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Distracted driving is one of the main causes of traffic accidents. By predicting the

attentional state of drivers, it is possible to prevent distractions and promote safe driving.

In this study, we developed a model that could predict the degree of distracted driving

based on brain activity. Changes in oxyhemoglobin concentrations were measured in

drivers while driving a real car using functional near-infrared spectroscopy (fNIRS). A

regression model was constructed for each participant using functional connectivity as

an explanatory variable and brake reaction time to random beeps while driving as an

objective variable. As a result, we were able to construct a prediction model with the

mean absolute error of 5.58× 102 ms for the BRT of the 12 participants. Furthermore, the

regression model with the highest prediction accuracy for each participant was analyzed

to gain a better understanding of the neural basis of distracted driving. The 11 of 12

models that showed significant accuracy were classified into five clusters by hierarchical

clustering based on their functional connectivity edges used in each cluster. The results

showed that the combinations of the dorsal attention network (DAN)-sensory-motor

network (SMN) and DAN-ventral attention network (VAN) connections were common in

all clusters and that these networks were essential to predict the degree of distraction

in complex multitask driving. They also confirmed the existence of multiple types of

prediction models with different within- and between-network connectivity patterns.

These results indicate that it is possible to predict the degree of distracted driving

based on the driver’s brain activity during actual driving. These results are expected to

contribute to the development of safe driving systems and elucidate the neural basis of

distracted driving.

Keywords: distracted driving, functional connectivity, functional near-infrared spectroscopy, functional brain

imaging, mind wandering

INTRODUCTION

Distracted driving is a major cause of traffic accidents (Yanko and Spalek, 2013; Highway Traffic
Safety Administration Department of Transportation, 2020); therefore, advanced driving assistance
systems and autonomous driving technologies are rapidly being developed. One of the best
approaches to preventing drivers from being distracted is to monitor the driver’s attentional state
and predict the distraction before it occurs. Some studies have shown that distracted driving is
caused by mind wandering during car driving (He et al., 2011; Lohani et al., 2019). The relationship
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between mental workload, cognitive demands, and the frequency
of mind-wandering has also been investigated. Mind wandering
is a state in which we unconsciously fall into; it is difficult
to control and is known to reduce attention and cognitive
function. Mind wandering has been studied from a cognitive
neuroscience perspective owing to its strong association with
cognitive function. Notably, it has also been revealed that
decreased attention and cognitive function during driving are
reflected in brain activity (Lin et al., 2016; Baldwin et al., 2017;
Liu et al., 2017; Xu G. et al., 2017; Xu L. et al., 2017; Bruno et al.,
2018).

Here, we aim to predict driver distraction using preceding
brain activity in actual car-driving situations. Few studies have
measured brain activity during actual vehicle driving despite
the large differences in drivers’ attention and cognitive demands
between actual car driving and laboratory experiments using
a driving simulator (Jeong et al., 2006; Oka et al., 2015).
Yoshino et al. (2013) investigated the relationship between
prefrontal cortex activation and actual driving operations on
expressways using functional near-infrared spectroscopy (fNIRS)
measurements. Their study proved that fNIRS is a powerful
technique for robustly measuring brain activity during actual car
driving. It remains to be clarified whether it is possible to estimate
the degree of distracted driving from the brain activity during
actual car driving.

We developed a predictive model of distracted driving based
on brain activity measured by fNIRS. The fNIRS measures
brain activity using the near-infrared absorption properties of
hemoglobin (Hb). This allows indirect measurement of neuronal
activity in the measured regions of the brain (Kumar et al.,
2017). A car driving experiment was performed that induced
driver distraction and measured brain activity and driving
operations, such as engaging the brake/accelerator pedal. Using
these measurements, we constructed a regression model using
brain activity patterns as the explanatory variable and the driver’s
behavioral measure calculated from the driving operations as
the objective variable. To characterize brain activity patterns,
we used functional connectivity, which is a temporal correlation
of brain activity between different measurement locations, as a
feature vector. There are several advantages of using functional
connectivity, including the following: (1) it can successfully
predict individual attentional and psychological states (Shen
et al., 2017; Yoo et al., 2018; Cai et al., 2020), and (2) the
results of many existing studies in the cognitive neuroscience
field can be used to interpret the results of the present study. We
investigated the usefulness of using brain activity to estimate the
degree of distracted driving. Furthermore, the interpretation of

Abbreviations: AAL, Automated anatomical labeling; BP, Bootstrap percentage;

BRT, Brake reaction times; CAN, Controller area network; DAN, Dorsal attention

network; FC, Functional connectivity; FP, Frequency percentage; LSL, Lab-

streaming layer; MFG, Middle frontal gyrus; MNI, Montreal Neurological

Institute; NB, Number of bootstrapping; OLS, Ordinary least squares; SDD, Short-

distance detector; SMN, Sensory-motor network; SN, Salience network; SSR, Short

separation regression; UPGMA, Unweighted pair group method with arithmetic;

VAN, Ventral attention network; DLPFC, Dorsolateral prefrontal cortex; DMN,

Default mode network; ECG, Electrocardiography; FPN, frontoparietal network;

NIRS, Near-infrared spectroscopy.

the regressionmodel from the cognitive neuroscience perspective
is expected to enrich our understanding of the neural basis of
distracted driving. These findings contribute significantly to the
development of safe driving systems.

