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Neuroergonomics focuses on the brain signatures and associated mental states

underlying behavior to design human-machine interfaces enhancing performance in

the cognitive and physical domains. Brain imaging techniques such as functional

near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) have been

considered key methods for achieving this goal. Recent research stresses the value of

combining EEG and fNIRS in improving these interface systems’ mental state decoding

abilities, but little is known about whether these improvements generalize over different

paradigms and methodologies, nor about the potentialities for using these systems

in the real world. We review 33 studies comparing mental state decoding accuracy

between bimodal EEG-fNIRS and unimodal EEG and fNIRS in several subdomains of

neuroergonomics. In light of these studies, we also consider the challenges of exploiting

wearable versions of these systems in real-world contexts. Overall the studies reviewed

suggest that bimodal EEG-fNIRS outperforms unimodal EEG or fNIRS despite major

differences in their conceptual andmethodological aspects. Much work however remains

to be done to reach practical applications of bimodal EEG-fNIRS in naturalistic conditions.

We consider these points to identify aspects of bimodal EEG-fNIRS research in which

progress is expected or desired.

Keywords: multimodal brain imaging, electroencephalography, near-infrared spectroscopy, neuroergonomics,

human-machine interfaces

INTRODUCTION

Neuroergonomics is the branch of human factors concerned with the live reading of brain functions
underlying real-world human performance in the physical (e.g., walking/running, manipulating
tools, driving) and cognitive domains (e.g., calculating, reasoning, communicating). Its main goal
is to design human-machine interfaces to enable autonomous daily behaviors in people with
movement or communication disorders or to ensure the efficiency and safety of complex, high-
risk private or professional activities (e.g., flying, driving, operating machines, etc.). Achieving
this goal not only requires understanding how brain activity represents performance-related
mental states such as goals (e.g., intending to go left or right), feelings and emotions (e.g.,
stress or anxiety), or mental/physical effort (e.g., workload, exhaustion, etc.) but also on brain
monitoring techniques that can decode these mental states quickly and accurately. Existing
techniques with such potential include electroencephalography (EEG), which measures the brain’s
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temporal unfolding of electrophysiological activity with a
millisecond accuracy (Casson, 2019), and functional near-
infrared spectroscopy (fNIRS), which enables precise localization
of brain activity during performance (Ferrari and Quaresima,
2012; Vitorio et al., 2017; Quaresima and Ferrari, 2019; Zhu et al.,
2020). A cousin of hemodynamic brain monitoring techniques
such as positron emission tomography and fMRI, fNIRS uses
the diffusion of infrared light emitted through the skull and
refracted at various intensities depending on the concentration
of (de)oxygenated hemoglobin (see Pinti et al., 2018a and Pan
et al., 2019 for details). The possibility to acquire this signal
through sensors placed on the scalp makes fNIRS significantly
more portable than PET or fMRI, earning it increasing
attention in many sectors of neuroergonomics and human
factors design.

As an emergent discipline, neuroergonomics faces two
important challenges. One is to miniaturize brain monitoring
techniques in a way that allows for natural evolution in the
real world without jeopardizing brain signal quality. Indeed,
despite their higher flexibility of use compared with other
techniques, both EEG and fNIRS remain sensitive to movement
artifacts likely to contaminate brain signal. Another concerns
the inherent temporal and spatial limitations of fNIRS and
EEG, respectively. Like fMRI, fNIRS suffers an approximate
5-second delay between stimulus presentation and associated
brain responses (Pinti et al., 2018a). This discrepancy poses
a problem for studying the brain bases of performance in
naturalistic conditions where events tend to happen quickly and
unpredictably. Conversely, EEG’s limited spatial resolution does
not allow for accurate identification of brain regions at the source
of task-relevant brain signal. Finally, fNIRS only provides partial
information on the processes taking place within task-relevant
brain regions, whereas electrode recordings permit finer-grained
analyses of these processes in terms of timing and local or global
neuronal interactions (Logothetis et al., 2001; Palva and Palva,
2012).

To overcome these challenges, recent efforts have been
made to combine EEG and fNIRS into bimodal systems
able the simultaneously record the hemodynamic and
electrophysiological correlates of human performance in
real time (Safaie et al., 2013; Tomita et al., 2014; Hong and Khan,
2017; von Luhmann andMuller, 2017; Hong et al., 2018). Indeed,
besides improving the signal-to-noise ratio by representing brain
activity in different formats (Sun et al., 2020), combined EEG and
fNIRS signals have the potential to significantly compensate for
each other’s spatial and temporal limitations, thereby increasing
the speed, precision, and richness of mental state decoding
in various tasks of interest to human factors (Wallois et al.,
2010, 2012; Nguyen et al., 2012, 2017; Tomita et al., 2014;
Kaewkamnerdpong, 2016; Balconi et al., 2017; Pinti et al., 2018b;
Dehais et al., 2019; Firooz and Setarhdan, 2019). They may
ultimately provide motor-disabled individuals with the means
to interact with their environment and optimize the detection
of mental workload, drowsiness, or brain dysfunction in various
high-risk situations.

