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This article investigates the differences in cognitive and neural mechanisms between

human-human and human-virtual agent interaction using a dataset recorded in an

ecologically realistic environment. We use Convergent Cross Mapping (CCM) to

investigate functional connectivity between pairs of regions involved in the framework of

social cognitive neuroscience, namely the fusiform gyrus, superior temporal sulcus (STS),

temporoparietal junction (TPJ), and the dorsolateral prefrontal cortex (DLPFC)—taken

as prefrontal asymmetry. Our approach is a compromise between investigating local

activation in specific regions and investigating connectivity networks that may form part

of larger networks. In addition to concording with previous studies, our results suggest

that the right TPJ is one of the most reliable areas for assessing processes occurring

during human-virtual agent interactions, both in a static and dynamic sense.

Keywords: fMRI, convergent cross mapping, functional connectivity, social interaction, virtual agent

1. INTRODUCTION

There has been considerable interest in studying human responses to artificial agents (AA),
such as humanoid robots, avatars and chatbots, in various social, and communication contexts.
These studies can be classified as investigating the effects of the realism of the agents themselves
or taking advantage of the full controllability of AAs to create synthetic environments to
investigate how specific aspects affect the human responses. On the other hand, the social
cognitive neuroscience theoretical framework of “two-persons neuroscience” (Schilbach et al.,
2013) claims that understanding human social cognition requires new experimental paradigms
in which natural human-human interactions (HHI) are investigated; it has been proposed that
using interactions with AA as control conditions provides relevant comparisons to pursue this goal
(Chaminade, 2017).

Actually, there is no clear framework, except the Uncanny Valley hypothesis (Cheetham et al.,
2011; Rosenthal-von der Pütten et al., 2019), that describes whether social interactions between
a human and an AA are improved when the AA is fully realistic, or whether its artificial nature
should be kept visible - and to what extent. Therefore, interactions with AA should be investigated
to assess directly whether realism, in terms of human-like appearance (Wiese et al., 2018) nor
behavior, should be pursued or whether concepts such as the Uncanny Valley convincingly suggest
that such realism should be avoided. Previous study, specifically investigating differences in brain
processing when interacting with social robots (Chaminade and Okka, 2013; Wykowska, 2020)
yielded contradictory results in terms of the social stance the AA induces in the human interacting
partner. Other studies take advantage of the full controllability of virtual agents’ behavior to
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improve the design of complex social or affective neuroscience
experiments investigating live interactions. For instance, the
ability to finely control the Action Units (AUs) of facial
expressions offers controllable and dynamic realism which is
neither accessible through the use of video footage or human
actors in a laboratory setting (Aranyi et al., 2016), or online
control of eye gaze that has been used to investigate joint
attention (Schilbach et al., 2010). Yet these studies largely neglect
the fact that the artificial nature of AA might itself modify the
stance adopted by the human partner (Dennett, 1987). However,
few studies directly compared the neuronal and cognitive
processes in humans interacting with an AA or a human during
free flowing, natural, conversational interactions. In this article,
we report results from the analysis of a functional magnetic
resonance imaging (fMRI) dataset comprising similar human-
human and human-robot natural interactions, to understand
how the social ergonomics of one robotic conversational head
influence the cognitive processes involved in the interaction.
It should be emphasized that, while the artificial nature of
the interacting agent is obvious to the participant and an
undeniable variable of the experimental set-up, results and their
interpretations are limited to this specific artificial agent, in terms
of both its appearance and its behavior. In other words, the
results reported here need to be further confirmed with AA
with different appearances in order to determine what is causally
related to the artificial nature of the agent from what results from
its specific features.

After reviewing previous study on neuroimaging of human-
agent interaction, we describe our fMRI dataset. We then provide
an analysis of the data in terms of regional activity focusing on
the most relevant regions for the perception of, mentalization
toward, and bonding with interacting agents. This analysis is
subsequently refined by investigating causal patterns of activation
between pairs of these regions where causal connections are
believed to play important roles in social interactions given
the existing literature, comparing the patterns between the
experimental conditions in which the participant interacts with
a human and with the robot. We then discuss our findings
from the perspective of potential explanatory mechanisms,
while also reflecting on the limitations of the analysis and the
experimental approach.

1.1. Objectives
We use a dataset that was recorded in an ecologically realistic
context for dialog so as to investigate the social neuroscience
aspects of the interactions. Our goal is to find evidence
of differences in neural and cognitive mechanisms between
interaction with humans and interaction with an AA, the robotic
conversational head from Furhat Robotics in the present case
(Al Moubayed et al., 2012). We do not investigate the Uncanny
Valley as we do not vary nor mitigate the level of realism of the
virtual agent, nor explore users’ explicit preferences or human-
likeness ratings. Furthermore, such subjective ratings remain
very difficult to quantify objectively, one of the reasons the
explanatory value of the Uncanny Valley hypothesis can—and
should—be debated within a rigorous framework, which is not
the objective of the current study. Our purpose is instead to

quantify, given one level of human-likeness of an artificial agent,
whether cognitive processes differ from the same interaction with
a human agent using a specific metric of neural connectivity as an
objective dependant variable.

2. PREVIOUS AND RELATED STUDY

Cheetham et al. (2011) investigated the Uncanny Valley
hypothesis on various perception and categorization tasks
involving real human pictures and variably morphed virtual
agents, defining, in particular, a Degree Of Humaneness. One
low-level, yet relevant finding, is that when studying the response
to change in physical qualities between face pairs, activity in
the fusiform gyrus (FG) was right-localized for avatar face
pairs in contrast to human ones. They also pointed out the
uncertainty surrounding the role of image texture vs. geometrical
features when categorizing appearance. The FG contains regions
responsive to the visual perception of faces, known as the
fusiform face area (FFA) (Kanwisher et al., 1997). Here, given
the absence of a face “localizer” allowing us to delineate the
FFA precisely, we selected an area from the brain parcellation
of Fan et al. (2016), which is “blind” to specific functions but is
based on functional homogeneity of the voxels included in each
area, on the basis of previously reported coordinates of the FFA
(Kanwisher et al., 1997).