MATERIALS AND METHODS

Participants
Twelve young healthy males (aged 23.4 ± 1.3 years, with
driver licenses, and one left-handed individual) participated
in this experiment. All participants were informed about the
experimental method as well as the risks and signed written
informed consent forms. Subsequently, they were required
to drive the experimental car along the prescribed course
counterclockwise for 10 laps before the experiment. This study
was conducted in accordance with the research ethics committee
of the Doshisha University, Kyoto, Japan (approval code: 19018).
This work was supported by MIC/SCOPE #192297002 and JSPS
KAKENHI, Grant Number JP19K12145.

Experimental Design
Car driving is a complex cognitive task that requires attention
to many incoming objects while operating multiple components
of the driving system such as the steering wheel and pedals.
Mind-wandering during driving has been confirmed to influence
impaired reaction time to emergencies (Yanko and Spalek, 2013).
In conventional studies, the driver’s reaction time to randomly
occurring events has been used as an attentional index during
driving (Yanko and Spalek, 2013; Lin et al., 2016). In this study,
distracted driving was induced by forcing drivers to drive on a
predetermined simple course for a certain period. In addition,
beep tones were presented at random intervals while driving,
and the driver was asked to brake in response to each of them.
The reaction time to beep tones was measured and used as a
behavioral index of distracted driving. Here, we assumed that a
shorter reaction time, indicated a more focused driver, while a
slower reaction time, indicated a more distracted driver. Brain
activity was measured throughout the experiment and was used
to predict reaction time.

The experimental driving course was oval-shaped, 40m long,
and flat. In the experiment, the participants were instructed to
drive around the course for 15min while maintaining a vehicle
speed of 20 km/h. The beep tones were presented at random
intervals within 20–40 s from an audio speaker installed behind
the driver’s seat, and participants were instructed to brake as soon
as possible after recognizing the beeps and to slow down until
the vehicle speed reached 10 km/h. The experimental design is
illustrated in Figure 1.

Data Acquisition
During the experiment, changes in the oxy-Hb and deoxy-Hb
concentrations, electrocardiogram, and eye gaze were measured
as biometric information, and the brake and accelerator pedal
depression and steering angle were measured as indicators of
driving operation and the driver’s state. In this study, a prediction
model for distracted driving was developed using changes in oxy-
Hb and deoxy-Hb concentrations and brake pedal depression.
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FIGURE 1 | Experimental driving course and design. (A) The experimental course was oval, flat and 40m long. The red triangles in the figure indicate the safety cones

placed along the course. (B) Beeping sounds were generated at random intervals during the 15-min experiment (inter-stimulus interval: 20–40 s). Participants were

required to quickly brake and decelerate to 10 km/h speed if they recognized the beeping sound while traveling at 20 km/h. After decelerating, they accelerated again

and were allowed to continue driving while maintaining a speed of 20 km/h.

FIGURE 2 | Monte-Carlo simulation results over frontal cortex (A), temporal cortex (B), and parietal cortex (C). Red dots represent emitters, blue dots represent

detectors, and yellow lines represent measurement channels, respectively (created using Homer 2 AtlasViewer; v2.8, p2.1: https://www.nitrc.org/frs/shownotes.php?

release_id=3956). The color bar represents the spatial sensitivity of fNIRS measurements. The two-dimensional fNIRS montage using the International 10–20

measurement system as reference is presented in (D). Blue circles represent the short-range photosensitive area. The sensitivity value has mm−1 units and is

displayed in log10 units. It yields the estimated value of optical density change by multiplying the sensitivity value by the absorption change in the measurement

channel (in mm−1 ) and the area where the change occurred (in mm2 ).