Given the recency of bimodal EEG-fNIRS technologies,
and despite several reports of their higher decoding accuracy

compared to unimodal EEG and fNIRS, it is still unclear whether
these improvements generalize over most processes typically
investigated in human-machine interface research or whether
they relate to particular domains of performance and not others
(e.g., whether its decoding accuracy is higher for cognitive
relative to physical performance). Another pending question
is whether these improvements are stable despite variations
across studies’ methodology. To help elucidate these questions
the present article reviews studies comparing the performance
of bimodal EEG-fNIRS against unimodal EEG and unimodal
fNIRS in performance-based mental state decoding in the
context of key paradigms of neuroergonomics: motor imagery
and execution for remote-controlled action, navigation for safe
and efficient driving or flying, clinical diagnosis for efficient
healthcare services, as well as cognitive and affective processing
for detecting potentially harmful cognitive or affective states
(e.g., stress, mental workload, drowsiness, etc.). We consider the
relative value of bimodal vs. unimodal EEG and fNIRS in light of
these studies’ primary conceptual andmethodological differences
in order to identify areas in which improvement is expected
or desired in the coming years. We also consider the state of
progress achieved in building wearable versions of bimodal EEG-
fNIRS equipment to be used in naturalistic conditions. These
considerations provide the basis for recommendations as to how
future neuroergonomics research should be carried out using
multimodal brain imaging.

METHODS

Given the recency and sparseness of mental state-decoding
studies using bimodal EEG-fNIRS, we sought to maximize
the chances of finding relevant studies by departing from
the standards of systematic literature reviews (e.g., Moher
et al., 2009, see Figure 1 for a graphical representation of the
study selection process). This review should therefore not be
regarded as systematic. The literature search was initiated in
2020 and terminated in 2021. A Google Scholar search was
performed via the Publish or Perish search engine (Harzing,
2007, Publish or Perish, available https://harzing.com/resources/
publish-or-perish) with the following keywords: “EEG-fNIRS”
AND “simultaneous” OR “concurrent” AND “bimodal” OR
“multimodal” OR “feature classification”, yielding a total of
455 relevant titles. Additional searches were performed using
the same engine in PubMed and Web of Science using the
keyword “EEG-fNIRS”, yielding 94 titles for PubMed and 154
titles for Web of Science. Prospective studies were reviewed
based on the following criteria: (a) studies performed on
human subjects, (b) research contributing to key sectors of
neuroergonomics research, (c) description of key methodological
points, specifically: (1) the number of subjects tested, (2) sensor
montage and type of hardware used (i.e. custom-made vs.
commercially distributed sensors), (3) head coverage specifying
which parts of the brain were targeted, (4) the sampling
parameters for EEG and fNIRS, (5) the EEG and fNIRS features
of interest extracted and (6) the feature extraction method used
(this information is provided in Table 1), (d) direct, quantitative
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FIGURE 1 | Flowchart of the literature search.

comparisons of mental state classification accuracy between
unimodal EEG, unimodal fNIRS and bimodal EEG-fNIRS.

Complementing these criteria were the following three
selection filters: First, when two articles reported results from the
same dataset (e.g., Fazli et al., 2012; Lee et al., 2014; Ahn et al.,
2016; Nguyen et al., 2017; Shin et al., 2017) only one of these
articles was retained to avoid redundancy or selection biases.
Second, when the same dataset was reported in peer-reviewed
articles and conference proceedings (Fazli et al., 2012; Lee et al.,
2014) only the peer-reviewed articles were retained. Finally,
studies performed on simulated datasets (e.g., Croce et al., 2017)
were excluded. Asmost of the research using bimodal EEG-fNIRS
is still quite recent, the year of publication was not used as an
inclusion/exclusion criterion. In total 22 articles were selected
for inclusion in the review. In addition to the database search
described above, each of the 22 articles found was then screened
for its reference section and recent contributions citing it. Eleven
additional articles were found that met the above criteria. A total
of 33 research articles were therefore included in the review.

