authors should upload and publish

their code and models as well as their configurations.

Paradigm

The following parameters of the P300 speller paradigm were

stored in the converted files:

1) The Semantic Alphabet (SA): it is the set of 36

alphanumeric characters (the Semantic Symbols, SS) that

can be spelled (see Figure 2).

2) The Logical Alphabet (LA): it is the set of labels

representing the possible outputs of a classifier. To each of

the 12 labels (i.e., the 6 rows and 6 columns) corresponds a

Logical Symbol (LS) and vice versa. LSs and labels can then

be used interchangeably.

3) The Encoder: it defines the mapping between sequences of

SSs and LSs. For example, the SS “P” is generated after the

classification of the LS pair “Row 3” and “Col 4”.

4) The Inter Stimulus Interval (ISI): it is the interval

between two stimuli in a flashing sequence, such as 12

flashes in Figure 1. The ISI, typically of the order of

hundreds of milliseconds, can be deducible from the

stored stimuli events.

5) The number of iterations for each spelled character:

minimum and maximum values are provided as the

number can vary within a recording session. Like the ISI,

the number can usually be deduced from the stored events.

The retrieval of P300 speller datasets

To retrieve the P300 Speller datasets, we first

identified leading online data repositories through a

Google search and then looked at each repository, which

led to the following list: BNCI Horizon 2020 (2015)

(http://bnci-horizon-2020.eu), Zenodo (2013) (https://

zenodo.org), IEEE Data Port (https://ieee-dataport.org/

datasets), Kaggle (2010) (https://www.kaggle.com/datasets),

GigaDB (2011) (http://gigadb.org), OpenNeuro (2011)

(https://openneuro.org), and Figshare (https://figshare.

com).

Then, we searched P300 BCI datasets within each of the

selected repositories. The keywords for the search included:

“BCI”, “Brain-Computer Interface”, and “P300”. One minor

problem yielded by the search was the presence of several false

positives due to different meanings of the “BCI” acronym in

other disciplines (e.g., genetics, biology), which was easily solved

by manual screening. Another problem was the impossibility

of a-priori assessing the quality of the various datasets. After

downloading and inspecting these datasets, we excluded small

datasets (<5,000 stimuli, which limit the training power

procedure) or low-quality (noisy) recordings, as judged by a

skilled neurophysiology technician.

Moreover, we checked the datasets for their concurrent

fulfillment of two criteria: the adoption of the same 6 ×

6 alphanumeric symbols matrix as depicted in Figure 2 and

the possibility, after the conversion, of being IEEE P2731

level 1 specification compliant (to provide the ability to

train a classifier) without asking for missing information to

donors or repositories administrators. The datasets meeting the

criteria formed a short list for consideration, as indicated in

Table 1. The links to download the datasets were also included

in the same table. Finally, the list was further expanded,

as shown in Table 1, thanks to BCI colleagues/researchers

who contributed with some datasets satisfying the criteria

mentioned above.

Excluded datasets

Dataset 12 of the BNCI Horizon 2020 (Guger et al.,

2009) was excluded due to its lack of sorting information

for the sensors used. Although the sensors were illustrated in

documentation with the dataset and the high quality of the

recordings, it is not feasible to determine a correspondence

between an EEG sensor and its recording signals. After all, one of

the criteria prohibits extra information requests from contacting

the dataset’s contributors.

Defining a unique file format

The IEEE P2731 proposal (Bianchi et al., 2021) follows

the FAIR principles (Wilkinson et al., 2016; Stall et al., 2019)

but does not deal with adopting technologies for data storage.

Extensible Markup Language (Bray et al., 2008) and JavaScript

Object Notation (JSON, 1999) are possible technologies for

real implementation, widely utilized in several ICT areas

because they are human-readable, extensible, and easy to

understand and use. Based on XML, the NPX file format

(Bianchi et al., 2007) was adopted for this study. The format

and its associated software tools – the NPXLab Suite (Bianchi,

2018) – were implemented by one of the authors of this

manuscript and had already been used in several studies.
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TABLE 1 List of datasets for consideration and their origines.