The current study focused onwhether the braking response could
be predicted by brain activity. Electrocardiogram and eye gaze
data were collected for future studies to analyze the relationship

between multimodal biological information and behavioral data
and were excluded from the current study. Changes in the oxy-
Hb and deoxy-Hb concentrations were measured using fNIRS
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(NIRSport2; NIRx Medical Technologies, Minnesota, USA). The
fNIRS is useful for assessing driver performance (Lohani et al.,
2019). In this study, the sampling rate was 4.36Hz, and the near-
infrared light wavelengths were 760 nm and 850 nm. We used
short-distance detector (SDD) probes in addition to conventional
source/detector probes to measure and remove physiological
noise unrelated to brain activity, such as skin blood flow.
Sixteen source probes, 14 detector probes, and 16 SDD probes
were arranged as shown in Figure 2. The distances between
the source and detector and between the source and the SDD
were set to 30 and 8mm, respectively. The probe configuration
was designed to cover as many brain regions as possible,
including the regions involved in attention and motor control
associated with driving. A three-dimensional magnetic space
digitizer (FASTRAK; Polhemus, Colchester, VT, USA) was used
to obtain the coordinates of all probe positions and anatomical
landmark positions (Cz, Nz, Iz, and right and left pre-auricular
points) for each participant after the driving experiment. The
register2polhemus function of the NIRS Toolbox (https://github.
com/huppertt/nirs-toolbox) was used to determine the Montreal
Neurological Institute (MNI) coordinates of the probe positions
and estimate those of the measured positions. Moreover, the
depthmap function of the NIRS Toolbox was used to estimate
the brain region corresponding to each measuring channel. Brain
regions were determined based on the automated anatomical
labeling (AAL) atlas (summarized in Supplementary Table 1).

The pupil diameter and eye center coordinates were measured
using an ophthalmic eye tracker (Pupil Core monocular, Pupil
Labs, Germany), and the ECG was measured using a biological
signal amplifier (g.USBamp, g.tec medical engineering GmbH,
Austria). A small single-seater electric vehicle (COMS; Toyota
Auto Body Co., Ltd.) was used as the experimental vehicle. The
vehicle measurement system developed by ITS21 KIKAKU Co.,
Ltd. (Kanagawa, Japan) was used to record vehicle information,
such as brake and accelerator pedal positions, while the steering
angle was recorded and shared across multiple computers
via a controller area network (CAN). Additionally, a lab-
streaming layer (LSL) (https://labstreaminglayer.readthedocs.io/)
was used for the unified collection of the multiple measurement
time series.

Data Analysis
Behavioral Data Analyses
To assess the degree of distracted driving behavior, we
defined the brake reaction times (BRT) from the beep tone
to the time when the participant stepped on the brake.
To eliminate braking unrelated to the reaction to the beep
tones, those that elapsed more than 3 s from the beep
tones were ignored. Outlier detection was performed on the
calculated BRTs for each participant using the standard deviation
method (Ahn et al., 2016). The threshold was set at 3
standard deviations.

FIGURE 3 | The overview of our proposed method to build a predictive model of distracted driving. Cross-validation and feature selection were incorporated into the

model-building process. The model was constructed for each participant using the dataset from multiple car braking trials. NB, number of resampling; BP, proportion

of sampling; FP, stability of the features.
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fNIRS Data Analysis: Pre-processing
The fNIRS data were preprocessed using the NIRS Toolbox in
MATLABR2020a (MathWorks Inc., Natick, USA). The following
steps were performed to remove physiological noise, such as skin
blood flow, heart rate, and pulse, and to convert the measured
data into changes in hemoglobin concentration. After converting
the raw intensity signals to changes in optical density, the
optical density values were converted into oxy- and deoxygenated
hemoglobin concentration changes using the modified Beer-
Lambert law. To remove physiological noise in the whole body,
bandpass filtering was performed with a passband of 0.01 and
0.1Hz (Yoshino et al., 2013; Ahn et al., 2016). Finally, short
separation regression (SSR) was applied to suppress the effects of
skin blood flow (Yücel et al., 2015; Tachtsidis and Scholkmann,
2016).

fNIRS Data Analysis: Functional Connectivity
Functional connectivity (FC) is a measure of the temporal
synchronization between two brain activities. Pearson’s
correlation coefficient was used to calculate the FC. The FC
was calculated for the oxy-Hb time series before the beep-tone
presentation. Here we used only the oxy-Hb concentration
changes because it was reported to be the most robust indicator
of the brain activation and to have the highest signal-to-noise
ratio for functional connectivity analysis using fNIRS data
(Hoshi, 2007; Fishburn et al., 2014). The oxy-Hb data were
extracted using different window sizes of 10, 15, and 20 s. We
chose 10 s because the lower cutoff frequency of the bandpass
filtering was 0.01Hz and 20 s, as the maximum inter-stimulus
interval was set to 20 s. Because our fNIRS measurement was
performed on 44 channels, a 44 × 44 FC matrix was computed
for each beep-tone presentation. The calculated FC matrix was
then Fisher Z-transformed (Douw et al., 2016) to improve the
normality of the correlation coefficients (Lu et al., 2019). Because
the FC matrix was symmetric, 964-dimensional FC elements
(triangular parts of the FC matrix) were vectorized and used as
explanatory variables for the regression.

