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Training to master a new skill often takes a lot of time, effort, and financial resources,

particularly when the desired skill is complex, time sensitive, or high pressure where lives

may be at risk. Professions such as aircraft pilots, surgeons, and other mission-critical

operators that fall under this umbrella require extensive domain-specific dedicated

training to enable learners to meet real-world demands. In this study, we describe a

novel neuroadaptive training protocol to enhance learning speed and efficiency using

a neuroimaging-based cognitive workload measurement system in a flight simulator.

We used functional near-infrared spectroscopy (fNIRS), which is a wearable, mobile,

non-invasive neuroimaging modality that can capture localized hemodynamic response

and has been used extensively to monitor the anterior prefrontal cortex to estimate

cognitive workload. The training protocol included four sessions over 2 weeks and utilized

realistic piloting tasks with up to nine levels of difficulty. Learners started at the lowest level

and their progress adapted based on either behavioral performance and fNIRSmeasures

combined (neuroadaptive) or performance measures alone (control). Participants in the

neuroadaptive group were found to have significantly more efficient training, reaching

higher levels of difficulty or significantly improved performance depending on the task,

and showing consistent patterns of hemodynamic-derived workload in the dorsolateral

prefrontal cortex. The results of this study suggest that a neuroadaptive personalized

training protocol using non-invasive neuroimaging is able to enhance learning of new

tasks. Finally, we outline here potential avenues for further optimization of this fNIRS

based neuroadaptive training approach. As fNIRS mobile neuroimaging is becoming

more practical and accessible, the approaches developed here can be applied in the

real world in scale.

Keywords: neuroergonomics, fNIRS, neuroadaptive, prefrontal cortex, neurofeedback, learning, aviation, adaptive

training

INTRODUCTION

Training to learn complex skills, such as piloting an airliner or military plane, performing
life-saving surgery in the hospital operating room, or being an emergency responder medic triaging
and stabilizing patients in active warzone or accident scene, is difficult, time-consuming, expensive,
and potentially dangerous to do. A common learning method is using high fidelity simulators
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under professional guidance, which may lead to mastery given
enough time, but they do not guarantee efficient skill acquisition
(Dotson et al., 2018). Because of individual differences, the
speed of progression through each section of the training may
vary. Moreover, accurate evaluation of when sufficient experience
has been attained cannot be determined from just performance
due to changes in strategy and effort (Metzger, 2001). Even as
individuals display the same apparent performance, the amount
of mental effort required by each may vary greatly (Debue
and van de Leemput, 2014). This can result in higher-skilled
learners being overtrained and wasting time and resources on
unnecessary practice, or in lower-skilled learners proceeding
while undertrained and failing at later stages that could have been
avoided with more foundational practice. Therefore, there is an
unmet need to measure the amount of effort required to achieve
certain levels of performance and integrate that into training to
make learning more efficient.

Increased skill is a result of training, and is generally defined
as the accumulation of experience and the knowledge of how best
to utilize it in achieving the desired goal. Skill can be acquired
organically through experience without external direction, or it
can be taught through specific training. However, a limitation
of standardized testing is that it cannot measure effort, and
a wide range of learners with differing proficiencies may be
assessed to be at the same level. A possible remedy is to
integrate cognitive workload measures into regular assessments
(Ayaz et al., 2012b; Harrison et al., 2014). Absent these
auxiliary measures of workload, it is very difficult to determine
the effort gap between a learner of high skill vs. low skill.
This information deficit persists for all types of assessments,
from binary pass/fail to gradations of point awarding with
letters or percent. This is because test performance is only an
indirect measure of skill and confidence, which can be affected
by external factors such as distraction (Dong et al., 2011).
Nevertheless, the distinction between actual proficiency levels
can be determined by analyzing mental workload during task
performance (Bunce et al., 2011). Workload and performance
can be continuously monitored during training and used to
dynamically alter task difficulty to maximize engagement and
learning, which supplements standard post-training assessment
(Ayaz et al., 2013).

Personalizing training methods to an individual operator
assists in learning complex tasks in an efficient manner. The
process of learning and mastering a practical skill is different
for each person, but typically follows an established path of
aptitude development (Vygotsky, 1978; Ebbinghaus, 2013).
The standard measures of proficiency are in situ performance
and behavior; however, by taking cognitive workload into
account, a more accurate and objective measure of mastery
can be developed (Bunce et al., 2011; Ayaz et al., 2013).
Workload can be measured in several direct and indirect
ways including primary task performance, secondary task
performance, subjective surveys, physiological measures such
as skin conductance and heart rate variability, and neurological
measures including electroencephalogram (EEG) and functional
near-infrared spectroscopy (fNIRS) (Scerbo et al., 2001; John
et al., 2002; Hart, 2006; Wilson and Russell, 2007; Durantin et al.,

2014; Mandrick et al., 2016; McKendrick et al., 2016; Zander
et al., 2016; Ayaz and Dehais, 2019). Primary task performance
measures will differ depending on the experiment or training,
but always rely exclusively on objective and unambiguous
assessments. By incorporating neuroimaging correlates of
workload into the process, training for complex real-world tasks
can be improved.