Repository DataSet Short name Link

BCI competition

2

iib BCI Comp 2 https://www.bbci.de/

competition/ii/

BCI competition

3

ii BCI Comp 3 https://www.bbci.de/

competition/iii/

BNCI Horizon

2020

8 BNCI DS8 http://bnci-horizon-

2020.eu/database/data-

sets

BNCI Horizon

2020

9 BNCI DS9 http://bnci-horizon-

2020.eu/database/data-

sets

BNCI Horizon

2020

12 BNCI DS12 http://bnci-horizon-

2020.eu/database/data-

sets

Kaggle Akimpech Akimpech https://www.kaggle.

com/datasets/

electrototo/akimpech

braINterface P300 180 BTFC 180 https://www.

brainterface.com/

joomla2/downloads/

category/3-data

braINterface P300 250 BTFC 250 https://www.

brainterface.com/

joomla2/downloads/

category/3-data

braINterface P300 800 BTFC 800 https://www.

brainterface.com/

joomla2/downloads/

category/3-data

IEEE DataPort P300 BCI ERP-P300 https://ieee-dataport.

org/documents/event-

related-potentials-p300-

eeg-bci-dataset

IEEE DataPort GIB-UVA GIB-UVA https://ieee-dataport.

org/documents/gib-

uva-erp-bci-dataset

All datasets listed in Table 1 were then converted into the

NPX file format. The conversion added structured information

with backward compatibility, meaning that adding new data

in the future will not break the existing software that today

supports it. Software tools (the NPXLab Suite) are freely

available for reviewing and analyzing EEG, MEG, and ERP

and converting and exporting data. Furthermore, NPX files

can also be imported into MATLAB and converted into other

formats. Caution is needed during conversion from NPX into

other supported formats, as some information could be lost

because destination formats might not allow storing some BCI-

related data.

Implementation of file conversion
software tools for all datasets

The subsections below describe each dataset in Table 1,

including the problems we encountered in retrieving the

necessary information to generate its valid IEEE P2731 level 1

file and converting it into the adopted NPX file format. The

sources for retrieving the necessary information are summarized

as follows:

1) Data File (DF): this is usually a MATLAB or a

binary file, which stores most of the acquisition

parameters and settings. The formatted nature of the

file allows for automating certain operations via ad hoc

software implementations.

2) Scientific Publication (SP): the publication is commonly a

downloadable PDF file containing some study details in the

Materials and Methods section. Humans need to read the

publication to extract the necessary information.

3) Descriptive Paper (DP): The paper is conventionally a PDF

or TXT file, which explains in detail the file format and

structures used to represent some entities (e.g., sensors,

events, markers, etc.) of a study. A programmer must read

the paper to implement software tools for extracting the

necessary information.

4) Formatted Text Files (FTF): They are generally TXT

files that store, for example, sensor labels and coordinates

or other elements such as words to be copied during a

calibration session, number of iterations, etc. The formatted

nature of the file allows for automating certain operations.

Table 2 gives the sources for retrieving the information that

must be stored in the NPX files for each dataset.

BCI competition 2, DataSet IIb

Signals of this dataset are available in MATLAB files, one

per recording session, and made available for ML as described

in Blankertz et al. (2004). The dataset was released for a BCI

competition, where true labels of the signals in the calibration

sessions were provided for competitors to classify the signals

in other unlabeled sessions. The true labels were published

after the winners of the competition were announced. It was

then necessary to add the true labels to the converted files.

Furthermore, it was crucial to compute, from the encoder and

the flashed row or column, if stimulation was a target or a

standard one.

A MATLAB script was then created to convert all the

recordings sessions into NPX format. Some information was

available in a separate DP, such as electrode names, sampling

rate, the 6 × 6 matrix layout, the number of iterations, and

the characters spelled during a copy task. Other information

was described in the same DP but also deducible from other
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TABLE 2 The sources for retrieving the information that must be stored in the NPX files.