Proposed Methods
An overview of our proposed method for building a prediction
model for distracted driving is shown in Figure 3. We
constructed a regression model using the functional connectivity
(946-dimensional vector) of the preceding brain activity before
the beep tone was presented as the explanatory variable and
the corresponding BRT as the objective variable. The model
was constructed for each participant using a dataset of multiple
trials (braking reaction). The detailed process of each step is
described below.

Feature Selection: Resampling and
Correlation Analysis
Feature selection was performed to reduce the dimensionality
of FC data. This study used a bootstrap-based feature selection
method (Wei et al., 2020). This method aims to identify stable
features that can be consistently identified among resampled
subsets. We defined the hyperparameters of the method:
number of bootstrapping (NB) as the sampling times, bootstrap

percentage (BP) as the proportion of sampling, and frequency
percentage (FP) as the stability of the features used to determine
the final feature sets in the NB subsets. For example, BP = 50%
indicated that half of all trials (braking operations) were chosen
from the original dataset to form a subset. In addition, FP= 50%
indicated that the corresponding feature was selected for 50% of
the NB subsets.

We sampled the training data for NB times without
replacement for the number of samples multiplied by BP,
as shown in Figure 3. Spearman’s correlation coefficients
comparing each feature (FC element) and the behavioral data
(BRT) in the sampled subset were calculated. Significant features
having p-values lower than 0.05 were chosen as the promising
features. After completing the correlation analysis for all subsets,
the features where the FP was higher than the threshold among
the NB subsets were chosen as the final features and used for
model construction.

Model Training and Evaluation
A linear regression model was constructed to link brain activity
to the degree of distracted driving with FC as the explanatory
variable and BRT as the objective variable. The advantages
of using a linear model are its stability and interpretability.
Especially in the small sample case, a simpler model can
outperform a complex model because it often suffers from
overfitting (Kriegeskorte, 2011). Ordinary least squares (OLS)
regression was used to estimate the coefficients of the linear
regression model; the OLS algorithm minimized the squared
sum of the residuals. Here, we used the fitrlinear function
implemented in MATLAB 2020a. In the regression model, the
lower triangular part of each FC matrix was vectorized and the
corresponding BRT was used as the objective variable. The data
matrices for the explanatory and objective variables consisted of
N × 964 and N × 1, respectively, where N was the number of
braking responses for each participant.

The model training process included leave-one-out cross-
validation and feature selection, as shown in Figure 3. Feature
selection and model construction were repeatedly performed
using N-1 samples and the built model was validated using
each excluded sample. Finally, the N pairs of the predicted
and measured BRT data were obtained and used to calculate
Spearman’s rank correlation as a measure of the overall
prediction performance (test of no correlation; p < 0.05).
The aforementioned model training and evaluation were
performed for each participant. Furthermore, we used different
hyperparameter settings for bootstrapping (NB = 10, 20, 50,
100, and 300; BP = 60 and 80%; FP = 50, 60, 70, 80, 90, and
100%) and window sizes (10, 15, and 20 s), and determined
the optimal setting that maximized the prediction accuracy for
each participant. We did not incorporate the hyperparameter
tuning process into the cross-validation (CV) loop because
the nested CV requires a larger sample size than the current
study. The model training and evaluation process was repeated
for all the 180 parameter combinations in the three bootstrap
parameters and the window size. Finally, we chose one parameter
setting for each participant based on the correlation between
measured and predicted BRTs averaged over N training folds.
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Then, the generalization performance of the regression model
was evaluated by the correlation on the held-out test set.

Interpreting the Individual Regression
Model
To gain a better understanding of the neural basis of distracted
driving, we analyzed a regression model that determined the
best prediction accuracy for each participant. For the model
selection, we chose one parameter setting of NB, BP, FP, and
the window size within all the 180 parameter combinations for
each participant based on the correlation between measured and
predicted BRTs on N held-out test sample following collection
across the CV folds. This ensured the sufficient accuracy of the
model to be analyzed. Previous studies have shown that it is
essential to consider individual differences when predicting mind
wandering while driving (Zhang and Kumada, 2018). To capture
features unique to each participant and those that were similar
across individuals, we performed data clustering to classify the
patterns of FC edges selected by feature selection in the model
construction of the individual models.