To successfully integrate all of the available information from
a learner engaged in a lesson, we need a solid foundational
understanding of how internal and external measures interact.
The relationship between behavior and mental effort can be
modeled by an inverted U-shaped curve of performance vs.
arousal known as the Yerkes-Dodson law (Sibi et al., 2016). This
graph was originally described in terms of physical adaptability
vs. stress (Hancock and Chignell, 1986), but the concept has been
shown to be widely applicable to non-physical tasks and mental
effort as well (Sibi et al., 2016). In this model, given a task of
constant difficulty, a learner of low skill attempting to the best
of their ability to succeed will experience high workload but be
unable to achieve high performance, an indicator of low efficiency
(Ayaz et al., 2012a). As skill increases, workload descends
to a manageable level and performance converges toward a
theoretical maximum. However, after a certain point when the
relative skill to difficulty ratio is too high, the learner may
become bored and begin to disengage with the task, leading to
decreased performance. This has been demonstrated in multiple
ways including car driving studies, in which more experience can
lead to distraction and accidents (Paxion et al., 2014; Solovey
et al., 2014). This workload-performance relationship concept
can be applied during adaptive training to dynamically alter task
difficulty and maintain learners at peak efficiency. At this peak
point when performance is maximized and workload is neither
too high nor too low, the efficiency of skill acquisition increases,
particularly in the case of inducing a state of mental flow (Afergan
et al., 2014).

As practice continues and skill increases, several different
patterns in brain activation can be seen based on location, task
type, and length of training (Kelly and Garavan, 2005). Localized
and connected brain regions may experience one of four types
of changes: (1) an increase in activity; (2) a decrease in activity;
(3) a redistribution of activity, in which certain areas are more
active at the start of learning and some are more active at the end,
but all are involved in the overall process; (4) a reorganization
of activity, in which wholly separate brain regions are used at
the start and end of training, often associated with developing
new strategies as expertise is gained (Ayaz and Dehais, 2021).
The prefrontal cortex (PFC) is thought to be a key constituent
of attention and high-level executive control, and the majority of
studies examining task practice observed activation changes in
this area with ongoing practice (Kelly and Garavan, 2005; Ayaz
et al., 2012b).

Autonomic physiological signals can provide useful metrics
to inform workload measurements. For instance, eye tracking
is used in a variety of fields ranging from psychology to
human computer interaction to neuromarketing (Duchowski,
2002). Remote eye tracking is non-invasive, not distracting to
learners, and easy to set up and calibrate on most monitors.
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Eye movements can be analyzed by scan speed, saccade velocity
and frequency, fixation count and duration, and combinations
of the above, in addition to pupil diameter changes (Goldberg
and Kotval, 1999; Jacob and Karn, 2003; Ahlstrom and
Friedman-Berg, 2006). This provides information on attentional
distribution and the ergonomics of interface design on top
of workload correlates. Another relevant autonomous signal
is heart rate and heart rate variability. The interaction of the
sympathetic and parasympathetic nervous systems relayed
by low- and high-frequency variability provides insight on
workload and task performance (Durantin et al., 2014). One
method of validating these measures that exist outside of
learners’ perception is subjective workload surveys such as the
NASA task load index (NASA-TLX) (Hart, 2006). These are
excellent at measuring perceived effort in multiple dimensions,
but are difficult to compare across subjects who may have
different internal models and ranges of answers. By combining
these physiological measures, along with neuroimaging
described below, it is possible to paint a richer picture of
mental state.

Neuroimaging can be used to more accurately and
objectively read moment-to-moment cognitive workload
for both instantaneous and overall measures. Neuroergonomic
approaches based on measures of human brain hemodynamic
or electromagnetic activity can provide for sensitive and
reliable assessment of mental workload in complex work
environments (Parasuraman, 2011). Functional near-infrared
spectroscopy (fNIRS) is a lightweight, wearable, and portable
brain imaging modality that can derive correlates of mental
workload for practical neuroergonomic purposes (Curtin
and Ayaz, 2018; Ayaz et al., 2019). It accomplishes this via
the calculation of oxygenated and deoxygenated blood in
the cortex using the modified Beer-Lambert law using two
wavelengths of light in the optical window of tissue, in which
hemoglobin has a higher absorption than water (Villringer
and Chance, 1997; Izzetoglu et al., 2005). fNIRS has been
used to measure workload in a variety of complex tasks such
as performing surgery, driving, flying, and coordinating air
traffic control (Ayaz et al., 2012b; Harrivel et al., 2013; Naseer
and Hong, 2015; Foy et al., 2016; Gateau et al., 2018; Singh
et al., 2018; Causse et al., 2019). Because data is recorded
continuously and can be analyzed both online and offline in real
world situations, fNIRS is ideal for adaptive training done in
real time.

In this study we aimed to develop and assess a novel
neuroadaptive training approach using a desktop flight simulator
and wearable fNIRS neuroimaging. We utilized three distinct
complex and realistic tasks performed during four sessions
spread over 2 weeks of time. Subjects were randomly assigned to
one of two conditions: the neuroadaptive group, who progressed
based on both performance and mental workload measures;
and the control group, who progressed based solely on task
performance. We analyzed the effect of neurofeedback (received
in the form of task difficulty adjustment as described in the
next section) within an adaptive training protocol on speed of
progression, ability to retain and apply new skills, and overall
workload levels.