DataSet Sensors SR Encoder Events ISI Num. Iter. Ref/Gnd. True labels Classif. Labels

BCI comp 2 FTF DP DP DF, FTF DF*/DP DP/SP SP DF/FTF -

BCI comp 3 FTF DP DP DF, FTF DF*/DP DP/SP SP DF/FTF -

BNCI DS8 DF SP DP DF DF*/DP DP/SP SP DF -

BNCI DS9 DF DF DP DF DF*/DP DP/SP SP DF -

Akimpech FTF DF DP DF, FTF DF*/DP FTF DP DF/FTF FTF

BTFC 180 DF DF DF/SP DF DF DF*/SP DF DF -

BTFC 250 DF DF DF/SP DF DF DF*/SP DF DF -

BTFC 800 DF DF DF/SP DF DF DF*/SP DF DF -

IEEE ERP DF DF SP DF SP SP SP DF -

IEEE UVA DF DP DP DF DP DP SP DF* -

LazyDog FTF DF DF DF DF DF SP DF DF

*Indicates that the related information can be computed or deduced from the data file.

SPs. Signals were acquired from one subject during 19 recording

sessions (11 for calibration). The subject was asked to spell a total

of 72 characters among 12,960 provided stimuli in about 44min.

One of the recording sessions (the file: AAS011R06.MAT)

presented one data packet loss, so this file was discarded. Spelled

words belonged to an English dictionary, and also a 4-digit

number was communicated.

BCI competition 3, DataSet III

Signals of this dataset were shared in 4 MATLAB files, one

training (85 characters) and one testing (100 characters) file

for each of the two subjects. They were released for a BCI

competition (Blankertz et al., 2006) in a similar modality as

the previous one. Thus, it was necessary to compute for each

stimulus whether it was a standard or a target one. The format of

these files was analogous but not identical to that relative to the

competition described in subsection BCI competition 2, DataSet

IIb. A MATLAB script was then written to convert the original

files into NPX format. In a separate DP, available information

included electrode names, sampling rate, the 6× 6matrix layout,

the number of iterations, and the spelled characters. Subjects

spelled a total of 380 characters, for which 66,600 stimuli were

provided in more than 3 h and 20min. All spelled words were a

sequence of random characters without any meaning.

BNCI Horizon 2020, DataSet 8

This dataset was the only one selected for this study

containing signals acquired from patients affected by

amyotrophic lateral sclerosis (Riccio et al., 2013). The dataset is

hosted by the BNCI Horizon 2020 repository (Brunner et al.,

2015). One MATLAB file per subject was provided, but the data

file omitted some relevant information, such as the sampling

rate of the signals. This information was reported in a PDF

document describing the paradigm. A MATLAB script was

implemented to generate the NPX file from the original file

after reading the PDF document and a SP. All patients had to

spell the same 7 Italian words with a length of 4–5 characters

and a number for a total of 280 characters and 33,600 delivered

stimuli. The spelled characters were missing and had to be

computed from the provided stimulation sequence, the nature

(T or S) of each stimulus, and the encoder.

BNCI Horizon 2020, DataSet 9

This dataset was downloaded from the same BNCI

Horizon 2020 repository and included signals from two P300

experiments. The experiments compared two different user

interfaces and layouts (Aricò et al., 2014). Although the donors

were from the same research group as those of the BNCI DataSet

8, the internal structure of theMATLAB files was different. Thus,

a separate MATLAB script for DataSet 9 was created to convert

it. Each of the 10 subjects had to spell the same 18 characters: 5

numbers and 13 letters, without any semantic meaning. A total

of 180 characters were spelled, and 17,280 stimuli were delivered.

As in the DataSet 8, the spelled characters were missing and had

to be deduced from the encoder, the stimulation sequence, and

the nature (T or S) of each stimulus. The stimulation sequence of

the 18 characters and timing were the same for all subjects. As a

side note, the dataset was then processed (Bianchi, 2018) as if the

acquisition of the signals would occur simultaneously among the

subjects. This was done to simulate an offline collaborative BCI

experiment, in which signals from all subjects were aggregated

together to generate desired outputs.

Akimpech

The Akimpech dataset (Ledesma Ramírez et al., 2010)

included data from 30 volunteers. The signals of each subject
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were recorded during 4 sessions and stored in MATLAB files.