In the clustering analysis, the selected patterns of FC edges
were represented by a matrix showing the connectivity between
116 regions defined by the AAL atlas, where the elements of the
matrix indicated whether the connectivity between two regions
was selected by a feature selection, with a value of 1 or 0. The
Jaccard distance was used as the distance measure between the
two samples, and the patterns of FC edges used in the individual
regression models were classified by agglomerative hierarchical
clustering using the linkage function implemented in MATLAB
R2020a. Here, the unweighted pair groupmethodwith arithmetic
mean (UPGMA) was chosen for distance calculation. Finally, the
similarity of the model features for each individual was visualized
in a phylogenetic tree by applying the dendrogram function in
MATLAB R2020a. The common features within each cluster
were interpreted in terms of the well-known functional network
to which they belonged and how they differed between clusters.

RESULT

Regression Model for Each Individual
The distribution of the measured BRT for each participant is
summarized in Figure 4, which indicated that the distribution
of the BRT differed among the participants. Outliers in
the BRT were identified in participants 4, 5, 8, 9, and
12, which are indicated by red dots in Figure 4. Only
one sample was detected as an outlier for each of these
participants. They were removed for the regression analysis for
each participant.

Accuracy and the optimized hyperparameters are summarized
in Table 1, which also summarizes the number of samples
(i.e., the number of braking reactions, N) for each participant
and the number of FC edges selected in feature selection
averaged over the cross-validation folds. The results showed
that the feature selection successfully reduced the dimension
of the explanatory variables from 946 to a number below
that of the sample size. Although the models were trained
with sufficient accuracy on the training set, there was

FIGURE 4 | The distribution of BRT measured for each participant. The red

dots indicate the outliers excluded from the regression modeling. The mean (µ)

and standard deviation (σ ) are also indicated for each participant.

only one participant who showed a significant correlation
between measured and predicted BRTs on the held-out
test samples.

Interpreting Individual Regression Models
The accuracy of each of the 12 individual regression models
where the hyperparameters, NB, FP, BP, and window size
were chosen based on the held-out test samples accuracy
across the CV folds is summarized in Figure 5, together with
the connectome plots consisting of the FC edges chosen via
feature selection (drawn using BrainNet Viewer: https://www.
nitrc.org/projects/bnv/). Accuracy and the hyperparameters were
summarized in Table 2. We successfully identified a model with
sufficient prediction accuracy (correlation between measured
and predicted BRTs, p < 0.05) for 11 of 12 participants. The
figure includes a bar chart indicating the correlation between
the measured and predicted BRTs for each model. The results
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TABLE 1 | The performance and the optimized hyperparameters for the individual regression models (*p < 0.05 on the test set).

Participant Average

correlation

coefficient

(Training set)

Correlation

coefficient

(Held-out

test set)

P-value

(Held-out

test set)

Window

size

NB FP BP No. of

samples

Average No.

of features

MAE of BRT (Standard

deviation) [ms]

1 0.881 0.0498 7.97× 10−1 15 50 0.5 0.8 29 14.0 1.28× 102 (1.05× 102)

2 0.965 0.0448 8.17× 10−1 15 20 0.5 0.8 29 21.4 8.96× 102 (1.28× 103)

3 0.949 0.235 2.18× 10−1 15 50 0.5 0.8 29 22.8 7.83× 102 (1.03× 103)

4 1.00 −0.231 2.09× 10−1 10 50 0.5 0.8 31 29.0 1.18× 103 (8.68× 102)

5 0.915 0.331 8.56× 10−2 10 50 0.5 0.8 28 16.4 1.19× 102 (7.82× 101)

6 0.991 −0.126 5.13× 10−1 10 50 0.5 0.8 29 26.1 1.12× 103 (1.21× 103)

7 1.00 −0.368 4.23× 10−2 15 10 0.6 0.8 31 29.0 7.01× 102 (5.88× 102)

8 1.00 0.0195 9.24× 10−1 15 100 0.5 0.8 27 25.0 3.64× 102 (3.52× 102)

9 0.812 0.115 5.52× 10−1 20 20 0.5 0.8 29 10.8 1.03× 102 (7.57× 101)

10 0.993 0.0813 6.74× 10−1 15 300 0.5 0.8 29 26.6 7.55× 102 (9.42× 102)

11* 0.931 0.413 2.18× 10−2 20 300 0.5 0.8 31 19.9 2.13× 102 (1.71× 102)

12 0.997 0.0181 9.28× 10−1 20 100 0.5 0.8 28 25.5 3.37× 102 (2.87× 102)

Average 5.58× 102 (3.78× 102)

NB, number of resampling; BP, proportion of sampling; FP, stability of the features. Average No. of features indicates the number of functional connectivity edges selected in feature

selection averaged over the cross-validation folds. MAE, Mean absolute error.