To better capture and discuss the conceptual, empirical, and
methodological implications of the studies reviewed here, the
following information was systematically extracted for each of
them (see Table 1 for detail):

1. Paradigm. Studies were grouped into seven categories
based on their paradigms. These categories were created
in a way that best encapsulates the main domains of
performance investigated in the literature. These include:
(a) motor imagery (10 studies), (b) motor execution (seven
studies), (c) navigation (simulated and/or real-world, 2
studies), (d) cognitive processing (working memory, word
generation, mental arithmetic, spatial attention, 8 studies), (e)
affective/emotional processing (2 studies) and (f) clinical (5
studies). An additional category ‘other’ was created to include
one study focused on discriminating mental states related to
different tasks belonging to one of the six previous categories
as well as one study aimed at discriminating between auditory
and visual processing (Putze et al., 2014). It must be noted
that some of the studies included in the review involved more
than one task that could be assigned to different categories.
Furthermore, one study involving clinical subjects differed
from the other clinical studies in being focused on mental
state decoding during motor imagery in patients and healthy
controls (i.e. was not run for diagnostic purposes, cf. Blokland
et al., 2014). Accordingly, this study was assigned to the motor
imagery category, ensuring that the results of the two groups
were given separately.
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TABLE 1 | Target methodological details of the studies included in the review.

Paradigm References #

Subjects

Montage Head coverage Sampling

parameters

Feature extracted Feature

classification

method

Motor

imagery

Yin et al.

(2015)

6 EEG: Neuroscan

(Synamps2), 21 electrodes

Left right motor

cortex

EEG: 1000Hz SR EEG: EEG power,

instantaneous amplitude,

phase, and frequency

Extreme learning

machine (ELMs)

NIRS: ETG-4000 (Hitachi),

10 emitters, 8 detectors, 24

channels

NIRS: 696-830 nm

WL, 10Hz SR

NIRS: HbR, HbO, HbT and

HbD

Koo et al.

(2015)

6 EEG: gMOBIlab+ (gTec), 6

electrodes

Left right

(pre)motor cortex

EEG: 256Hz SR EEG: alpha, beta, delta, and

theta band power

Support Vector

Machines (SVM)

NIRS: Imagent (ISS Inc.), 8

emitters, 2 detectors

NIRS: 690-830 nm

WL, 6.25Hz SR

NIRS: HbO

Blokland et al.

(2014)

8 patients EEG: Porti (TMSi), 8

electrodes

Left/right

(pre)motor cortex

EEG: 2048Hz SR EEG: ERD L2 regularized linear

logistic regression

classifier

12 controls NIRS: Oxymon MK III

(Artinis), 4 emitters, 2

detectors, 2 channels

NIRS: 764-858 nm

WL, 250Hz SR

NIRS: HbO, HbR

Leamy et al.

(2011)

2 EEG: Active Two (Biosemi),

7 electrodes

Left/right motor

cortex

EEG: 2,048Hz SR EEG: ERS/ERD Linear Discrimination

Analysis (LDA)

NIRS: TechEn CW6

(TechEn), 3 sources, 3

detectors, 7 channels

NIRS: 690–830 nm

WL, 25Hz SR

NIRS: HbO and HbR

Fu et al.

(2020)

6 EEG: Neuroscan

(SynAmps2), 2 electrodes

Left/right motor

cortex

EEG: 1,000Hz SR EEG: IA, IP, IF (single feature

vector)

SVM

NIRS: ETG-4,000 (Hitachi),

2 emitters, 2 detectors, 2

channels

NIRS: 695–830 nm

WL, 10Hz SR

NIRS: HbO, HbD

(HbO/HbR)

EEG-fNIRS:

HbO+HbD+IA+IP+IF

Fazli et al.

(2012)

14 EEG: BrainAmp (Brain

Products), 37 electrodes

Frontal, motor,

parietal cortex

EEG: 1,000Hz SR EEG: alpha and beta bands LDA

NIRS: NIRScout 8-16

(NIRx), 8 emitters, 16

detectors, 24 channels

NIRS: 760–850 nm

WL, 6.25Hz SR

NIRS: HbO, HbR

Saadati et al.

(2020)

29 EEG: BrainAmp (Brain

Products), 30 electrodes

Frontal, motor,

visual cortex

EEG: 200Hz SR EEG: ERD/ERS Deep Neural

Networks (DNN)[3]

NIRS: NIRScout (NIRx), 16

emitters, 16 detectors, 28

channels

NIRS: WL not

given, 10Hz SR

NIRS: HbO, HbR

EEG-fNIRS: Fused

ERD/ERS-HbO-HbR

Ge et al.

(2017)

12 EEG: Neuroscan

(SynAmps2), 64 electrodes

Left/right motor

cortex

EEG: 1,000Hz EEG: Current density SVM

NIRS: LABNIRS (Shimadzu),

11 emitters, 11 detectors,

31 channels

NIRS: 780, 805,

and 830 nm WL,

28Hz WL

NIRS: Hurst Exponent

Verma et al.