The first session was to calibrate the BCI used in the successive

recording, and each volunteer had to spell three words: ‘calor’,

‘carino’, and ‘sushi’. During the second session, the subject had

just to spell the word ’sushi’. During the third and fourth sessions,

the subject was free to spell any word. The number of iterations

was 15 for the first 3 sessions, which could be reduced to

one single iteration per spelled word during the last session.

Several pieces of information – such as the characters to be

spelled, those classified, the number of iterations for each spelled

word, the session number, and other details – were stored in a

clear and self-documenting FTF. Thus, the information could

be easily extracted from the file by a dedicated software tool

after a programmer easily identified how to get access to the

desired data. Sensor labels were also stored in a separate file.

A MATLAB script was implemented for converting the data

into NPX format. The entire dataset comprises 1,692 spelled

characters and 227,679 delivered stimuli, making this study’s

second largest.

braINterface DataSets

The braINterface Lab released three datasets, each of them

recorded from 10 subjects. The datasets were characterized by

three different ISI: 180, 250, and 800ms (Bianchi et al., 2010).

Each subject had to select all 36 characters once in a different

order. The number of iterations was always 15. Because the files

were already available in NPX file format, no specific conversion

was necessary.

IEEE DataPort, ERP-BCI

Signals of this dataset were available in a Python pickle

format, a byte stream of python objects. The codes to convert

the pickle format into a Python list were provided in a separate

DP. The python list was retrieved by using the codes. The list had

a total of 16 items, corresponding to 16 subjects. Each item was

then converted into a NumPy array using the python NumPy

library. Each array contained segmented signals of a subject with

target/non-target labels, the sampling frequency at 128Hz, the

electrode names, and the total number of events. The signals

of all 16 subjects were sorted into the target and non-target

groups. A custom python script was developed to transform the

array into a MATLAB format. Afterward, the MATLAB format

was converted into the NPX format using a MATLAB script.

According to the DP of the dataset, the signals of each subject

were pre-processed and segmented into events, and each epoch

was 600ms long. The signals of the subject were collected via 16

electrodes and underwent pre-processing, including detrending,

bad-channel removal, common-average referencing, bad-event

eliminating, and band-pass filtering within 0–15 Hz.

The DP cited a SP (Abibullaev and Zollanvari, 2019)

detailing the signal acquisition method. The SP was published

based on signals of 7 subjects at the sampling frequency of

256Hz. This sampling frequency was twice higher than that in

the arrays of the 16 subjects obtained from the IEEE DataPort.

The method utilized a 6 × 6 alphanumeric matrix as presented

in the SP. The total number of target letters was 5, and each letter

was repeated 5 times with 12 random flashes in each column and

each row of thematrix. This yielded a total of 57,600 flashes. This

number was reduced to 56,683 after bad-events elimination. The

inter-stimulus interval (ISI) was 150ms between two flashes, and

each flash lasted 100ms. Although the sequence of the flashes

was unclear, the target-to-target interval (TTI) was 600ms, as

described in the SP. Nevertheless, it was unknown of the total

length of the signal recording.

IEEE DataPort, GIB-UVA

All signals relative to 73 subjects and acquired in three

different P300 Speller experiments with varying layouts were

stored in a single 5.4 GB HDF file (Mason et al., 2010).

The signals were pre-processed, segmented into 1,000ms

epochs starting from stimulus onset, and normalized in signal

amplitude trial-by-trial. The normalization prevented thus

computing averages fromweighting each single evoked response

in the same way. There were minor discrepancies between

the stored information in the signals and that in scientific

papers (Santamaría-Vázquez et al., 2019), such as the number

of subjects involved in the experiments. A software tool in C++

programming language was implemented to extract the signals

of one experiment, in which 22 subjects used the 6 × 6 matrix,

to select letters and numbers. The framework of Microsoft

Visual Studio 2022 was used in the tool implementation because

libraries for handling HDF files are available (at https://www.

hdfgroup.org/downloads/hdf5/). The large file size required a

64-bit compiler to handle it properly. The extraction generated

73 files, one per subject in the size of about 50MB. However,

only 22 of the files are related to a P300 Speller BCI compatible

with the criteria of this study. It should be noted that because

stimuli were provided in every 175ms, each epoch shared the

same 825-ms length with the previous and the next epochs. This

implied a redundancy factor of close to 6. All signals of the

experiment relative to our study could then be stored in less

than 200MB, about 4% of the original HDF file downloaded

from the IEEE DataPort. The sequence of the stimuli was

preserved, differing from the IEEE DataPort ERP-BCI dataset

previously described. Finally, and for curiosity, the words

to be copied were the names of characters from the Star

Wars universe.