Rosenthal-von der Pütten et al. (2019) studied the continuous
evaluation of virtual agents by humans alongside the Uncanny
Valley continuum. They concluded to distinct mechanisms
for encoding human-likeness and likeability, the latter being
reflected in the activity of the ventromedial prefrontal cortex
(VMPFC). They distinguished between the linear encoding of
human-likeness in the temporoparietal junction (TPJ) whose
activity is not influenced by human-likeness or likeability, vs.
nonlinear responses in the dorsomedial prefrontal cortex
(DMPFC) and FG underpinning a human-nonhuman
distinction. A more detailed analysis would suggest positive
human-likeness encoding in the TPJ and negative human-
likeness in the FG. However, activity in the TPJ exhibits
a negative modulation with human-likeness primarily for
nonhuman stimuli but only an average response to human
stimuli, suggesting a different response mapping for the two
types of stimuli.

In their review of the centrality of social interactions in
brain function, Hari et al. (2015) have discussed the role of
various networks and regions in different social tasks, including
mentalizing. Regions they identified in the mentalizing network
include TPJ and DMPFC but also the superior temporal sulcus
(STS). They highlight that different subregions of the STS may
be tuned to various social stimuli, making it a central hub for
social perception. In addition, they suggest, following others
(Saxe and Kanwisher, 2003; Van Overwalle, 2009), that the TPJ
may play a role in inferring temporary states of other agents,
which could be of particular relevance for short-term interactions
such as the ones staged in our experiments. Therefore, while
the STS, in particular, has not been discussed specifically in
relation to interaction with artificial agents, its centrality in
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social cognitive processes, further confirmed by the integration
of multisensory (in particular audition and vision) social signals
(Allison et al., 2000; Van Overwalle, 2009), make it an important
hub to investigate neural networks involved in social interactions.

Aranyi et al. (2016) have studied the potential for
establishing relationships with virtual agents through an
fNIRS neurofeedback paradigm controlling the agent’s facial
expression from the dorsolateral prefrontal cortex (DLPFC)
asymmetry intended as a marker of social interest through the
approach dimension. The study has discussed the relevance of the
DLPFC and VMPFC in human-agent relationships, although it
was unclear to which extent the VMPFC signal was contributing
to the neurofeedback signal. While DLPFC asymmetry is
recognized as a very relevant signal for neurofeedback in view of
its controllability, there are less data available on its spontaneous
variation during interactions with virtual agents.

Hortensius and Cross (2018) have identified a functional
convergence of cognitive factors driving attribution of social
characteristics to virtual agents, which draws significantly from
the mentalizing network, in particular the DMPFC and TPJ.

Goelman et al. (2019) have studied connectivity during
joint attention in human communication using an original
experimental design based on a 4-region network concept. The
single region (either TPJ or DMPFC) in one brain is matched to
three regions in the other brain taken from the VMPFC, PM, STS,
and the FFA located in the FG, and the precuneus. Experiments
are repeated with the single regions in either the ‘sender’ or
‘receiver’ brain. Among a set of complex results, the TPJ appeared
more involved in the receiving processes; when these were part
of the receiving feedback system, the FFA would also appear in
pathways with the TPJ in both hemispheres.

Previous study has identified a consistent set of regions
of interest (ROIs) during interactions between human users
and AA. These regions overlap with traditional findings from
social neuroscience regarding human-human communication,
yet specific phenomena related to the encoding of human-like
appearance in those regions have also been identified, making
the corresponding regions even more relevant for our own
experiments. Finally, the role and relevance of specific regions
cannot be dissociated from the experimental paradigms through
which they have been studied. Most previous studies on human-
likeness have sought to explore the validity of the Uncanny Valley
hypothesis and as such have implemented decision making tasks
such as judgments on appearance, identification, or preference;
this may in turn have given more prominence to areas associated
with such processes, e.g., the VMPFC. One specificity of our
study, as well as its originality, rests with the absence of an
explicit task, as well as the ecological conditions for observing
human-robot interaction.

Based on the above findings, we have, thus, decided to
privilege several areas including the STS for its “social hub” role,
the TPJ for its role in short-term mentalizing and encoding of
human-likeness (Saxe and Kanwisher, 2003), and the FFA for
its role in face recognition, and previous reports of differential
activation when observing a human or synthetic face (de Borst
and de Gelder, 2015). Areas of the PFC have been associated
with social relationships, with VMPFC more often activated

when preference or human-likeness judgments were requested
from the user. DLPFC is primarily of interest via DLPFC
asymmetry as a marker of approach, a high-level dimension
that can serve as a proxy for social engagement; it should
be noted, however, that in some cases it may be difficult to
distinguish approach from valence. We were also encouraged
to investigate lateralization for areas of the temporal lobe given
known lateralization of functions, with the left hemisphere bias
toward linguistic contents in the STS and TPJ, while the right
hemisphere is more systematically found than the left in the
mentalizing task (refer to e.g., Saxe and Kanwisher, 2003). We,
therefore, conducted separate analyses for each of the two brain
hemispheres, for each variable, except for the asymmetry of
the DLPFC activity that requires incorporating the signal from
both hemispheres.

However, we have not retained other candidate regions
mentioned in previous study because our experimental context
differed from those in which their role has been investigated.
These differences included the absence or presence of explicit
human-likeness judgments, self-identification with a virtual
avatar, investigation of the role of eye gaze, and the contrast
between social interaction and observation. It has been suggested
that the mentalizing network was of particular relevance in the
latter distinction (Redcay and Schilbach, 2019). For instance, we
have not considered the striatum, whose importance has been
identified in mutual gaze experiments (Pfeiffer et al., 2014), or
the cingulate gyrus involved in self-identification (Ganesh et al.,
2012).