METHODS

Participants
Twelve participants (4 female) between the ages of 20 and 28
(age 24.9 ± 2.9 years) volunteered for the four session, two-
week long study protocol. All confirmed that they met the
eligibility requirements of being right-handed via the Edinburgh
Handedness Inventory, had vision correctable to 20/20, did not
have a history of brain injury or psychological disorder, and were
not on medication affecting brain activity. Prior to the study all
participants signed written informed consent forms approved by
the Institutional Review Board of Drexel University. Participants
were given monetary compensation for their time.

Recording
Functional near-infrared spectroscopy was recorded using an
Imager Model 1100 by fNIR Devices, LLC (Potomac, MD).
This device records at 16 optode locations over the prefrontal
cortex using four light emitting diodes (LED) as sources and
10 detectors at a rate of 2Hz. COBI Studio software recorded
light intensity data with three channels for each optode: 730 and
850 nm wavelengths and ambient light (Ayaz et al., 2011). The
sensors were aligned with the centerline of the head and placed
above the brow for repeatable measurements (Ayaz et al., 2011).

Surveys
The NASA Task Load Index (NASA-TLX) was used to measure
subjective workload, and was given once per task at the end of
each block, for a total of three per session (12 total). This is a
questionnaire of six aspects of mental workload, each of which is
graded on a 21-point Likert scale. Learners self-rate on ranges
of mental, physical, and temporal demand, as well as effort,
performance, and frustration. These can be combined into one
overall subjective workload measurement that can be compared
with other results.

Experiment
Setup
The experiment was conducted over four 1-h sessions spaced out
over 2 weeks. Participants sat in a room free from distraction at a
comfortable distance from a computer monitor, and performed
the tasks using a standard mouse plus two Thrustmaster
HOTAS controllers, a joystick and throttle (Figure 1). All tasks
were presented using the flight simulator software Prepar3D R©

developed by Lockheed Martin. The three tasks described below
were based on our previous studies (Ayaz et al., 2012b; Choe
et al., 2016) and presented in pseudo-randomized block order,
balanced between participants. Each included one reference trial
given at the lowest difficulty level, plus four training trials that
adapted between sessions based on participant condition. The
fourth and final session presented three training trials plus two
transfer trials at the maximum difficulty for each task. Each trial
took∼120 s, and each task block averaged 15 min total.

Landing Task
The goal of this task was to use both the joystick and throttle
controllers to land a plane that begins midair on a runway ahead
of the starting position (Figure 2A). Low difficulties limit plane
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FIGURE 1 | (A) Example of participant during experimental setup. Participants were seated at a desktop computer during actual task and fitted with fNIRS on the

head. (B) Ultra-thin flexible sensor pad with 10 light detectors and 4 LED light sources. (C) Optode layout from sensor superimposed on model of the cortex.

FIGURE 2 | Sample screens displaying the three tasks used. (A) Landing task viewpoint. (B) Rings task viewpoint. (C) Situation awareness task video. (D) Situation

awareness task question screen.

control to roll only and have set autopilot for speed and pitch.
As difficulty increases through the eight available levels, more
control is progressively given to the participant, and conditions
such as landing below certain airspeeds and vertical speeds
are given to succeed. In addition, harder difficulties obscured
vision with fog or rain, and included high winds that caused
turbulence. Performance was calculated by the smoothness of
flying, calculated by the difference between the deviation of actual
flight path from the root mean square calculated ideal path.

Ring Task
The goal of this task was to use the joystick controller to fly
a plane through several rings suspended in midair (Figure 2B).
At the lowest level, the rings were placed in a straight line
and remained stationary. As difficulty increased through the

nine available levels, the rings moved laterally back and forth at
increasing speeds. Performance was calculated by ratio of rings
flown through and the stability of flight through each ring as
calculated by the roll and pitch of the plane as it flew through
the rings.

Situation Awareness Task
The goal of this task was to maintain awareness of the gauges on
the dashboard of a virtual plane and then recall their values after
a distraction period. Participants viewed 90 s prerecorded first-
person pilot-perspective videos of planes in flight, after which
they were required to do mental subtraction for 15 s to prevent
immediate recall (Figure 2C). Participants were then asked a
series of multiple-choice questions regarding the plane’s airspeed,
heading, altitude, and so on (Figure 2D). The seven difficulty
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FIGURE 3 | Flowchart of the adaptive training protocol. All participants began training tasks at level 2 during the first session. Then the performance assessment was

used to sort participants in both groups into four potential level changes during the next session. Only the neuroadaptive group got the workload assessment

adjustment, which modified their next training level up one, down one, or not at all based on mental workload changes across the session.

levels were modulated by the smoothness of the flight, thereby
changing the values more or less dramatically, and the number of
gauges to recall (between three and eight). Performancemeasures
were calculated based on percentage of correct answers.

fNIRS Signal Processing
Light intensity values were processed using a lowpass Finite
Impulse Response (FIR) filter with cutoff 0.1Hz to attenuate the
high frequency noise, respiration, and cardiac cycle effects and
a Sliding-window Motion Artifact Rejection (SMAR) algorithm
for removing motion artifacts and potential saturations (Ayaz
et al., 2010). fNIRS data for each training block were extracted
using time synchronization markers received through serial port
during experiment and hemodynamic changes for each of 16
optodes during each trial block were calculated separately using
the Modified Beer Lambert Law (MBLL). The hemodynamic
response at each optode was baselined to the start of each block
and averaged across time for each task trial to provide a mean
hemodynamic response at each optode for each block. The final
output of each optode was oxygenated hemoglobin (HbO) as the
main biomarker.