Lazy dog

The LazyDog dataset (Krusienski et al., 2008) holds 454

files in BCI2000 format (Schalk et al., 2004). The BCI2000

file format is well documented (https://www.bci2000.org/
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FIGURE 3

The ERP tool of the NPXLab Suite, depicting the grand averages of the LazyDog dataset with the 8 sensors selected for this study. The lines in

orange are the averages over 53,544 target stimuli, while the lines in blue are those relative to the 267,720 non-target ones. Pink-shaded areas

indicate that the di�erence between the two averages is statistically significant (t-test, p < 0.0001) after a Bonferroni correction for multiple

comparisons.

mediawiki/index.php/Technical_Reference:BCI2000_File_

Format) and supported by freely available tools, including its

native BCI2000Viewer. Besides sensor labels stored in a separate

TXT file, the file format is the only one to contain all the

information of a BCI paradigm, including the results of online

classifications, this last is available also with the Akimpech

dataset. The dataset was the largest among the selected datasets,

with 1,798 spelled characters and 321,264 stimuli. The dataset

involved 8 subjects, each performing up to 7 recording sessions.

During each session, the subjects had to copy the sentence

“the quick brown fox jumped over XYZ lazy dog”, where XYZ

indicates a 3-digit random number. This sentence was inspired

by the pangram “the quick brown fox jumps over the lazy dog”,

which includes all the letters of the English alphabet and is

often used by typographers. The second “the” of the pangram

was substituted with a random 3-digit number in the copied

sentence to allow the selection of every alphanumeric character

of the symbols matrix. Two grand averages were computed

on the 454 files of the 8 sensors selected for this study. The

averages were distinct as the target (in orange) and non-target

(in blue) stimuli, as illustrated in Figure 3. The pink-shaded

areas of the averages indicated their significant differences in a

sample-based t-test (p < 0.0001) after a Bonferroni correction

for multiple comparisons.

Implementation of software tools to
retrieve and visualize P300 speller
datasets

We implemented the ERP Exporter software and released it

for researchers to test ML algorithms easily. The software allows

ML experts to avoid being tangled with the details of the P300

paradigm. Since all information is already stored in NPX files,

the experts don’t have to read any external documents. The

software’s user interface is shown in Figure 4. Once a user of

the software has loaded an NPX file, all software controls are

populated with data extracted from the file. Specifically, sensors,

SSs, LSs, and encoders allow the creation of the large features

matrix and 4 column vectors as the following:

1) The X data matrix: this matrix can also be considered

as a list of row vector features. Each feature vector

is obtained by concatenating segmented signals (epochs

or consecutive samples) from different sensors, time

locked with a stimulus. The number of features is

then determined by the selected sensors, the epoch size

and some optional decimation strategies to average or

skip consecutive samples. Decimation is implemented

assuming that consecutive samples convey similar, and
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FIGURE 4

The user interface of the ERP Exporter software. Once a file is loaded, all controls are populated with sensor names, encoders, SSs and LSs. The

LSs provide the triggers for segmenting signals. It is possible to undertake a feature reduction by decimating the signals, since the SSs represent

the characters to be spelled and to average the signals over the same SS before exporting or saving them.

then redundant, information. The number of the matrix

rows (i.e., the size of the list of features) depends on

the way evoked responses are handled: they can be

exported one by one (e.g., 180 rows vectors per spelled

character for 15 iterations paradigms) or after averaging

all iterations over the same spelled character, yielding

12 rows.