3. EXPERIMENT

We decided to investigate causal relationships between brain
regions using Convergent CrossMapping (CCM) (Sugihara et al.,
2012) on a unique corpus including fMRI data acquired during
Human-Human and Human-Robot conversational Interactions
(respectively HHI and HRI).

3.1. Acquisition of the Corpus
The acquisition and processing of this corpus extensively
described elsewhere (Rauchbauer et al., 2019), will be presented
briefly in this section, focusing on the most relevant aspects for
the current analysis. For the entire duration of the experiment,
participants were made to believe that they were taking part in a
neuromarketing experiment. Upon arrival they were introduced
to a “fellow participant” who was actually part of the research
team and of the same gender as the experimental subject—
experimenter TC for men and master student MB [coauthor
in Rauchbauer et al. (2019) for women]. Both were told that
one of them (the participant) would be scanned in fMRI
while discussing images being designed for an advertising
campaign. The question of the putative advertising agency was
whether discussing these images was sufficient to figure out
the objective of the campaign. There were two campaigns each
containing three images, presenting anthropomorphized fruits
(fruits disguised as known super-heroes for one campaign, rotten
fruits for the second campaign). The cover story was used so that
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participants were unaware of the real focus of the experiment, the
neural bases of social interaction through verbal discussions.

The robot used in the experiment was the original version
of a rear-projected speech conversational robotic head from
Furhat robotics (Al Moubayed et al., 2012). The facial and voice
gender as well as accessories (e.g., a wig) were used to increase
the similarity between the human and AA (Figure 1, top). It
was controlled by the experimenter with a basic Wizard of
Oz implementation (Dahlbäck et al., 1993). The experimenter
acting as the human interlocutor selected the robot’s response
among a set of pre-recorded written responses by pressing
virtual buttons on a touchpad. Responses varied from generic
(“Yes”, “No” [...]) to very specific (“Maybe it’s a campaign to
promote local fruits cultivation”). They were stored in written
form, and the algorithm controlling the robot created both
the lip synchronization projected on the plastic face and the
text-to-speech synthesis, yielding a noticeable temporal delay,
at the order of few 100 ms, between response selection by
the experimenter and the execution of the speech gesture by
the robot.

Participants lying supine in the fMRI scanner discussed
alternatively with the experimenter and the robot. Importantly,
this discussion was unconstrained (i.e., it could take any form
and direction) and in real time (i.e., the experimenter heard and
responded directly to the participants, whether directly in the
HHI conditions or through the conversational robot controlled
with the Wizard of Oz interface in the HRI). The audio recorded
from both the participants and the external interlocutor were sent
to the other agent in real time, meaning there was no imposed
turn-taking and that both speakers’ occurrences could overlap.
The video from the external interlocutor was also projected in
real time on a screen located behind the scanner, the participants
could see through mirrors located in front of their eyes.

For each participant, in addition to anatomical T1* and T2-
weighted images, the BOLD signal (for Blood Oxygen Level-
Dependant) was recorded in four sessions of approximately
8 min. Each session consisted of 6 experimental trials (Figure 1,
bottom) proceeding as follows: A picture appears for 8.3 s,
followed by a 3-s pause with a gray fixation cross on a black
background. A 1-min real-time discussion then took place,
alternating between the human and the artificial interlocutor.
During this conversation, in addition to hearing each other, the
participant also looks at a live video stream of the interlocutor,
human, or robot. In total, 12 1-min conversations with each
of the human and robot interlocutors were recorded for
each participant.

3.2. Processing of the fMRI Data
The analysis of the MRI data is identical to the one in
Rauchbauer et al. (2019) and includes twenty-four participants
of the final corpus from whom data from the four sessions
are available (17 women, µ = 26.76 years, σ = 7.96). All
were native French speakers, right-handed with no history of
neurological or psychiatric disorders. Preprocessing, described
in detail in Rauchbauer et al. (2019), followed standards
of SPM procedures (Friston, 2007) including slice timing,
unwarping for inhomogeneities of the MRI magnetic field,

realignment, coregistration with the anatomical image acquired
during the same scanning event, segmentation of the anatomical
image, coregistration of the segmented images for the 24
participants following DARTEL procedure (Ashburner, 2007),
and normalization of preprocessed functional time series as well
as anatomical images into MNI-space using tensors calculated
with the DARTEL procedure. Importantly, given that speaking
during fMRI acquisition was feared to induce brain movement,
a procedure to detect important head movements (ART for
Artifact Detection Tool, which measures the displacement
of the participants’ head in the magnet and reports images
exceeding a threshold) was used and confirmed that none
of the participants exceeded the usual threshold. Nuisance
regressors were calculated using the Translational Algorithms
for Psychiatry-Advancing Science (TAPAS, Frässle et al., 2021)
toolbox, which calculates variables able to explain variance
due to participants’ movements, recorded physiological data
(heartbeat and respiration, particularly important given the
correspondence between speech and these physiological changes)
and global fluctuations in the gray matter, white matter, and
cerebrospinal fluid.

At the single participant level, a general linear model (glm)
was estimated by the Statistical Parametric Mapping (SPM12-
toolbox; Friston, 2007) with three conditions of interest (image
presentation, HHI and HRI) and fifty-six nuisance regressors.
The beta maps estimated, in each participant and session, for
the two conditions of interest, HHI and HRI, were entered in
a second-level, random effect, whole brain glm analysis (SPM;
Friston, 2007). The conjunction of the main effect of HHI and
HRI is reported with a family-wise error correction of p < 0.05
at the voxel-level, while the two contrasts two reciprocal contrasts
betweenHHI andHRI are reported with the less stringent family-
wise error correction of p < 0.05 at the cluster-level.