Linear regression was used to calculate the rate of change of
hemoglobin concentration values over 90 s for each trial using the
slope method of determining workload (Mandrick et al., 2013).
This method fits the data from the start to the end of each block,
with higher magnitudes of the slope value indicating stronger
responses. Learning-induced workload correlates were measured
from optodes covering the left lateral prefrontal cortex, which has
been associated with skill-related changes in the brain (Ayaz et al.,
2013). For the first three sessions, each of the four training trials
within each task block were compared over time to determine if
workload was increasing, decreasing, or remaining the same. This

was used for the neuroadaptive group in difficulty adjustment as
described below.

Adaption Decision Tree
Session-based feedback was utilized for each task to update the
respective task difficulty levels for the upcoming session. For each
task within a session, participants were first classified into one
of four groups based on their performance scores: below 20%
theoretical maximum score, 20–80% max, 80–90% max, and 90–
100% max. These classifications were used to adjust the difficulty
levels for the following session. For the control group, only
the sum of performance scores dictated the following training
level for the next session (Session + 1). For the neuroadaptive
group, one additional step was used following the performance
classification. Based on the slope method processing as described
above to classify learning workload into increasing, decreasing,
or neutral states, further level adjustment could occur. Increasing
workload indicating too much required effort lowered the
following level by one, decreasing workload indicating too little
effort for performance increased the following level by one, and
neutral or unchanging workload resulted in the same proceeding
level as the control group. For this study, we capped the
increase at +2 and decrease at −1, to have a balanced min
and max adaptation across both groups. Figure 3 outlines the
algorithm used.

The difficulty level of each task remained the same within a
session. All behavioral and neuroimaging data processing was
conducted after the completion of each session to inform the
next session, and output was used as described in Figure 3 to
select the following session’s parameters for each task for the
respective participants.
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Statistical Analysis
Linear mixed models were used for statistical analysis of
behavioral, subjective, and fNIRS measures. Separate models
for each behavioral measure and fNIRS optode were used and
included group and session fixed factors, subject as random factor,
and level as covariate. Themodel fixed terms were group+ session
+ group∗session + level + group∗level and with random term
of subject. Post-hoc comparisons were performed for all pairs
of factor levels and multiple comparisons were corrected with
Bonferroni method. All model figures used Standard Error of the
Mean (SEM) as whiskers.

RESULTS

The results below present training level progress, perceived effort
(NASA TLX workload survey), behavioral performance (task
specific variables), and fNIRS workload measures (oxygenated
hemoglobin changes) for each participant group and each task.

Landing Task
Performance and Subjective Measures
Participants in the neuroadaptive group reached higher difficulty
levels during the 2-week training period than the control
group, with significant differences in group [F(1, 10) = 5.35,
p < 0.05], session [F(3, 161) = 42.4, p < 0.001], and group
by session interaction [F(3, 161) = 14.5, p < 0.05] as depicted
in Figure 4. In addition, NASA-TLX self-reported workload
measures (Figure 5) had significant group and level interaction
[F(1, 162.5) = 9.65, p < 0.01] with neuroadaptive group reporting
slightly lower workload throughout the training sessions. Flight
stability measures as calculated by the root mean squared
deviation from an ideal flight path, with the minimal amount of
jerks in three dimensional acceleration changes, showed group by
level interaction differences [F(1, 124.2) = 6.51, p < 0.001] shown
in Figure 6.

fNIRS Measures
Significant factors and interactions were found for several
optodes in the landing task. For main effect of session, the most
significant optodes were optode 8 [F(3, 163.8 = 4.07, p < 0.01] in
the medial prefrontal and optode 16 [F(3, 163.7) = 4.29, p < 0.01]
in the right dorsolateral PFC. Right dorsolateral prefrontal cortex
areas also showed significant interactions between group and
session in optode 13 [F(3, 163.7) = 4.29, p < 0.01], and moreover
post-hoc comparisons at this optode also showed a significant
difference between groups at session 4 [F(1, 27.3) = 8.18, p <

0.05] (Figure 7). Directly below this location, optode 14 also
had significant interaction [F(3, 163.7) = 3.80, p < 0.05]. The full
list with all main effects and interactions for all optodes are in
Supplementary Tables S1–S3.

Situational Awareness Task
Performance and Subjective Measures
Participants in the neuroadaptive group consistently progressed
to higher difficulty levels, whereas the control group plateaued
(Figure 8), with a significant interaction between group and
session [F(3, 161) = 19.0, p < 0.001]. Post-hoc analysis showed

FIGURE 4 | Training levels reached for landing task over each session per

experimental group. Neuroadaptive group reached significantly higher levels

(whiskers are SEM, *p < 0.05, **p < 0.01, ***p < 0.001).