2) The Y label column vector: this vector contains the

values 1 and −1 for target and non-target (standard)

stimuli, respectively. The values are assigned based on the

deduction of the true label for each stimulus because the

NPX file contains the encoder, the LSs (stimuli), and the

true SSs.

3) The I iteration column vector: this vector keeps the

iteration index of each spelled character (e.g., a number

between 1 and 15 for 15 iterations).

4) The C stimulus ID column vector: this vector holds the

index of each stimulus (e.g., a number between 1 and 12

to identify the 6 rows and columns). This is necessary for

the ML experts to know which stimulus was provided,

regardless of its target or non-target nature.

5) The msg column vector: this vector maintains the

characters that the user had or wanted to select.

The size of each column vector is the same as the number

of rows of the X matrix. Other settings of the ERP Exporter are

also available, and their effects on the data are described in the

documentation released with the software.

Finally, the matrices and vectors can be exported in either

ASCII or ARFF file format. The ARFF format is adopted by the

Weka software, a collection of visualization tools and algorithms

for data analysis and predictive modeling (Frank et al., 2016).
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TABLE 3 Summary of each dataset and its N200 and P300 latencies with relevant electrodes.

DataSet Open/closed loop Subj SR [Hz] Sens Chars Flashes ISI [ms] Num Iter N200 (PO7) [ms] P300(Cz)[ms]

BCI Comp 2 Closed 1 240 61 72 12,960 175 15 279.2 329.2

BCI Comp 3 Closed 2 240 61 380 66,600 175 15 187.5 329.2

BNCI DS8 Closed 8 256 8 280 33,600 250 10 210.9 472.6

BNCI DS9 Closed 10 256 16 180 17,280 250 8 191.4 347.6

Akimpech Closed 30 256 10 1,692 227,679 188 1-15 171.8 406.3

BTFC 180 Open 10 256 61 396 71,280 180 15 195.3 343.7

BTFC 250 Open 10 256 61 360 64,800 250 15 195.3 343.7

BTFC 800 Open 10 256 61 342 61,560 800 15 156.2 367.1

IEEE ERP Closed 16 128 16 Unknown 56,683 150 Unknown 296.8 515.6

IEEE UVA Closed 22 128 8 1,303 234,540 125-475 15 296.8 296.8

Lazy Dog Closed 8 240 61 1,798 321,264 175 15 216.6 437.5

FIGURE 5

Cumulative occurrence of the 36 alphanumeric symbols to be selected with the contribution of each dataset.

Results

At the end of the entire process, more than 1,000 files were

generated in the same NPX format. The files store all necessary

information (i.e., features, labels, etc.) for training a classifier

without the need to retrieve or read additional information from

external documents. The generation of the files implies that the

procedure of extracting the features and labels to train and test a

classifier would last seconds instead of days or weeks, as required

in present practice. Currently, researchers spend a lot of time

understanding how data are stored and how to retrieve needed

information and writing codes or MATLAB scripts to extract it.

Adopting a standard file format reduces this need by eliminating

it, allowing the use of existing software tools, or limiting it for

processing specific datasets to meet the file format specifications.

The process involved EEG recordings referring to 127

subjects (including patients) and relative to more than 6,800

spelled characters. The total number of stimuli was 1,168,230,

representing the largest set of BCI data for the P300 Speller

based on a 6 × 6 alphanumeric matrix. The duration of the

EEG recordings was estimated at more than 100 h. This data was

approximated by defect since the two IEEE DataPort datasets
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FIGURE 6

Alphanumeric symbols (A) and their contribution to target occurrences (B–D). The (B,C) report the number of times a row, and a column

includes the SS the user wanted to select, with the explicit contribution of each SS. The (D) reports a 6 × 6 matrix, matching that of (A), in which

the occurrence of each SS is shown: for example, the “R” character had to be selected 382 times across all 6,793 spelled ones (5.62%). The dark

orange bar in each SS cell of (D) is proportional to the number of selections of the corresponding character as well as its background color,

which is lighter for poorly selected characters. The darkness of the bar is proportional to its percentage. It is evident from (B–D) how

unbalanced were the required users’ selections.

have no details about their recording durations due to their

provided signals stored in overlapping segments. These and

other details are reported in Table 3.