(2019)

9 EEG/NIRS: g.Nautilus

fNIRS* (gtec)

NIRS: Left/right

motor cortex

EEG: 250Hz SR EEG: mu and beta bands LDA

EEG: 15 electrodes

NIRS: 8 emitters, 2

detectors

EEG: Left/right

(pre)motor and

parietal cortex

NIRS: 760-850 nm

WL, 250Hz SR

NIRS: HbO, HbR

Chiarelli et al.

(2018)

15 EEG: System Net 300

(Electrical Geodesics), 123

electrodes

NIRS: Left/right

(pre)motor cortex

EEG: 256Hz SR EEG: ERD/ERS DNN

NIRS: Imagent (ISS Inc.), 16

sources, 2 detector

EEG: Full head NIRS: 690–830 nm

WL, 10Hz SR

NIRS: HbO, HbR

Motor

execution

Blokland et al.

(2014)

8 patients EEG: Porti (TMSi), 8

electrodes

Left/right

(pre)motor cortex

EEG: 2,048Hz SR EEG: ERD L2 regularized linear

logistic regression

classifier

(Continued)
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TABLE 1 | Continued

Paradigm References #

Subjects

Montage Head coverage Sampling

parameters

Feature extracted Feature

classification

method

12 controls NIRS: Oxymon MK III

(Artinis), 4 emitters, 2

detectors, 2 channels

NIRS: 764–858 nm

WL, 250Hz SR

NIRS: HbO, HbR

Leamy and

Ward (2010)

2 EEG: Active Two (Biosemi),

7 electrodes

Left/right motor

cortex

EEG: 2,048Hz SR EEG: ERS/ERD LDA

NIRS: TechEn CW6

(TechEn), 3 emitters, 3

detectors, 7 channels

NIRS: 690-830 nm

WL, 25Hz SR

NIRS: HbO, HbR

Li et al. (2017) 11 EEG: BrainAmp DC (Brain

Products), 16 electrodes

Left/right motor

cortex

EEG: 500Hz SR EEG: Discrete wavelet

transform of EEG signal

SVM

NIRS: NIRScout (NIRx), 12

sources, 12 detectors (34

channels)

NIRS: 760–850 nm

WL, 7.81Hz SR

NIRS: Stimulus-related initial

HbO/HbR dip

Buccino et al.

(2016)

15 EEG: microEEG (BioSignal

Group), 21 channels

Left/right

(pre)motor cortex

EEG: 250Hz EEG:ERP/ERS LDA

NIRS: NIRScout 8-16

(NIRx), 12 emitters, 12

detectors, 34 channels

NIRS: 760-850 nm

WL, 10.42Hz SR

NIRS: HbO, HbR

Fazli et al.

(2012)

14 EEG: BrainAmp (Brain

Products), 37 electrodes

Frontal, motor,

parietal cortex

EEG: 1,000Hz SR EEG: alpha and beta bands LDA

NIRS: NIRScout 8-16

(NIRx), 8 emitters, 16

detectors, 24 channels

NIRS: 760–850 nm

WL, 6.25Hz SR

NIRS: HbO, HbR

Zhu et al.

(2017)

3 EEG: BrainAmp (Brain

Products), 4 electrodes

Left/right motor

cortex

EEG: 550Hz SR EEG: Wavelet

approximation coefficients

LDA

NIRS: NIRx, 8 sources, 8

detectors, 20 channels

NIRS: 760–850 nm

WL, 7.81Hz SR

NIRS: HbO SVM

Al-Quraishi

et al. (2021)

20 EEG/NIRS: MCScap

(Medical Computer

Systems)

EEG/NIRS:

Frontal/central/parietal

cortex

EEG: 256Hz SR EEG: ERD/ERS (alpha band) SVM

EEG: 19 electrodes

NIRS: 16 emitters, 16

detectors, 48 NIRS channel

NIRS:

695–830 nm,

10Hz SR

NIRS: HbO, HbR

Navigation

(real or

simulated)

Dehais et al.

(2019)

4 EEG: Enobio

(Neuroelectrics), 23

electrodes

EEG: Full head EEG: 500Hz SR EEG: spectral density based

on alpha, beta, and theta

frequency bands

LDA

NIRS: NIRSport (NIRx), 7

emitters, 8 detectors, 12

channels.

NIRS: Frontal

temporal cortex

NIRS: WL not

given, 8.93Hz SR

NIRS: wavelet coherence

based on HbO

Ahn et al.