FIGURE 5 | Subjective workload calculated by sum of NASA-TLX. Significant

condition by level differences were found (whiskers are SEM, **p < 0.01).

significant increases over time for both, with a group difference
found for level in session 4 [F(1, 13.8) = 14.6, p < 0.01]. Subjective
workload decreased over time for both groups over sessions
[F(3, 160.8) = 5.57, p < 0.01], with a significant group and
session interaction [F(3, 160.8) = 4.17, p < 0.01] (Figure 9). The
behavioral performance as measured by proportion of questions
answered correctly did not show any significant differences or
interactions (Figure 10).
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FIGURE 6 | Behavioral performance (error) as measured by flight stability, the

root mean square difference between actual and ideal flight path for Landing

Task. Lower values indicate better performance. Significant condition by level

interaction was found (whiskers are SEM).

FIGURE 7 | Oxygenated hemoglobin changes over time corrected with level

covariate. Significant condition and session interactions were found (whiskers

are SEM, *p < 0.05).

fNIRS Measures
Significant differences in main factor of group were found in
the right medial PFC in optode 9 [F(1, 82.9) = 9.30, p < 0.01]
and optode 10 [F(1, 87.4) = 8.09, p < 0.01]. The fNIRS measure
was found to be highly sensitive to differences between session
across the prefrontal cortex, and the most significant location
was in the left medial prefrontal cortex in optode 5 [F(3, 159.7) =
17.4, p < 0.001]. The prefrontal cortex was found to be widely
sensitive to group and session interaction (Figure 11), with the

FIGURE 8 | Training levels reached for situational awareness over each

session per experimental group. Neuroadaptive group reached significantly

higher levels in session 4 (whiskers are SEM, **p < 0.01, ***p < 0.001).

FIGURE 9 | Subjective workload calculated by sum of NASA-TLX self-reports.

A significant interaction between condition and session was found (whiskers

are SEM, *p < 0.05).

most significant optodes being optode 9 [F(3, 155.9) = 11.1, p
< 0.001] and optode 15 [F(3, 160.4) = 10.9, p < 0.001], with
optode 15 having post-hoc significant differences between groups
in session 3 [F(1, 16.8) = 11.7, p < 0.05]. Finally, the right medial
PFC was found to be sensitive to group and level interaction in
optode 09 [F(1, 158) = 9.40, p < 0.01] and optode 10 [F(1, 146) =
7.75, p < 0.01]. The full list with all main effects and interactions
for all optodes are in Supplementary Tables S1–S3.
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FIGURE 10 | Behavioral performance as measured by the ratio of correct

answers. No significant differences or interactions were found (whiskers are

SEM).

FIGURE 11 | fNIRS cognitive workload correlates as measured by oxygenated

hemoglobin (HbO) in optode 4, the left prefrontal cortex, in the situational

awareness task. Significant differences and interaction between group and

session was found. Neuroadaptive group also showed higher HbO in session

3 (whiskers are SEM, *p < 0.05, ***p < 0.001).

Ring Task
Performance and Subjective Measures
Level progression in both groups consistently increased over the
first three sessions, and in session four the control group reached
slightly higher difficulty levels than the neuroadaptive group
(Figure 12). There was a significant interaction between group

FIGURE 12 | Training levels reached for ring task over each session per

experimental group. Both conditions displayed significant level increases over

time (whiskers are SEM, ***p < 0.001).

and session [F(3, 161) = 6.34, p < 0.001]. Both groups showed
decreases in subjective workload over time (Figure 13), with
a significant interaction between group and session [F(3, 157.6)
= 8.82, p < 0.001], with post-hoc decreases in NASA-TLX
scores only found in the neuroadaptive group. For behavioral
performance measures, the ratio of rings flown through per trial
(which varied due to participant skill and time limit) had a
significant interaction between group and session [F(3, 159.4) =
6.53, p < 0.001], with the control group improving in session 3
but falling after, and neuroadaptive group improving in session
4 (both significant at p < 0.05) (Figure 14A). For the flight
stability measures, calculated by plane orientation through rings,
both groups showed an increase in performance over time with
a significant difference between sessions [F(3, 158.1) = 14.1, p
< 0.001], and post-hoc calculations showed a more consistent
increase in the neuroadaptive group (Figure 14B).

fNIRS Measures
The right medial prefrontal cortex was found to be highly
sensitive to the main effect of group. From most to least
significant, optode 11 [F(1, 26.1) = 10.3, p < 0.01], optode 12
[F(1, 28.7) = 7.96, p < 0.01], optode 10 [F(1, 37.6) = 6.81, p < 0.05],
and optode 9 [F(1, 32.6) = 6.64, p < 0.05]. The fNIRS measure
was found to be highly sensitive to differences between session
across the prefrontal cortex, and themost significant location was
in the right medial prefrontal cortex in optode 11 [F(3, 150.6) =
14.5, p < 0.001] (Figure 15). Group and session interaction was
most significant in optode 11 [F(3, 150.6) = 3.34, p < 0.05] in the
right medial PFC and also optode 3 [F(1, 159.4) = 3.28, p < 0.05].
Finally, the right medial PFC was found to be sensitive to group
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and level interaction in optode 9 [F(1, 161.3) = 12.0, p < 0.001],
optode 10 [F(1, 158.8) = 11.0, p < 0.01], optode 11 [F(1, 156.3) =
19.9, p < 0.001], and optode 12 [F(1, 146) = 14.3, p < 0.001]. The
full list with all main effects and interactions for all optodes are in
Supplementary Tables S1–S3.