FIGURE 5 | Correlation between the predicted and measured BRTs for each participant. Note that the hyperparameters of these models were chosen based on the

held-out test samples accuracy. Each connectome plot indicates the functional connectivity edges chosen via feature selection and used for the regression model.

The bar graph summarizes Spearman’s correlation as an accuracy measure for each individual model.

indicated that the regression model differed between individuals
in their chosen FC edges and the number of edges.

Eleven of the 12 individuals, whose regression models
indicated sufficient accuracy, were classified by hierarchical
clustering based on the similarity of the selected FC edges of
each model. Figure 6 shows a dendrogram of the FC patterns of
the 11 individual models. Through clustering, the 11 individual
models were classified into 5 clusters (the red line drawn

on the dendrogram indicates the distance threshold used for
splitting into 5 clusters). Commonly selected FC edges in clusters
are shown in the connectome plot. The connectome is also
represented as a circle plot. The color of the node in the circle plot
indicates which of the six well-known brain functional networks
(dorsal attention network: DAN, default mode network: DMN,
sensorimotor network: SMN, ventral attention network: VAN,
frontoparietal network: FPN, and salience network: SN) the
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TABLE 2 | The performance of the individual models where the hyperparameters, NB, FP, BP, and window size were chosen based on the test set accuracy (*p < 0.05).

Participant Correlation

coefficient (Held-out

test set)

P Window size NB FP BP No. of

samples

Average no.

of features

MAE of BRT (standard

deviation) [ms]

1* 0.571 1.00× 10−3 10 100 0.6 0.8 29 7.24 8.39× 101 (6.30× 101)

2* 0.546 3.00× 10−3 20 20 0.6 0.8 29 15.5 2.98× 102 (1.72× 102)

3 0.250 1.91× 10−1 15 50 0.6 0.8 29 15.2 3.08× 102 (2.90× 102)

4* 0.387 3.20× 10−2 15 100 0.5 0.8 31 20.4 5.25× 102 (8.35× 102)

5* 0.579 2.00× 10−3 15 100 0.7 0.6 28 2.43 8.00× 101 (5.95× 101)

6* 0.481 9.00× 10−3 20 10 0.5 0.6 29 7.00 2.29× 102 (1.86× 102)

7* 0.633 1.86× 10−4 15 100 0.9 0.6 31 8.00 1.10× 102 (1.08× 102)

8* 0.557 3.00× 10−3 10 100 0.6 0.6 27 16.0 1.07× 102 (8.07× 101)

9* 0.601 1.00× 10−3 20 100 0.6 0.8 29 7.07 7.40× 101 (6.31× 101)

10* 0.384 3.84× 10−2 20 20 0.5 0.6 29 7.45 1.81× 102 (1.63× 102)

11* 0.566 1.00× 10−3 15 300 0.6 0.8 31 11.6 1.23× 102 (9.80× 101)

12* 0.391 4.00× 10−2 20 300 0.6 0.8 28 20.6 1.22× 102 (1.32× 102)

Average 1.87× 102 (1.29× 102)

NB, number of resampling; BP, proportion of sampling; FP, stability of the features. Average No. of features indicates the number of functional connectivity edges selected in feature

selection averaged over the cross-validation folds. MAE, Mean absolute error.

brain region comprising that FC edge belongs to. The results
indicated that although the FC patterns differed between clusters,
there were some common inter-and intra-network connections
between clusters.

DISCUSSION

Performance of the Prediction Model
Table 1 indicated that only one participant showed a significant
correlation between measured and predicted BRTs. We conclude
that the other 11 models caused overfitting because their training
accuracy was very high, with some showing correlations of 1.00.
Nevertheless, the mean absolute error of the BRT for the 12
participants was 5.58 × 102 ms, not a bad performance for the
absolute BRT prediction.

Notably, Table 2 indicated that there existed the models
showing significant accuracy on the held-out test samples for
11 of the 12 participants among 180 combinations of the
hyperparameter settings. This suggested that the generalization
performance of the current models could be improved by
modifying the model selection criteria. Also, the parameters for
feature selection, NB, FP, and BP, differed among individuals, as
shown inTables 1, 2. Previous studies also confirmed a variability
that proposed bootstrap-based feature selection (Wei et al.,
2020). Furthermore, different window sizes were adopted for
the functional connectivity analysis for each participant. It was
reasonable to choose different window sizes for each individual
because functional connectivity varies across individuals and
multiple timescales, as revealed by Telesford et al. (2016).

Considering this finding and the pilot nature of this study,
our current results suggested the possibility of functional
connectivity-based prediction of the variability of braking

response during car driving. They also provided the general
framework for the model construction.