(2016)

11 EEG: ActiveTwo (Biosemi),

64 electrodes

EEG: Full head EEG: 512Hz SR EEG:Beta/alpha ratio LDA (for EEG)

NIRS: custom-built, 2

emitters, 8 detectors, 8

channels

NIRS: Frontal

cortex

NIRS: 735–850 nm

WL, 10Hz SR

NIRS: HbO, HbR

Cognitive

processing

Morioka et al.

(2014)

8 EEG: ActiveTwo (Biosemi),

64 electrodes

EEG: Full head EEG: 256Hz SR EEG: Alpha

desynchronization in visual

cortex

Sparse logistic

regression

NIRS: FOIRE-3000

(Shimadzu Co.), 15

emitters, 15 detectors,

49 channels

NIRS: Parietal

occipital cortex

NIRS:

780–805–830 nm

WL, 4Hz SR

NIRS: HbO

Saadati et al.

(2020)

26 EEG: BrainAmp (Brain

Products),

30 electrodes

Frontal, motor,

visual cortex

EEG: 200Hz SR EEG: ERD/ERS DNN (SVM)

(Continued)
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TABLE 1 | Continued

Paradigm References #

Subjects

Montage Head coverage Sampling

parameters

Feature extracted Feature

classification

method

NIRS: NIRScout (NIRx), 16

emitters, 16 detectors, 16

channels

NIRS: WL not

given, 10Hz SR

NIRS: HbO, HbR

Shin et al.

(2017)

10 EEG: BrainAmp (Brain

Products), 22 electrodes

EEG: Full head EEG: 1,000Hz SR EEG: alpha, beta, theta LDA

NIRS: NIRScout (NIRx), 5

sources, 3 detectors

NIRS: frontal

cortex

NIRS: WL not

given, 12.5Hz SR

NIRS: HbR, HbO

Aghajani et al.

(2017)

17 EEG: microEEG

(Bio-Signal), 19 electrodes

EEG: Full head EEG: 259Hz SR EEG: Frequency band

power, phase-locking value,

frequency, left-right

asymmetry of delta, theta,

alpha, low beta, and high

beta bands

SVM

NIRS: NIRScout (NIRx), 19

emitters, 19 detectors, 19

channels

NIRS: Frontal

cortex

NIRS: 760-850 nm

WL, 8.93Hz SR

NIRS: HbO, HbR

(amplitude, slope, standard

deviation, skewness, and

kurtosis)

Coffey et al.

(2012)

12 EEG: Guger Technologies, 8

electrodes

Frontal cortex EEG: 256Hz SR EEG: band power within

2–25Hz range

NIRS: Oxy-monMkIII

(Artinis), 3 emitters, 3

detectors, 3 channels

NIRS: 766–860 nm

WL, SR unknown

NIRS: HbO, HbR, HbT

Herff et al.

(2015)

10 EEG: ANT, 3 electrodes EEG: Fz, Cz, Pz EEG: 256Hz SR EEG: 4–25Hz band power LDA

NIRS: Imagent, 28 sources,

15 detectors (channels not

defined)

NIRS: Frontal

cortex

NIRS: 690–830 nm

WL, 19.5Hz SR

NIRS: HbO

Ge et al.

(2019)

16 EEG: Neuroscan Synamps,

64 electrodes

Full head EEG: 1,000Hz SR EEG: ERP Current Source

Density (sLORETA)

Complex Brain

Network

NIRS: LABNIRS, 16

emitters, 16 detectors, 48

channels

NIRS: 780, 805

and 830 nm WL,

0.01–0.1Hz SR

NIRS: HbO, HbR, HbT

Sereshkeh

et al. (2019)

11 EEG: BrainAmp (Brain

Products), 32 electrodes

EEG: Full head EEG: 1,000Hz SR EEG: Discrete wavelet

transform coefficient

LDA

NIRS: ETG-4000 (Hitachi),

16 emitters, 14 detectors,

44 channels

NIRS: Frontal,

temporal, parietal

cortex

NIRS: 695–830 nm

WL, 10Hz SR

NIRS: HbO

Affective/

emotional

processing

Sun et al.

(2020)

12 EEG: EMOTIV Epoc, 14

electrodes

EEG: Full head EEG: 128Hz SR EEG: Power spectral

density based on theta,

slow alpha, alpha, and beta

frequency bands

SVM

NIRS: 1100W (fnirdevices),

4 optodes 2 light

wavelengths channels and

one ambient channel per

optode

NIRS: Frontal

cortex

NIRS: WL not

given, 4Hz SR

NIRS: HbO, HbR, HbT

(HbO+HbR)

Al-Shargie

et al. (2016)

22 EEG: BrainMaster 24E, 7

electrodes

Frontal cortex EEG: 256Hz SR EEG: Mean power alpha

and beta frequency bands

SVM

NIRS: OT-R40 (Hitachi), 8

emitters, 8 detectors, 23

channels

NIRS: 695-830 nm

WL, 10Hz SR

NIRS: HbO

Clinical

diagnosis

Abtahi et al.