3.3. ROIs Analysis
Regions of interest were selected on the basis of functional
landmarks, either from a global parcellation of the cortex
using anatomical and functional connectivity (Brainnetome, Fan
et al., 2016) or a parcellation based on large scale functionally
connected networks associated with specific functions identified
with independent component analysis and implemented in the
toolbox conn (Whitfield-Gabrieli and Nieto-Castanon, 2012)
(“Networks” parcellation). Beta estimates for the two conditions
of interest, HHI and HRI, were extracted using the SPM toolbox
MarsBar, and their effect was analyzed in R (R Core Team,
2020) using linear models implemented in the lme4 package,
using Subjects as a random variable package. Estimated marginal
means of these betas were calculated using package lsmeans
following the ANOVA calculated with the lmertest. It should
be noted that, because of the long duration of trials and in the
absence of precisely timed events, we use beta estimates instead of
percent signal change to analyze the contribution of experimental
conditions HHI and HRI to changes in the BOLD signal over
1-min trials.

Time series were extracted from conn toolbox processing
after importing SPM first-level analysis, benefiting from conn
optimized preprocessing of time series and the possibility of
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FIGURE 1 | Top: Single frames extracted from live video feed projected to scanned participants during HHI (left) and HRI (right). Bottom: Example of data acquired

for the first session (indexed by time) for every participant. The experimental conditions (Cond) consisted of 6 trials, each starting with the image presented (italic

number on gray background) followed by a 1-min discussion with either the human (HHI) or robot (HRI) interlocutor. Continuous acquisition of Blood Oxygen

Level-Dependant (BOLD) images (Scans) was subsequently transformed into time series (TS) by concatenating trials with the same interlocutor.

using any parcellation of the brain into ROIs. Eventually, several
approaches were used to define the different region ROIs based
on the hypothesis underlying its definition. We strongly relied
on the Brainnetome parcellation as it offers a fine-grained
parcellation in which the regions are defined by connectivity
homogeneity, both at the effective and functional levels, which
ensures that voxels included in the regions are involved in the
same process. In the absence of strong hypotheses about the exact
position of the ROIs, we designed larger areas by joining together
adjacent regions in the cortical areas considered. The final ROIs
can be seen in Figure 2).

We joined three adjacent areas covering the posterior part
of the temporal sulcus to form the STSROI. The FG was
designed by joining the anterior and posterior fusiform regions,
and the VMPFC by joining the two most ventral medial parts
of the prefrontal cortex, representing the VMPFC. Eventually,
the frontal region of interest used to investigate prefrontal
asymmetry of brain activity was the most difficult to define; both
on the basis of its anatomical location (Aranyi et al., 2016) and
functional involvement in attention oriented to external events,
the frontal region of the fronto-parietal attention network from
the Networks parcellation was chosen as DLPFC ROI instead of
one (or a specific junction of several) prefrontal area(s) from the
Brainnetome parcellation; DLPFC asymmetry was calculated by
subtracting the BOLD signal of the right DLPFC from the left.
Continuous time series covering each of the four sessions for the
24 participants were extracted for the two conditions of interest
(HHI and HRI).

4. CAUSAL ANALYSIS METHODOLOGY

We focus on differences in connectivity between pairs of
key regions involved in the framework of social cognitive
neuroscience, guided by previous research and findings on the
role of these regions, their dynamics, and previous connectivity
studies. We investigate the existence of a causal connection,
the magnitude and direction of causal propagation, and the
most appropriate time lags to determine causality. Our approach
can, thus, be seen as a compromise between research directly
comparing activation in specific regions (such as obviously the
FG), and research trying to uncover comparative connectivity
networks for the two communication conditions. We posit that
investigating connectivity between specific region pairs that may
form part of larger networks should still shed light on candidate
mechanisms. Not only this may constitute a preliminary step in
the future search for more integrated networks, but it is unclear
whether we could have started with sufficient hypotheses for
the validation of a full-fledged network, nor if data from our
experiments are sufficient, quantitatively and qualitatively, for
such an endeavor. Previous study on connectivity networks in
human vs. humanlike interaction has uncovered networks of
limited scale and in a slightly different context of decisionmaking
(Rosenthal-von der Pütten et al., 2019).

4.1. Analytical Approach
There is a wide range of tools to study the statistical dependencies
between two or more neural systems, where these dependencies
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FIGURE 2 | Top: On the left, results from the SPM second-level analysis, showing the conjunction between conversations with the two agents on a hot scale, and

results from the comparison of HHI vs. HRI in blue and HRI vs. HHI in green and on the right, the regions of interest (ROIs) used for the analysis (details in the main

text). Bottom: Results from generalized linear model analysis of beta estimates extracted from the ROIs. Significance of comparisons ***p < 0.001 and *p < 0.05 is

indicated above Human and Robot parameter estimates.
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can be undirected (e.g., correlation) or directed (e.g, Granger
Causality and Transfer Entropy; Granger, 1969; Schreiber,
2000). Granger Causality (GC) is a widely used framework for
functional connectivity analysis. It uses predictability to model
the coupling between time series variables. In its simplest form,
GC can be reduced to fitting a linear vector autoregressive (VAR)
model. The framework can easily be adjusted to accommodate
for other variations of GC such as partial and conditional GC.
Furthermore, the spectral decomposition of VAR models gives
rise to spectral measures of GC (e.g., Geweke-Granger-causality,
directed transfer function, and partial directed coherence;
Geweke, 1982; Kaminski and Blinowska, 1991; Baccalá and
Sameshima, 2001).

The framework provided by GC is a simple and practical
tool for identifying directed functional interactions from time
series data. However, GC is limited to cases where the
assumptions of VAR modeling are satisfied—weakly stationary
linear stochastic process. A fundamental property of linear
systems is separability—meaning that causal factors can be
removed from effects. Separability is a key requirement for GC;
when this requirement is not satisfied, it can lead to spurious
results.