FIGURE 13 | Subjective workload calculated by sum of NASA-TLX

self-reports for rings task. A significant condition by session interaction was

found, and only the neuroadaptive group had significant decreases in

self-reported workload (whiskers are SEM, *p < 0.05, ***p < 0.001).

DISCUSSION

In this study, we captured wearable neuroimaging-based mental
workload during flight simulator task practice over 2 weeks, and
utilized that for a new adaptive training approach that is based on
brain measures.

FIGURE 15 | Oxygenated hemoglobin changes over time corrected with level

covariate. Significance found between groups, session, and interaction, as well

as condition and level interaction. (Whiskers are SEM, *p < 0.05, ***p < 0.001).

FIGURE 14 | (A) Behavioral performance as measured by the accuracy, or ratio of rings successfully flown through for the ring task. A significant interaction between

condition and session was found. (B) Behavioral performance calculated by plane orientation through rings. Both conditions significantly improved over time, but only

neuroadaptive maintained that increase throughout all sessions (whiskers are SEM, *p < 0.05, **p < 0.01, ***p < 0.001).
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The training protocol included four sessions and utilized
realistic piloting tasks with up to nine levels of difficulty. Learners
started at the lowest level and their progress adapted based on
either behavioral performance and fNIRS measures combined
(neuroadaptive) or performance measures alone (control).

The main contribution of this study was the development
and evaluation of this novel neuroadaptive training approach
that adjusted subsequent training task difficulty level based on
mental workload and behavioral performance on the current
task. We developed a two-tiered system of task level adjustment
(Figure 3) where participants were individually sorted first by
performance, allowing for a range of next session options ranging
from remaining at the same level, decreasing one level, increasing
one level, or increasing two levels. This was then modulated
by fNIRS-measured mental workload in the left dorsolateral
prefrontal cortex, which is associated with learning. Increasing
workload over trials adjusted the level progression down, and
decreasing workload adjusted it up. This algorithm was intended
to provide a generalizable framework that could be applied to a
range of different applications.

We used the changes in oxygenated hemoglobin of the left
dorsolateral prefrontal cortex to determine mental effort during
tasks and estimate internal skill development based on previous
longitudinal studies with verbal and spatial working memory
and similar aviation tasks (Bunce et al., 2011; Ayaz et al., 2012a,
2013; McKendrick et al., 2014). While this area of the brain
did show some relevant response to each task to assist in the
personalized difficulty progression, other areas may be more
sensitive to specific task-related mental workload. It may even
be more effective to apply a wider bilateral or medial range of
the prefrontal cortex to analyze a novel task without any prior
knowledge. In the future, by using the results of this study, we will
be able to better isolate specific optodes that correlate with skill
acquisition over trials within a single session for different tasks.

Findings and Insights
Overall, participants in the neuroadaptive group were found
to have significantly more efficient training, reaching higher
levels of difficulty in the landing and situation awareness
tasks, preventing advancement beyond skill level in the ring
task, improving performance over the full training period, and
showing consistent patterns of hemodynamic-derived workload
in the dorsolateral prefrontal cortex. In the following section,
we describe specific patterns across the three tasks individually,
which display two types of patterns: one for the landing and
situation awareness tasks, and one for the ring task.

In the landing task, neuroadaptive participants were able to
reach higher difficulty levels, with the greatest increase being
seen from session one to session two (Figure 4). This occurred
because all participants were able to achieve at least proficient
performance, but only the neuroadaptive group jumped two
difficulty levels due to their measured low workload, which
may suggest that our designed task is too simple at the
beginning, and may benefit from added complexity. Post-hoc
tests also reveal that by session 4, the neuroadaptive group
reached significantly higher training levels, in part due to more
improvement during session 3.

Behavioral performance was measured by flight stability,
specifically the ability to maintain a consistent trajectory during
the descent to runway, as well as keep the plane from jerking
during wind in higher difficulty levels (Figure 6). Both groups
display a slight increase in calculated rms difference from an
ideal path in session two, representing worse performance,
but only the neuroadaptive group showed an improvement in
performance over time. This is notable due to the higher training
levels achieved by these participants. In addition, a significant
interaction between group and level was found, showing that
neuroadaptive participants also performed better than control
participants while at the same training level.

Significant interactions between group (control vs.
neuroadaptive) and session (4 training sessions) were found
for two optodes in the right DLPFC. In Figure 7 it can be seen
that the control group showed varying workload over each
session, whereas the neuroadaptive group displayed consistent
workload measures from sessions 1–3 and an increase only in
session 4. Post-hoc tests revealed that control and neuroadaptive
groups had a significant difference in measured oxyhemoglobin,
and therefore mental workload, during this session. We can
deduce that this increase in workload for the neuroadaptive
group was due to the increase in training level. However, despite
the harder difficulty, these participants displayed improved
performance as compared to control. This suggests that the prior
training sessions better prepared these participants for the jump
in difficulty.