Interpretation of the Prediction Model
The interpretation of the constructed model is expected to
elucidate the neural basis of distracted driving. For example,
the FC edges identified, which are commonly employed across
individuals, suggest that these play an important role in
predicting the degree of distracted driving. In addition, if the
choices of FC edges in the individual models can be classified
into several patterns, the common FC edges within each cluster
will provide representative patterns of the FC network associated
with distracted driving. Herein, we interpreted the predictive
models in terms of which FC edges were used as the explanatory
variables and which well-known functional networks (DAN,
DMN, SMN, VAN, FPN, and SN). The characteristics of each
cluster are summarized as the functional networks contributed
to in Figure 6.

First, we found a common between-network connectivity of
DAN-SMN and DAN-VAN across all clusters. DAN plays an
important role in top-down attentional control (Taren et al.,
2017), which is essential for driving. In addition, a previous
study that predicted multitasking performance using functional
connectivity at rest reported that DAN-SMN connectivity during
a task can predict multitasking performance (Wen et al., 2018).
Car driving requires complex multitasking, which is essential in
driving experiments. These previous findings support the idea
that the DAN-SMN connection is necessary for predicting the
degree of distracted driving.

For between-network connectivity of the DAN-VAN, the
connectivity between the middle frontal gyrus (MFG) and
dorsolateral superior frontal gyrus (SFGdor) was confirmed in
all clusters. The MFG is a node region of the VAN that is
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FIGURE 6 | Eleven individual models with sufficient prediction accuracy were classified using hierarchical clustering based on the functional connectivity chosen via

feature selection. The horizontal axis indicates the Jaccard distance among the models. The red line was drawn to analyze the five clusters. The circle plot and

connectome indicate the common functional connectivity edges within each cluster. Each node channel was associated with the brain region determined by

automated anatomical labeling (AAL) atlas. The nodes are colored based on which well-known functional network they belonged to: DAN, dorsal attention network;

DMN, default mode network; SMN, Sensorimotor network; VAN, ventral attention network; FPN, frontoparietal network; SN, salience network.

involved in bottom-up attention (Doricchi et al., 2010) and
attentional control (Japee et al., 2015). In addition, the left
dorsolateral prefrontal cortex (DLPFC) including SFGdor and
MFG has been reported to play an important role in spatial
recognition in a previous study that used the working memory
task (Ren et al., 2019). Because car driving involves paying
attention to multiple objects in a driver’s field of view, it is
convincing that the FC edges, SFGdor, and MFG, were used
for regression modeling. In a previous study on meditation,
a technique indicated as an effective approach for reducing
mind wandering, the increase in FC between the SFGdor.R
and MFG.R was observed when the meditators attempted to
focus their attention on their main task from task-unrelated
thought (He et al., 2021). This result was also confirmed by
an fMRI experiment (Hasenkamp et al., 2012). These previous
findings also supported our results because the drivers were
expected to shift their attention back from distractors to the
driving task when their minds were distracted. In addition,
Lin et al. (2016) in their electroencephalography-based driving
experiments, driving was essentially a complex continuous
tracking task requiring bottom-up processes for the multisensory
integration of information from the external environment, as
well as top-down modulatory influences based on the driver’s
internal goals, strategies, and current intentions. Therefore,

it is reasonable that DAN-VAN connections are essential for
predicting the degree of distracted driving.

Next, we discuss the characteristics of each of these five
clusters. Cluster-specific between-network connectivity was not
observed in Clusters 1 and 3. These two clusters mainly consisted
of DAN-VAN and DAN-SMN, which were commonly observed
across all clusters. Cluster-specific FC edges were found in
SFGdor.L-SFGdor.R for cluster 1 and MFG.L-MFG.R for Cluster
3. Since each of these FC edges was within-network connectivity
of the DAN and VAN, Clusters 1 and 3 were the same in the
patterns of functional networks chosen for predictive modeling,
except for their use of within-network connectivity. It can be
concluded that Cluster 1 was DAN-weighted, while Cluster
3 was a VAN-weighted model (individual). DAN and VAN
are involved in top-down (Taren et al., 2017) and bottom-up
attention (Doricchi et al., 2010), respectively, and both were
essential for car driving tasks.