In neuroscience, specifically in the context of fMRI time series,
the use of GC has been highly controversial as fMRI BOLD
responses are convolved with a hemodynamic response function
(HRF), thus making them a delayed and indirect measure of the
underlying neural processes. However, Seth et al. (2013) showed
that, as the HRF acts as a filter, GC is invariant to the HRF
convolution, but this invariance is constrained to a fast-sampling
rate and low measurement noise. The reader is referred to Cekic
et al. (2018) for a more detailed discussion on the topic.

Given the theoretical and practical limitations of GC in the
context of fMRI time series. We take a nonlinear data-driven
approach, to study pairwise “dynamic” connectivity between
ROIs. Our approach makes use of a recent method originally
developed to study complex ecological systems (Sugihara et al.,
2012) but has also been applied to the dynamics of neuroimaging
data (Tajima et al., 2015; Wismüller et al., 2015; Natsukawa
and Koyamada, 2017; DSouza et al., 2018; Schiecke et al., 2019;
Chowdhury et al., 2020) - CCM.

Convergent Cross Mapping is a novel approach to studying
the coupling between time series, it is a type of empirical dynamic
modeling (EDM). EDMs are non-parametric frameworks for
modeling nonlinear dynamic systems – it is based on the
mathematical theory of reconstructing attractor manifolds from
time series data (Takens, 1981). EDMs are an alternative and
highly flexible approach to using explicit equations since these
equations can be impractical when the exact mechanisms are
unknown or too complex to be characterized with existing
datasets. Motivation for this approach is exemplified by studies
that have shown that fMRI time series exhibits nonlinear
dynamic behavior (Gautama et al., 2003; Gultepe and He, 2013;
Lombardi et al., 2014; Minati et al., 2015).

In contrast to the Granger framework which is aimed at
purely stochastic systems that exhibits linear dynamics, CCM
addresses cases not covered by Granger which involves nonlinear
dynamic systems (Tsonis et al., 2018). Although GC can be used

for detecting interactions between strongly coupled variables
in nonlinear systems, as noted by Granger (1969), GC is not
suitable for dynamic systems with weak to moderate coupling.
In contrast, CCM also addresses non-separable systems, with
weak to moderate coupling, and is able to distinguish causal
interactions from the effects of shared driving variables (Sugihara
et al., 2012).

4.2. Implementation of the Analysis
4.2.1. Convergent Cross Mapping
In dynamical systems theory, time series variables are causally
linked if they originate from the same dynamic system—they
share a common attractor manifold. Furthermore, time series are
thought of as sequential projections of themotion on an attractor;
information about the behavior is encoded in the temporal
ordering of the time series. We can reconstruct a shadow version
of the original manifold M using lagged versions of a time
series x = x(t) = {xt; t = 1...L}. If sufficient lags are used,
the reconstructed ManifoldMx preserves essential mathematical
properties of the original system, whichmeans that reconstructed
states will map one-to-one onto actual system states, and nearby
points in the reconstruction will correspond to similar system
states. Multiple reconstructions of the manifold not only map
one-to-one onto the original system but also onto each other.
This suggests that we can test whether the two variables interact
in the same system (and are thus causally related), by testing for
mapping between their corresponding reconstructed states.

Convergent Cross Mapping uses this idea to test for causation
by measuring the extent to which the historical record of y values
can reliably estimate states of x. This is done by seeing whether
there is a correspondence between the libraries of nearby points
in the attractor manifold reconstructed from x (Mx) to that
reconstructed from y (My). Mx is defined as the set of vectors
X = X(t) =< x(t), x(t − τ ), x(t − 2τ ), ..., x(t − (E − 1)τ ) >

for t = 1 + (E − 1)τ to t = L. Where E corresponds to the
embedding dimension (the number of lags of x(t)) and τ is the
time lag between successive dimensions.

Furthermore, because the causal interaction between two
signals may not be instantaneous but delayed over a certain
time interval (l), our implementation of CCM explicitly
considers different lags for cross-mapping. This also helps
to distinguish between bidirectional causality and strong
unidirectional causality that leads to synchrony (Ye et al., 2015).

To obtain a cross-mapped estimate of y = y(t + l) = {yt+l},
denoted as ŷ(t + l)|Mx, we locate the contemporaneous lagged-
coordinate vector on Mx, and find its E + 1 nearest neighbors.
The time indices of the E + 1 nearest neighbors (t1, ..., tE+1 ;
from closest to farthest) of X are then used to identify nearest
neighbors of y(t + l) and obtain an estimate ŷ(t + l)|Mx from a
locally weighted mean of the E+ 1, y(ti + l) values.

ŷ(t + l)|Mx =

E+1∑

i=1

wiy(ti + l) (1)

wherewi is a weighting based on the distance betweenX(t) and its
ith nearest neighbor onMx and y(ti+ l) are the contemporaneous
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values of y(t + l). The weights are determined by a softmax
function such that the first nearest neighbor has the highest
weight.

wi =
exp (−|X(t)− X(ti)|2/|X(t)− X(t1)|2)∑E+1
j=1 exp (−|X(t)− X(tj)|2/|X(t)− X(t1)|2)

(2)

Additionally, l is the lag being considered. Negative values of
l < 0 correspond to estimating the past values of y using
the reconstructed states of x. This suggests that the dynamical
signal appears first in y and later in x and is consistent with y

causing x . If there is no causation in the reverse direction (i.e.,
x does not cause y), then the reconstructed states of y should
best predict future values of x and we would expect higher cross-
mapping skill in the opposite direction – i.e., l > 0. Thus,
this “asynchrony” reflecting the time lag in the response can be
used to (1) identify time delays in causation, and (2) distinguish
between bidirectional causality and generalized synchrony when
there is a detectable lag in the response time between causes
and effects.