Once converted to the same format, it is easy to analyze

and compare data (i.e., evoked response latencies). In <15min,

we computed the occurrence of each spelled character to yield

a histogram with the contribution of each dataset, as reported

in Figure 5. The cumulative occurrence of each character was

not uniform indeed, with the numbers less selected than the

characters and the vowels more frequently selected than the

consonants. Some datasets (e.g., the three BTCF) contributed

uniformly across all 36 alphanumeric symbols, while others (e.g.,

Akimpech) had distinctly differentiated contributions.

Since the 36 alphanumeric symbols are selected with

different probabilities, target rows and columns are also not

equiprobable according to Figure 6. As shown in Figure 6B,

the selection of rows was highly variable. The first and third

rows were mostly selected (25.13 and 24.41%, respectively),

while the last two rows – including the numbers – were

rarely selected (8.54 and 6.09%). In contrast, the selection of

columns (as illustrated in Figure 6C) varied much less, except

for the third column, which is populated with three vowels

(I, O, and U). The selection of the third column (24.57%)

happened twice more frequently than the least selected fourth

column (12.65%). Notwithstanding, further investigations are

imperative to discover whether such unbalanced occurrences

affect ML training procedures to impact the performances of

BCI spellers.

Grand averages on each dataset were computed to calculate

the latencies of the N200 and P300 components at the PO7

(for the N200) and Cz (for the P300) electrodes. The results

of the calculation are reported in Table 3. Large variability
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was observed for both components, spanning from 156.2 to

279.2ms for the N200 and from 296.8 to 515.6ms for the P300.

The variability might result from factors such as experimental

setups, paradigm parameters, selected population, and pre-

processing procedures. For example, an experimental setup

can introduce disparate latencies at various stages, employ

distinctive luminance and persistence of stimuli, or use a

different acquisition setup (e.g., active vs. passive electrode,

ground, reference location, etc.). Some paradigm parameters,

like the ISI, can cause interference among the evoked responses.

Finally, some datasets were pre-processed, whereas others did

not. Thus, all these factors could contribute to the observed

variability of the computation results.

All the above analyses and computations were completed in

<1 h, demonstrating the great advantage of our entire process

for time-saving. Moreover, there was no need for extra coding

to perform the analyses and computations once signals were

converted from their original formats to the NPX one.

Discussion and conclusions

Having access to large datasets is advantageous as it allows

researchers to improve the training of ML classifiers. In turn,

the improved classifiers could enhance the usability of BCI

systems, for example, by reducing the time needed to calibrate

them. However, the current practice (as we experienced) of

reading documents and converting each dataset can take an

unnecessary huge amount of time and requires a certain degree

of programming expertise. This limits potential users who

cannot access the dataset without external support.

In this study, we proposed an entire process of merging

datasets relative to the same BCI paradigm. The process was

assessed using 10 different datasets, and each one was converted

to the same file format to hold all the necessary information

to perform the analyses and be extensible for future needs. In

turn, it is required to convert datasets from their originals to

a well-defined file format (NPX in this study). The conversion

required a vast amount of time due to two factors. One factor

was to write software in C, C++, Python, andMATLAB because

the datasets were stored in different ways. Another factor was to

read several papers and documentation since some information

was available only in human-readable formats (e.g., a PDF

file) or after inspecting the specifications of file formats. Once

completing the conversion into the format, including all needed

information to train a classifier (such as the IEEE P2731 Level 1

work-in-progress proposal), the analyses could be accomplished

within 1 h – much faster than the days or weeks needed in

current practice.

The lack of standards represents a great barrier for anyone

who wants to compare or analyze evoked responses from

different repositories. Herein, the IEEE Standards Association

P2731 Working Group (WG) was established and is actively

working toward providing the standards in various areas of BCI.

Indeed, most authors of this study are active members of the

WG, and the study represents a proof of concept of their vision

for standardizing BCI data storage. Although a work in progress,

a proposal for standardization is close to being completed by

the WG.