(2020)

9 patients EEG: g.USBAMP (gtec), 13

electrodes

Left/Right motor

cortex

EEG: 256Hz SR EEG: Alpha, theta and theta

frequency bands

SVM

9 controls NIRS: NIRScout (NIRx), 8

emitters, 8 detectors, 16

channels

NIRS: 760–850 nm

WL, 7.81Hz SR

NIRS: HbO, HbR

(Continued)

Frontiers in Neuroergonomics | www.frontiersin.org 6 August 2022 | Volume 3 | Article 934234

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroergonomics#articles


Bourguignon et al. Bimodal EEG-fNIRS in Neuroergonomics

TABLE 1 | Continued

Paradigm References #

Subjects

Montage Head coverage Sampling

parameters

Feature extracted Feature

classification

method

Sirpal et al.

(2019)

40 patients EEG: Neuroscan Synamps

2TM, 19 electrodes

Full head EEG: 500Hz SR EEG: Interictal epileptiform

discharges

DNN

NIRS: Imagent (ISS), 64

emitters, 16 detectors,

channels unknown

NIRS: 690–830 nm

WL, 19.5Hz SR

NIRS: HbO, HbR

Cicalese et al.

(2020)

Healthy: 8 EEG: BrainAmp DC (Brain

Products), 32 electrodes

Frontal, parietal

cortex

EEG: 500Hz SR EEG: Power spectrum

density of delta, theta, low

alpha, high alpha, beta, and

gamma frequency bands

LDA

Mild AD: 6 NIRS: NIRScout (NIRx), 16

sources, 16 detectors, 46

channels

NIRS: 760-850 nm

WL, 3.91Hz SR

NIRS: HbO, HbR

Severe AD:

7

Feature optimization with

Pearson correlation

coefficient based feature

selection on EEG and NIRS

Mild CI: 8

Othman et al.

(2020)

Patients: 9 EEG/NIRS: StarStim

NIRS-EEG (Artinis)*

Frontal, motor, and

parietal cortex

EEG: 500Hz SR EEG: 1-12Hz band power Adaptive

mixture-independent

k-nearest neighbor

Controls:

14

EEG: 8 electrodes

NIRS: 8 emitters, 2

detectors, 8 channels

NIRS: 760-850 nm

WL, 50Hz SR

NIRS: HbO

Güven et al.

(2020)

Patients:

23

EEG: MP150 (Biopac

System), 4 electrodes

EEG: Fz, Cz, Pz,

Oz

EEG: 2500Hz, SR EEG: P300 SVM

Controls:

21

NIRS: Imager 1100 (fNIR

devices), 5 emitters, 2

detectors

NIRS: Frontal

cortex

NIRS: 730–850 nm

WL, 2Hz

NIRS: HbO Multilayer Perception

Neural Network

(MLP)

Naïve Bayes (NB)

Other Shin et al.

(2018a,b)

18 EEG: ActiveTwo (Biosemi),

21 electrodes

Frontal cortex EEG: 2,048Hz SR EEG: Filter-bank common

spatial pattern on theta,

alpha, and beta bands,

one-vs.-one

LDA

NIRS: LIGHTNIRS

(Shimadzu), 6 emitters, 6

detectors, 16 NIRS

channels

NIRS: WL not

given, 13.3Hz SR

NIRS: HbO, HbR, one vs.

one (read about it)

EEG and NIRS classifiers

were then combined to

construct new feature

vectors for the

meta-classifier.

Putze et al.

(2014)

12 EEG: (asalab) ANT, 12

electrodes

Auditory, visual

cortex

EEG: 256Hz SR EEG: Power spectral

density and ERP waveform

LDA (HbO, HbR,

and POW)

NIRS: Imagent (ISS), 32

emitters, 16 detectors,

number of channels

unknown

NIRS: 690-830 nm

WL, 110 MHz SR

NIRS: HbO, HbR SVM (ERPs)

Refer to the core text for further detail and the supplementary document for full bibliographic details.