Counter intuitively to Granger, if variable y is influencing x,
then causality is established if the historical record of the affected
variable x can reliably estimate states of the causal variable y. This
is quantified by calculating the correlation coefficient ρ between
the predicted ŷ(t + l)|Mx and observed y(t + l).

To distinguishes causation from simple correlation, CCM
relies on convergence1. That is, the correlation increases with
the length of the time series. The relative level to which the
correlation converges can be viewed as an estimator of the
strength of the causal link. With more data, the underlying
attractor manifold becomes denser, and nearest neighbors get
closer, resulting in declining estimation error.

4.2.2. Data Preparation
One of the common issues faced in statistical analyses is the
sample size. In state space reconstruction methods such as
CCM, that equates to attractor dimensionality, as the amount
of data required for reconstruction depends on the dimension
of the attractor. Though CCM does not concern itself with
the dimension of the attractor (d), it relates to the embedding
dimension of the reconstructed manifold (E) through the
Whitney embedding theorem (E ≤ 2d + 1). DSouza et al. (2018)
showed the deleterious effect that a high repetition time (TR) has
on attractor reconstruction. Following the example of McFarlin
et al. (2013) who reported improvements in connectivity analysis

1Convergence is a key property for inferring causality, it is limited by observational
error, process noise, and time series length. CCM is established by predictability
that increases with library size – i.e., the amount of data that is used for
the reconstruction of the shadow manifold. Failure to account for convergence
can lead to spurious results, as cross-mapping that is limited to the statistical
association between variables will generally not improve with an increase in library
size. Since convergence is a key determinant for CCM, there is no consensus in the
literature on values of ρ that are associated with causality. The reader is referred to
Sugihara et al. (2012), Ye et al. (2015), Nakayama et al. (2018), and Ye et al. (v075)
for similar levels of cross-mapping as reported in this article.

on up-sampled fMRI data and the nature of the experiment2, we
re-sampled our BOLD time series data from ≈ 0.8 Hz (50 time
points) to≈ 3.3Hz (200 time points) usingMATLAB’s uniformly
sampled signal resample function in signal processing toolbox
(MathWorks Team, 2021).

4.2.3. Pairwise CCM Analyses
Pairwise connectivity analysis was performed using CCM with
the re-sampled BOLD time series, as shown in Figure 3. The
analysis was performed for all pairs of ROI, for all trials (576
trials, 288 humans, and 288 robots). To find the optimal choice
of reconstruction parameters (namely the embedding dimension
E, τ was set to 1), we used (Sugihara and May, 1990) simplex
forecasting method to evaluate the prediction skill for various
choices of E (1...10), the lowest Ewith the highest forecasting skill
was chosen.

To evaluate the appropriateness of the use of CCM, we
investigated the nonlinear dynamics of the data using the
Sugihara (1994) s-map method. The parameters used for this
method (namely E), were defined as the optimal parameters
identified using the simplex method. The results of the analysis
showed that all ROI exhibited some nonlinear dynamics—
confirming that CCM can be used to study pairwise connectivity
between regions.

Convergent Cross Mapping analysis constituted of
performing CCM at every lag (−20...20, by 2) using the
largest library size (200; the whole time series) for every pair of
ROI. Similarly, to evaluate the significance of cross-mapping,
surrogate analysis3 was performed at every lag, and 95% quantile
was pulled out of a sample of 100 surrogate cross-mapping.

5. RESULTS

5.1. General Linear Model Analyses
Whole brain results from the contrasts HHI and HRI (at p < 0.05
FWE-corrected at the cluster level) indicate a shift from temporal
and ventral parietal regions for humans to dorsal frontal and
parietal regions for the robot contrast as in Rauchbauer et al.
(2019). Analyses detail how the experimental conditions impact
the response of regions later used in the CCM analysis. There was
a significant effect of the agent in the STS [Left: t(1,167) = 15.11,
p < 0.001; Right: t(1,167)) = 12.16, p < 0.001], TPJ [Left: t(1,167)
= –5.28, p < 0.001; Right: t(1,167) = –3.04, p = 0.003], but not
in the VMPFC (p = 0.018 and p = 0.531 in the left and right
hemispheres respectively). The asymmetry of DLPFC activity is

2Given the ecological nature of the conversation task, the pace of the experiment
was not as demanding as in most fMRI studies in which the objective is to
accumulate as many trials as possible in a given time. For this reason, the brain
responses are likely to be best modeled as a succession of steady-states rather than
rapid events, and the up-sampling of the time series yields benefits without the cost
of losing sharp transitions between events.
3The surrogate analysis is implemented as follows: for the effect of y on x, we
cross map from x to y, therefore, to understand whether the recovered dynamics
of y (ŷ(t + l)|Mx) are unique to the data rather than statistical properties of x,
we generate surrogates of x—surrogates are generated by resampling x without
replacement. We then compute the cross mapping from the surrogates of x to y,
and in turn compute a 95% quantile from the null distribution of the multiple
surrogates.
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FIGURE 3 | The plots show the mean and standard error cross-mapping skill (ρ) (of the largest library size used for cross-mapping; 200) as a function of

cross-mapping lag, across all humans (top) and robot (bottom) trials (288 each) for the left and right hemispheres. The shaded regions show the mean and standard

error cross-mapping skill for the null distribution across all humans/robot trials. The largest CCM skill is depicted by a solid circle marker. The arrows from one region

to another represent the direction of causation. The width of the directional arrow is proportional to the distance between the observed (ρ) and the null distribution

(ρ)—signifying the strength of causation. The color of the directional arrow represents the delay in causation; the black arrows show an immediate effect from one

region onto another (0 lag), while the purple arrows show a delayed effect from one region onto another (–2 lag).

used in the CCM analysis, so that, in contrast to other regions,
the difference of activity between the hemispheres is a relevant
factor. Thus, the effect of laterality (left vs right hemisphere) was
computed together with the effect of the Agent in the case of the
DLPFC region. In this analysis, the hemisphere of the DLPFC
ROI (right vs. left) significantly modifies the activity [t(1,357) = –
5.801, p< 0.001] with increased estimates for the left hemisphere,
but the effect of the agent [t(1,357) = 1.296, p= 0.20] and the

interaction between hemisphere and agent [t(1,357) = 0.297, p =

0.767] are not significant.