This pattern of consistent workload over sessions leading to
faster progression and higher training levels achieved is one of the
main goals of neuroadaptive training. By challenging each person
at the optimal difficulty for their skill, their engagement and
workload will hit the peak of the Yerkes-Dodson curve, opening
the door for enhanced learning. The increased workload during
session 4 proves that a certain level of mastery was attained
because performance was able to match training progression.

The situation awareness task had level progression for control
and neuroadaptive groups similar to the landing task, with
neuroadaptive participants reaching significantly higher training
levels by session 4 (Figure 8). Although no significance was found
in task performance as measured by percentage of questions
answered correctly after each 90 second trial, it can be seen that
the control group fell after session 1 and remained at around 70%,
whereas the neuroadaptive group improved in sessions 3 and
4 (Figure 10). Taking into consideration that the neuroadaptive
group reached higher difficulty levels during session 4 with higher
performance, we can deduce that the training method had some
positive effect.

The fNIRS workload measures for situation awareness differ
from the previous task (Figure 11). In optode 9 located in the
right medial DLPFC, the control group shows a slight U-shaped
pattern, whereas the neuroadaptive group significantly increases
with each session. It is possible that due to the training level also
increasing each session, and performance also improving by the
end of the experimental period, that the neuroadaptive group was
more engaged with the task than the control group, performing
better despite the higher difficulty level. The control group did
display relatively consistent workload over sessions without as
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much progression or performance improvement, suggesting that
their training process was slower than it could have been.

The ring task results display a different pattern of progression
which requires a separate interpretation. This follows from both
groups significantly increasing in training level over time until
session 4, where the control group reaches a higher level while
the neuroadaptive group plateaus (Figure 12). The main factors
of group and session showed a significant interaction, confirming
that the plateau shape was distinct from the linear increase.

Subjective workload for both groups as measured by the
NASA-TLX after each set of training tasks decreased over
each session, but only the neuroadaptive group had significant
decrease in perceived workload (Figure 13). This was due to a
slightly higher perceived workload at the start, but no significant
group differences were found. However, by session 3 both groups
had almost identical perceived workload, suggesting that the
neuroadaptive group improved more over the four training
sessions than the control group.

Both measures of behavioral performance for the ring
task showed similar findings (Figure 14). The ratio of rings
flown through each trial started higher in the control group,
significantly increasing in session 3, but decreasing in session 4.
In the neuroadaptive group, performance stayed consistent until
session 4, where it significantly increased as compared to session
1. Taking into consideration the training level achieved by this
final session, it is clear that the control group was raised to a level
above their ability, thus negatively impacting their performance
in session 4. In contrast, the neuroadaptive group was able to
improve their performance in session 4 because they remained
at their ideal training level. A complimentary result is seen in
the flight stability measure, with both groups improving over the
first three sessions, but only the neuroadaptive group continuing
to improve in session 4 compared to the control group which
remained the same. Considering the significant interaction
between group and session for ratio of rings flown through, we
can confidently state that the control group level progression was
not as conducive to learning as the neuroadaptive group.

The fNIRS workload measurements displayed significant
interactions between group and session. Optode 11, which is in
the more medial area of the right PFC, displays similar workload
levels between groups during sessions 1 and 2, after which
only the neuroadaptive group shows significantly decreased
workload in sessions 3 and 4 (Figure 15). This implies that
the neuroadaptive group advanced to an appropriate level in
session 3 for their skill and set them up for success in session
4. The significant group and level interaction also tells us that
the neuroadaptive group had comparatively lower workload
for the same difficulty levels as control. Using the scaffold-
storage framework for skill acquisition (Petersen et al., 1998),
one way of interpreting this data is that optode 11 is associated
with long-term skill acquisition and intrinsic load in this task,
decreasing when learning is faster and increasing when learning
is slower.

Limitations and Future Considerations
In this study, we utilized optical brain imaging on the
prefrontal cortex, which is known to be involved in higher

cognitive processes such as working memory, attention, and
executive function. Our goal for determining a generalized
location from which to measure cognitive workload was
decided a priori based on previous literature, and selected
as the left dorsolateral prefrontal cortex. This method was
beneficial in that analysis of workload between sessions
to determine the next training level for the neuroadaptive
group could be done immediately; however, our findings
indicated that each task also had task-specific hemodynamic
correlations with workload. These results can inform more
effective neuroadaptive training in the future, and also
help to refine the search for truly generalizable cognitive
workload measures.

Regarding the specific flight simulator tasks used, design
limitations and prior participants experience may have
influenced the results. We utilized a low fidelity flight
simulator with two hand controllers for participants that
have no experience piloting. Initial differences in understanding
the mechanics of flight, manual dexterity, and video game
experience could have caused shifts in starting ability and ease
of learning a novel skill, but were not recorded beforehand. The
experimental design of the three tasks used and the necessity
of creating a wide range of difficulty levels may have also
exacerbated the difficulty of skill acquisition over a relatively
short, four-session study. For example, in the landing task
which required two-handed coordination of unfamiliar controls,
the ability to alter speeds and turn the plane was limited in
earlier levels as a form of autopilot. As training levels increased,
these controls were returned to the participants. However,
this could be considered as altering the task itself, even as the
goal of landing and flying smoothly remained the same. The
method of presenting limited segments of a complex task is
known as part-task training (Wickens et al., 2013), although
in this case elements were cumulatively added rather than
trained separately. Training for this study was expediated as
compared to a more formal learning environment, so it is
possible that the full benefits of part-task training were not
seen here.