In Cluster 2, cluster-specific between-network connectivity of
the DAN-DMN was also SFGdor.L-SFGmed.L and SFGdor.R-
SFGmed.R connectivity. The medial prefrontal cortex (mPFC),
including SFGmed.R, is one of the key regions of the DMN
(Vatansever et al., 2015). Yamashita et al. (2021) revealed that
there were two dominant brain states during sustained attention:
one characterized by DMN and limbic network activation, and
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the other by activation of DAN, SMN, salience, and visual
networks. Referring to their findings, it is convincing that the
DAN-DMN connectivity was chosen for the model in Cluster
2. In addition, the between-network connectivity of the FPN-
DMN and DAN-FPN was found to be MFG.L-SFGmed.R and
SFGdor.R-MFG.R connectivity. The MFG is included in the
FPN (Zhu et al., 2017) as well as the VAN. Dixon et al.
(2018) identified two subsystems of the FPN: one had stronger
connectivity with the DMN than with the DAN, and the other
had the opposite connectivity. In addition, Spreng et al. (2013)
stated that the FPN acts as a “gatekeeper” that regulates the
DMN, which is responsible for internal cognition, and the
DAN, which is responsible for external cognition. Our results
in Cluster 2 were consistent with their ideas, and we concluded
that Cluster 2 was the DMN-and DAN-based model gated
with FPN.

In Cluster 4, SFGmed.L-PoCG.R connectivity was found
to be a specific FC and differed from that of other clusters.
The PoCG is included in the SMN (Cui et al., 2020), and
the mPFC, including the SFGmed, has been reported to not
only to project to the limbic regions but also to connect to
the motor system, which is why it plays an important role
in motor planning and formation (Jiang et al., 2019). This
is consistent with the findings for SFGmed.L-PoCG.R the FC
edge was chosen for the prediction of driving behavior in
Cluster 4. Thus, we conclude that Cluster 4 was an SMN-
based model.

In Cluster 5, as in Cluster 2, the between-network connectivity
of the FPN-DMN and FPN-DAN was used for modeling.
Furthermore, the SFGmed.L-PreCG.R connectivity was found to
be cluster-specific connectivity. However, it could be regarded as
the same as Cluster 4 in terms of PreCG being included in the
SMN. These observations imply that Cluster 5 was amixedmodel
of Clusters 2 and 4.

This study used regression modeling to predict the degree
of distracted driving from FC for each participant, using
brain activity measured in an actual car driving environment.
We successfully constructed predictive models with the mean
absolute error of 5.58× 102 ms for the BRT of the 12 participants.
In addition, to analyze the features common to all participants
and features specific to individual patterns, the 11 models that
showed sufficient prediction accuracy were classified into five
patterns based on the patterns of FC edges extracted in feature
selection during model construction. The results showed that
the combination of DAN-SMN and DAN-VAN networks was
common to all clusters, indicating that these networks were
essential for predicting the degree of distraction in driving a
car, which is a complex multitask behavior. The individual
features of each of the five clusters were also interpreted as
follows: a model with within-network connectivity of DAN
and VAN was added to the underlying DAN-SMN and DAN-
VAN FCs, respectively (Clusters 1 and 3); and a model based
on DMN and DAN, gated by FPN (Cluster 2) and an SMN-
based model (Cluster 4); and a mixture of Clusters 2 and
4 (Cluster 5) were constructed. Referring to the results of
previous studies, all five models were relevant for driving
behavior and distracted driving. Our results will contribute to

the development of brain activity-based systems for predicting
distracted driving to promote safe driving and the understanding
of the neural basis of distracted driving. The results of this
study will contribute to the development of a brain activity-
based distracted driving prediction system for promoting safe
driving and to the elucidation of the neural basis of distracted
driving. For example, by incorporating the proposed method
into an advanced driver assistance system, it will be possible to
quantify the degree of driver distraction and efficiently and safely
control the switching between automatic and manual driving. It
is also possible to arouse a distracted driver through arbitrary
stimulus feedback. In this case, one of the drawbacks of the
fNIRS measurement is that it requires contact configuration of
the optical probes. However, the recent development of non-
contact brain activity measurement (Ando et al., 2019) would
extend the possibility of the neural state of the driver in the actual
driving environment.

Future work should address several issues. First, the
poor generalization performance of the current models
should be improved by reconsidering the model training and
selection scheme. This issue is also crucial in the current
results of the model interpretation. The model used for
the interpretation was chosen based on the best “test-set”
performance to preliminary observe the characteristics of the
“best-fit” model. To make our current results more robust
and reproducible, the current model-training paradigm should
be further investigated. This includes the development of a
method to avoid overfitting. Second, we used only the oxy-
Hb concentration changes for the analysis. However, it was
reported that the oxy-Hb and deoxy-Hb signals provided
a similar connectivity pattern (Imai et al., 2014). It would
be of great interest whether our results could be replicated
for the deoxy-Hb time series or not. Thirds, we choose a
linear regression model to link the functional connectivity
to the brake reaction time due to ease of interpretation of
the results and our small sample size. It is an important
consideration for future studies that the accuracy of the model
might be improved by applying other nonlinear regression
models such as support vector regression. Lastly, incorporating
the hyperparameter optimization into a cross-validation
loop in model training might improve the accuracy. The
latter two approaches need a larger sample size than the
current study.
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