5.2. CCM Results: Post Central Sulcus
Hypothesis
Figure 3 shows the results of CCM cross-mapping as a function
of lag for all pairwise analyses. Starting with the left hemisphere,
we see that there is unidirectional causation from the TPJ to the
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STS in both human (mean ρ = 0.1825, lag = −2 ≈ 602.5 ms)
and robot (mean ρ = 0.1693, lag = 0) cases, the −2 lag in the
human case, is suggestive that the TPJ is acting on the STS with
a slight delay compared to the instantaneous effect it has in the
robot case. Effects from STS to TPJ are not above the significance
threshold set by the null distribution (α = 0.05). In the case of
STS and FG, the results show a bidirectional causal relationship
between the regions, with FG affecting the STS with a slight lag in
both human (mean ρ = 0.2153, lag= −2 ≈ 602.5 ms) and robot
(mean ρ = 0.2125, lag= −2 ≈ 602.5ms) cases.Whereas the STS
appears to have a more instantaneous effect on FG in the human
(mean ρ = 0.1920, lag= 0) than in the robot (mean ρ = 0.1935,
lag= −2 ≈ 602.5 ms) case.

For the right hemisphere, we have a slight change in dynamics
compared to the left for the TPJ and STS. Here, the results show a
significant cross-mapping in both directions in the human case
but the direction in the robot case remains unchanged (mean
ρ = 0.1726, lag = 0). For the human case, we have the results
being suggestive of a slight delay from the TPJ to the STS (mean
ρ = 0.2007, lag = −2 ≈ 602.5 ms) but an immediate effect of
the STS on the TPJ (mean ρ = 0.1722, lag = 0). In the right
hemisphere, we also have a significant causation from the FG
to the TPJ in both human (mean ρ = 0.1707, lag = 0) and
robot (mean ρ = 0.1738, lag = 0) cases. For the FG and STS,
we have a bidirectional causal relationship, with both FG (mean
ρ = 0.2148, lag= 0) and STS (mean ρ = 0.1744, lag= 0) having
an instantaneous effect on each other. Whereas, in the robot case,
we only have a unidirectional causal relationship from the FG to
the STS (mean ρ = 0.1981, lag= 0).

5.3. CCM Results: Post to Precentral
Sulcus Hypothesis
From Figure 3, in the right hemisphere, we have a bidirectional
causal relationship between the DLPFC asymmetry and the TPJ,
with the TPJ having a slight lag in causation in the human case
(mean ρ = 0.1793, lag = −2 ≈ 602.5 ms), compared to the
robot case (mean ρ = 0.1984, lag = 0), while it acts with the
same lag on the TPJ in both the human (mean ρ = 0.1893, lag
= 0) and robot (mean ρ = 0.2049, lag= 0) cases.

In the left hemisphere, we see no dynamic causal relationship
between the DLPFC asymmetry and the FG, nor between the
DLPFC asymmetry and the TPJ in either the human nor the
robot case. The only significant causation is from the DLPFC
asymmetry to the STS (mean ρ = 0.1765, lag = −2 ≈ 602.5
ms) in the human case. The absence of causation between the
DLPFC asymmetry and the FG (and STS), indicates that the
effects are lateralized.

6. DISCUSSION

6.1. Localized Brain Activity
Concerning auditive and visual association areas, both whole-
brain and region-of-interest analyses converge; there is an
absence of FG contribution in both conditions, with no changes
between them, while the STS is strongly involved in both
conditions—more so in the HHI than in HRI. In the TPJ there
are effects in both the agents, with increased response for the

human reflected in the blue clusters, visible in the whole brain
analysis, with stronger responses in the left hemisphere. Finally,
increased response in HRI compared to HHI in the ROI analysis
corroborates the bilateral green clusters found in the DLPFC in
the whole brain analysis, as well as an asymmetry with increased
response in the left compared to the right hemisphere not clearly
visible on the renderings of the whole brain analysis.

The absence of an overall response or effect of conditions in
the VMPFC is found in both analyses. This region was neither
associated with any significant effect, nor any causal analysis
(CCM) interpreted in the next section. It is possible that this area
is related to decision making in situations that are investigated
in decision making experiments, e.g., those inspired by game
theory. This is very remote from the current situation, in which
the decision relates to how to interact with a human or artificial
agent, and events are very long (1-min trials). It is, therefore,
possible that brain states are relatively long, while changes
implying the VMPFC are related to faster decision making.

Altogether, the analysis using ROIs based on our hypotheses
reproduce roughly observations made at the cortical level in
the whole brain analysis and already reported in Rauchbauer
et al. (2019), yet few conclusions can be drawn concerning the
causal relationships between the experimental conditions and
these results. Indeed, differences in participants’ behaviors, as
they were unconstrained, can explain differences in local brain
activity without requiring reference to the nature of the agent.
One simple example is the STS region: while both conditions
involved processing produced and perceived speech, it is possible
that the increase of speech processed, and not the nature of the
agent, explains the increased response of the STS region for the
human compared to the robot conversations. However, the CCM
analysis used here is immune to this criticism as it takes into
account causal relationships through time, irrespective of the
underlying behaviors. This increases its ability to improve the
understanding of causal relationships between pairs of regions
in the two aspects of our hypotheses, namely, how speech and
visual sensory information are integrated within a social process
depending on the artificial or human nature of the interlocutor,
and which of these pieces of information influences prefrontal
processes involved in the social competence of the interaction
encoded in the prefrontal cortex.