Also important to consider is the number of total difficulty
levels for each task, which ranged from seven to nine. If
participants improved each session on a task but only went
up a single level, the higher training levels would never be
reached in our limited time. Thus, we designed both the
control and neuroadaptive progression flowcharts to allow
for level skipping in the case of exemplary performance
or optimal workload. Unfortunately, the skipping of levels
may have had unintended effects on learning, as new
aspects of the controls may have been introduced before
previous ones are learned. We accepted this concession in
the experimental design to identify potential contrast between
control and neuroadaptive groups, but ideally we would
extend the length of the experiment to avoid these concerns in
the future.

Some performance measures were challenging to obtain due
to task limitations and the difficulty of flying without prior
experience. Situation awareness was graded based on questions
correctly answered, but on early levels with only three questions
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the difference between zero or one wrong answer is 33%, which
has a large effect on final score. In the landing task, actually
landing a plane without crashing or damaging the aircraft at
higher levels when autopilot is not engaged is very difficult,
making measures of true success unreliable. All participants
were informed to land within certain parameters of speed and
location, but very few were able to. The virtual plane used
during the landing task was also very different than the one
used in the ring task. In the ring task a fighter jet with high
sensitivity to the controls was used in order to allow participants
to fly the challenging ring course, but the change in controls
between tasks may have added confusion or made learning
more difficult than focusing on a single plane. Improvements
to the tasks itself in the future could allow for more cohesive
training overall, as well as simply using only a single task in
one experiment.

Generalization of the Approach—
Suggestions of Next Steps
In this study, we utilized flight simulator tasks that we
have used before. However, the neuroadaptive training
approach described here could be generalized and applied
for other types of tasks in different domains. In this section,
we outline guidelines and suggestions for applying this
neuroadaptive approach.

Selection of Target Brain Area, Neuroimaging

Modality, and Psychophysiological Signals
The core nature of neuroadaptive training stems from the
input of mental effort during task execution. For the selected
task domain and type, the relevant brain areas (target regions)
that are responsive to task difficulty should be identified
before the training, and used as input for the adaptation
algorithm. In our study, we had multiple previous experiments
with similar tasks. If prior data does not exist, a separate
session could be run where multiple difficulty levels of the
same tasks are presented in a pseudo-random order, and the
significant main effects of task difficulty for brain areas could
be ascertained.

In this study, we utilized the fNIRS brain imagingmodality for
localized brain activity monitoring, but incorporating other brain
monitoring modalities such as EEG, and psychophysiological
metrics such as eye-tracking, heart rate, and respiration rate
as a multi-modal approach into the algorithm could help
improve efficacy.

Selection of Target Biomarker for Feature Extraction
Another important factor to consider is the feature extraction
from the selected biosignals. In this study, we utilized
slope from oxygenated-hemoglobin changes of fNIRS
data; however, there are many other potential features
such as range, mean, min, max, and variability that could
be extracted.

Level Adaptation Range
In this pilot evaluation we maintained a balanced adaptation
between the neuro and control groups by limiting the possible

level change from −1 to +2. However, a more flexible and
wider range (depending on the available levels and task
difficulty) could provide more precise personalization and help
improve outcomes.

Moreover, in the behavioral performance measures,
different percentage ranges/threshold regimes could be
implemented depending on the tasks and performance
metrics used. Here we used 10–20 percent bands at the
highest and lowest ends of performance. It may be beneficial
to further striate these bands to incorporate a larger range
of performance.

CONCLUSION

In this study, we developed a novel neuroadaptive training that
applies difficulty adjustment by incorporating neural correlates
of fNIRS-derived workload for enhancing the evaluation of
participant state during learning of complex skills. We created
an adaptation algorithm that allowed for the direct comparison
of a control group who progressed based on performance
and a neuroadaptive group that progressed based on both
performance and mental workload measures. Using a low fidelity
flight simulator and three distinct, complex tasks requiring
skills that most participants would not be familiar with, we
found that our neuroadaptive training provided benefits over the
control condition. In the landing task, neuroadaptive participants
reached higher levels and displayed improved performance
over control participants, and were able to engage the more
difficult levels with, respectively, higher prefrontal activation. In
the situation awareness task, neuroadaptive participants again
reached higher levels by the end of training, also displaying
better performance and mental workload that kept up with
skill acquisition. In the ring task, we saw the effects of
progressing too quickly, as control participants reached a higher
difficulty level in mid-training, but suffered for it in both
performance and mental workload at the end of training, as
compared to the steadily increasing neuroadaptive group. These
three sets of results show multiple applications of our fNIRS-
based neuroadaptive training, and demonstrate the effectiveness
in enhancing the learning of new skills. The application of
this paradigm has the potential to enhance the training of
complex tasks beyond piloting into the realms of surgery,
teleoperation of precision machinery, air traffic control, teaching,
and more.
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