Naturally, this categorization can to a large extent be regarded
as arbitrary. Alternative categorizations might help place
greater emphasis on other equally relevant, possibly more
specific aspects of performance such as mental workload,
engagement, cognitive fatigue, or drowsiness. Similarly, the
studies reviewed might be grouped in a way that more
explicitly underlines the distinction between “physical” and
“cognitive” performance. Several reasons however motivate

the categorization proposed here. First, many of these
alternative dimensions of performance are embedded in the
context of more general activities in a way that makes it
difficult to distinguish them. EEG-fNIRS studies on mental
fatigue or drowsiness, for instance, have typically been carried
out in the context of navigation tasks. Similarly, even the most
elementary tasks of physical performance entail some level
of cognitive processing (e.g., deciding to move left or right),
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while classical cognitive tasks such as working memory span
or arithmetic are typically translated into physical responses.
It is therefore not obvious where the cognitive dimension of
performance ends and the physical one begins. Finally, the way
the studies are categorized does not for the present purposes
significantly affect the primary finding of the present review, as
will be shown in the next section. For these reasons, we elected
to consider these dimensions inmore detail when commenting
on the results of our analysis.

2. Study parameters, including the number of subjects, specifics
on the fNIRS and EEG sensor setup, EEG and fNIRS sampling
parameters (EEG: sampling rate, fNIRS: wavelength and
sampling rate), EEG and fNIRS features of interest, as well as
a detailed description of data preprocessing (including both
feature extraction and feature classification).

3. Mental state classification methods, with a special focus on the
machine learning algorithms used for decoding performance-
related mental states.

DESCRIPTION OF STUDIES

The penultimate column in Table 2 provides the percentage
mental state decoding accuracy between unimodal EEG,
unimodal fNIRS, and bimodal EEG-fNIRS for every study
reviewed. The reader is also referred to Table 1 for further
methodological information on each study, to be discussed in
more detail below. Despite substantial differences between the
studies’ paradigms and methodology results reveal consistently
better classification accuracy for bimodal EEG-fNIRS compared
to unimodal EEG or fNIRS. In the following we consider in detail
the primary methodological differences between studies that are
likely to affect bimodal EEG-fNIRS mental state classification
accuracy, focusing on their paradigms, sensor layout, and signal
pre-processing as well as EEG and fNIRS feature extraction,
integration and classification methods for mental state decoding.
We then examine the studies’ level of ecological validity, which
should help consider the main challenges and existing solutions
for implementing bimodal EEG-fNIRS experiments outside
the laboratory.

Paradigms
As shown in Figure 2, bimodal EEG-fNIRS yields consistent
improvements in decoding accuracy compared to unimodal EEG
and NIRS regardless of paradigm (we note that Figure 2 is
provided only for visual observation and does not represent
any statistical inference due to the relatively small number of
studies included in each category). This section is devoted to
commenting on some of the key aspects of the studies carried out
within each of these paradigm categories.

Most studies were performed within research on brain-
computer interface technologies (BCI) seeking to equip motor-
disabled individuals with the means to communicate and interact
with their environment (Allison et al., 2007; Ahn and Jun,
2018). Unsurprisingly, thus, many studies used tasks of motor
imagery (11 studies) and motor execution (seven studies).
Results show that bimodal EEG-fNIRS outperforms unimodal

EEG and fNIRS in both cases, but bimodal classification
appears more accurate in motor execution (∼85%) compared
to motor imagery tasks (∼80%). This discrepancy could in
part be explained by differences in the brain signatures
associated with executed vs. imagined movements. Indeed, the
hemodynamic signal appears more diffuse and weaker during
motor imagery compared to motor execution, with limited
involvement of primary motor regions (Deiber et al., 1998;
Dechent et al., 2004). EEG studies comparing motor imagery
vs. executed movements nevertheless reveal overall similar
electrophysiological signatures in the motor regions between
the two conditions, though classification in these regions was
still highest during executed movements (Neuper et al., 2005).
These studies also report significantly different activation profiles
in the motor region depending on whether subjects are asked
to imagine themselves or another person performing a motor
action (Neuper et al., 2005), which highlights the impact of
task demands and task instructions in driving classification
accuracy. Further progress might therefore be partly contingent
on a deeper understanding of the differences between motor
imagery and motor execution at both the hemodynamic and
electrophysiological levels.