6.2. Interpretation of the CCM Results
First generic comment is that all the significant effects (largest
(ρ)’s deviation from surrogate) we found are equal or close to
a lag of 0 (0 or –2, approximately 600 ms). As stated earlier,
both the length of the processes under investigation (1 min) and
the unconstrained nature of the task do not allow us to look
at frequent reproducible events but at continuous processes for
specific timing, so that there are no time relationships between
single trials. The most important finding is the implication of the
right TPJ in both the posterior sensory and posterior-to-anterior
sensory to social cognitive processes. While we were primarily
concerned with the comparison of cross-mapping between STS
and TPJ, the difference between results in the left and right
hemispheres is more striking. As shown in Figure 3, only the
FG-STS relationships are significant for both hemispheres and
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both agents, not reaching significance only from STS to FG
in the right hemisphere for the robot. Results also show a
unidirectional influence of the TPJ on the STS, with a lag of –
2 for the human, absent for the robot. Altogether, these results
tend to confirm an important role of the STS in the integration
of sensory information pertaining to social cognition, while this
role was hypothesized for the TPJ region instead. In particular,
the direct influence of the DLPFC asymmetry on the left STS
activity in humans was not anticipated and further confirms the
role of the left STS for integrating multiple sources of social
information, from sensory (i.e., FG) but also contextual (i.e.,
DLPFC asymmetry) information in the current setting, that could
be explained by the dominance of left hemisphere involvement
in the verbal interactions used for the interaction. In the CCM
between post and precentral regions, the two reciprocal CCM
between the right TPJ and DLPFC asymmetry were significant
for both agents, while most of the CCM between STS and DLPFC
asymmetry as well as between the MOFC and all postcentral
regions were below surrogate. When users interact with the robot
face, we observe a strong, bidirectional, and almost immediate
(i.e., zero lag) connectivity between DLPFC asymmetry and TPJ.
Such a finding is challenging to interpret in terms of cognitive
mechanisms should we follow our initial intuition of using
DLPFC asymmetry as a proxy for engagement (via the approach
dimension), in particular, comparing it to the connectivity
between the same regions during interaction with a human
face. However, DLPFC asymmetry has also been associated with
various situations involving stress (Parent et al., 2020), cognitive
workload, and even communication apprehension (Beatty et al.,
2011). We would, thus, tend to favor, albeit cautiously, the
latter explanation and consider that the observed phenomena
correspond to the difficulty for users to integrate social signals
in the TPJ for the robot case. Altogether, this supports a central
role for the right TPJ to both integrate sensory signals from
face and voice processing during a natural linguistic interaction
(Campanella and Belin, 2007).

6.3. Relations to Previous Study and
Findings
Our CCM analysis of functional connectivity between selected
ROIs was grounded on the hypothesis of a network involving
STS, FG, and TPJ in the integration of sensory signals during
natural conversations. Previous study (Rosenthal-von der Pütten
et al., 2019) on user preferences depending on agent human-
likeness had identified a network involving FG, TPJ, DMPFC,
and VMPFC during choice tasks; and FG, TPJ, and DMPFC
during agents’ ratings. They concluded that areas implicated in
valuations of human-likeness, likability, and subjects’ decisions
interacted functionally during decision making. As discussed
in the previous section, the involvement of VMPFC might be
precisely explained by the decision making component, while
our experiments are essentially task free. On the other hand, the
greater role of STS can be explained by the truly interactive nature
of the experimental procedure, as opposed to, e.g., judgment tasks
involving static pictures.

The stronger connection we observed in the right hemisphere
between FG and TPJ appears consistent with previous findings
on the role of right TPJ in the evaluation of human-likeness
(Jack et al., 2013). However, the limited difference in connectivity
between the human and robot case is a reminder of the similar
activation of the FG in both contexts; although this finding
is counter-intuitive, it could find its explanation in the use of
mapped video on the robot’s face, if one subscribed to the
hypothesis that texture plays a determinant role in face analysis
(Seyama and Nagayama, 2009; Cheetham et al., 2011).

The most significant differences in connectivity between the
human and the robot case are observed for the link between
STS and TPJ: one possible interpretation in this context is that
perspective taking (TPJ) is dependent on the social perception
but more challenging in the robot case. Altogether, the right TPJ
appears to be one of the most reliable areas to assess processes
happening during human-AA interactions, not only from static
but also from a dynamic point of view.

7. CONCLUSION

We investigated how relations between brain regions
hypothesized to be involved in social interactions are modulated
by the nature, real or artificial, of an interacting agent during
a natural conversation. We used a causal approach based on
CCM in an attempt to uncover potential differences not just in
regions’ activation, but in candidate integration mechanisms.
The approach allowed the identification of processes that are
common to the two conditions, in particular, the influence of
the FG on the STS region bilaterally, as well as on the right TPJ.
Other results differed depending on the nature of the agent, such
as the convergence of influences from the prefrontal asymmetry
and left TPJ and FG on the left STS region that were all significant
only for the human partner. A stronger reciprocal influence
between the right TPJ and dorsolateral asymmetry for the robot
than for the human agent was attributed, not to the approach
dimension within a complete communication loop, but other
activation mechanisms of the DLPFC, reflecting difficulties with
processing the robotic agent’s information. Overall, our results
confirm the role of the left STS in combining different sources
of information related to conversational exchanges during
unconstrained, ecological interaction,while the asymmetry in
prefrontal activity, that did not differ between the two agents
despite our hypotheses, was strongly influenced by an area
involved in attribution of mental states. Though further study,
involving the finer definition of ROIs including some that were
not considered here, such as the DMPFC, is required to better
describe the dynamics of information processing in HHI and
HRI, the present results are consistent with findings in previous
literature, and also comfort the use of CCM to investigate
complex inter-area interactions.
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