For standardization, we identified the information that

should be stored in a file for training a classifier. This study

demonstrated the advantage of having a unique and well-

defined file format for drastically reducing the time needed

when analyzing multiple datasets. The demonstration sets a

foundation for applying the format to data storage to facilitate

the training and testing of newML algorithms or enable access to

new datasets. Notwithstanding, the adopted NPX format serves

as an example of what information needs to be included in a

standard BCI file, according to the FAIR principles, to enable

processing signals without reading additional documentation.

However, the format adopted in this study does not represent

a proposal for a standard technical implementation because

all stakeholders should be involved in its definition. It is the

opinion of the IEEE P2731 WG that the definition of the

included information is more critical and important than the

technology used for storing them, providing that it could be

easily extendable and that the additions do not break the

backward compatibility with previously released tools.

The scope of this study is to convert datasets derived from

the same P300 paradigm with identical matrix size, character

layout, stimulation strategy (rows and columns), and description

(e.g., which row and column are flashing). The conversion

attempts to illustrate pitfalls of how the datasets are usually

described and stored in the current practice. We observed huge

differences, even if the data are hosted in the same repository

or released by the same research group. Indeed, there are

other valuable approaches to merge datasets from different

sources, such as the MOABB project that dealt with various

BCI paradigms and populated with more datasets than those

included in this study. However, few of them contain the same

information, even though many datasets are relative to P300

ERPs. It should be noted, for example, that even different matrix

sizes may imply amplitude variations in the evoked responses.

The variations might be negligible but need to be investigated

in future work. In short, we aimed to minimize as much

as possible differences among the datasets used in this study

to demonstrate the creation of a large “uniform” dataset for

facilitating future work.

We revealed two aspects to benefit users without

programming expertise. One aspect is that the same software

(e.g., the ERP Exporter) can be used to process all datasets.

Another aspect is that it is sufficient to implement only once

any not yet-available software tool for processing all files,

including those released in the future, provided they are in a

well-defined file format. For example, the ERP Exporter allows

potential users to extract the necessary information to train
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a classifier in a few seconds without any external support or

programming expertise.

Our experience analyzing all datasets listed in Table 1

prompts the following suggestions for releasing recordings into

the public domain. We would suggest that sharing unprocessed

datasets permits processing them in the same way. The

processing and merging are feasible due to the wide availability

of pre-processing capabilities for EEG and ERP signals. For the

same reason, the signals should not be segmented into epochs

because some epoch lengths might be too short to be analyzed

(e.g., 600ms for the IEEE ERP dataset, while several times

at least 800ms were analyzed). Signal normalization should

also be avoided, which can have negative consequences on

the procedure of averaging and can be performed later on.

Moreover, the stimulation sequence provided to the user should

be kept. Finally, we would suggest avoiding mixing experiments

into a unique huge file, which might imply downloading

unnecessary data.

Missing information, which we observed as relevant, is

related to the stimulation sequence. Sometimes, just “target”

and “standard” labels are provided or rearranged in an order

different from the recording one after removing some noisy

trials. This prevented us from knowing the spelled character on

one side and the full set of stimuli that were provided to select

one single character on another side.

In summary, we found several difficulties during this study

of file conversion, mainly due to the fact that human readers are

needed to extract pieces of information in separate documents

(usually PDF files) for the conversion. Table 2 summarizes the

sources to extract the necessary information that falls chiefly

into 4 categories: Data Files, Descriptive Papers, Formatted Text

Files, and Scientific Publications.

As a proof-of-concept, this study represents the beginning

of many forthcoming activities: to explore new transfer learning

strategies, to compare different classifiers, to invent novel pre-

processing methods, etc. The outcomes of the study – the

largest set of BCI data for the P300 Speller with over 1,168,230

stimuli – could provide a base of undertaking such exploration,

comparison, and invention in a new way other than those used

before. Moreover, the set can be extended whenever compatible

datasets are released into the public domain. The extensibility

of the set would encourage BCI researchers to develop and

release software tools that could be utilized by others and applied

to a huge amount of data. The more software tools and data

are available, the more feasible it is to drastically boost BCI

progress in bridging gaps between computational intelligence

and neurosciences.
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