Interestingly, despite the focus on the usefulness of EEG-
fNIRS technologies tomotor-disabled individuals, only one study
actually involved patients with motor disorders (tetraplegia, cf.
Blokland et al., 2014). Bimodal EEG-fNIRS in patients yielded
higher classification accuracy than unimodal EEG or fNIRS
for both imagined movement (EEG-fNIRS: 70%, fNIRS: 65%,
EEG: 63%) and attempted movements (EEG-fNIRS: 79%, fNIRS:
70%, EEG: 73%). This finding highlights the potential use of
EEG-fNIRS as an implementable neuroprosthetic technology.
Other studies involving clinical populations were aimed at
discriminating patients with neurological conditions such as
Parkinson’s disease (Abtahi et al., 2020), ADHD (Güven et al.,
2020), Alzheimer’s disease (Cicalese et al., 2020), or acute
brain injury (Othman et al., 2020) from neurotypical controls,
mostly within tasks targeting the neurological condition of
interest (motor control in PD, attentional control in ADHD,
memory retrieval in AD). These studies mostly showed higher
classification accuracy overall for bimodal EEG-fNIRS (∼90%)
compared to unimodal EEG (∼83%) or unimodal fNIRS
(∼77%), illustrating the utility of EEG-fNIRS for diagnostic
purposes. One interesting exception is the study by Abtahi et al.
(2020) investigating the accuracy of discrimination between PD
patients and neurotypical controls based on unimodal EEG,
unimodal fNIRS, bimodal EEG-fNIRS and bimodal EEG-fNIRS
information fused with data from motion capture (MoCap)
and WearUp flex sensors measuring large and small range
hand movements, respectively. This study showed that while
bimodal EEG-fNIRS does not perform better than unimodal
EEG in discriminating PD from controls (92.27% for fNIRS
compared to 92.79% for EEG), data from MoCap and WearUp
measurements added to EEG-fNIRS significantly improved
discrimination accuracy (93.4%). This suggests that additional
information related to particular neurological conditions can
further complement information from EEG-fNIRS to improve
diagnostic accuracy.
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TABLE 2 | Articles included in the review.

Paradigm References Classification of interest Decoding, classification accuracy

measurement

Decoding

accuracy (%)

Source*

Motor imagery Yin et al. (2015) Clenching speed/force EEG 88 T1/2/3

fNIRS 76

EEG-fNIRS 89

Koo et al. (2015) EEG: left/right grasping EEG (classification accuracy) 90 T1

NIRS: Motor imagery

detection

fNIRS (detection accuracy) 98

EEG-fNIRS (True positive rate) 88

Blokland et al. (2014) Finger tapping vs. Rest Patients—Imagined movements T1/2

EEG 63

fNIRS (HbO+HbR) 65

EEG-fNIRS 70

Controls - Imagined movements

EEG 77

fNIRS 59

EEG-fNIRS 79

Leamy et al. (2011) Ball squeezing EEG[1] 53 T2

fNIRS 56

EEG-fNIRS 62

Fu et al. (2020) Clenching force/speed Trained and nontrained trials T3

EEG (IA-IP-IF)[2] 72

fNIRS (HbO-HbR) 64

EEG-fNIRS (HbO-HbD and IA-IP-IF) 74

Fazli et al. (2012) Left-right hand gripping Motor imagery

EEG 78.2 T1

fNIRS (HbO) 71.7

fNIRS (HbR) 65

EEG-HbO 83.2

EEG-HbR 80.6

EEG-HbO/R 83.1

Saadati et al. (2020) Left/right hand movement EEG 73 T6

fNIRS (HbO+HbR) 83

EEG-fNIRS 91

Ge et al. (2017) Left/right hand movement EEG 74.7 T1

fNIRS 56.8

EEG-fNIRS 81.2

Verma et al. (2019) Left/right hand grasping EEG 70 T1

fNIRS (HbO) 71.2

fNIRS (HbR) 71.6

EEG-fNIRS (HbO) 76.2

EEG-fNIRS (HbR) 78.7

EEG-fNIRS (HbO+HbR) 80

Chiarelli et al. (2018) Left/right hand squeezing EEG 73.38 P8

fNIRS 71.92

EEG-fNIRS 83.28

Motor execution Blokland et al. (2014) Finger tapping vs. Rest Patients - Attempted movements T1/2

EEG 73

fNIRS (HbO+HbR) 70

EEG-fNIRS 79

Controls - Executed movement

EEG 87

fNIRS (HbO+HbR) 77

(Continued)
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TABLE 2 | Continued

Paradigm References Classification of interest Decoding, classification accuracy

measurement

Decoding

accuracy (%)

Source*

EEG-fNIRS 87

Leamy and Ward (2010) Active/Resting state fEEG 79 T3

fNIRS 75

EEG-fNIRS 81

Li et al. (2017) Left/right hand movement EEG 85.64 T2

NIRS 85.55

EEG-fNIRS 91.02

Buccino et al. (2016) Active/Rest Rest-task T1/2

Left/right hand or arm

movement

EEG 85.2

fNIRS [3] 69

fNIRS (+Slope indicator, SI) 92.4

EEG-fNIRS 86.2

EEG-fNIRS(+SI) 94.2

Right-left response

EEG 62.2

fNIRS 63.1

fNIRS (+SI) 70

EEG-fNIRS 67.1

EEG-fNIRS (+SI) 72.2

Fazli et al. (2012) Left-right hand gripping EEG 90.8 T1

fNIRS HbO 71.1

fNIRS HbR 73.3

EEG-fNIRS/HbO 92.6

EEG-fNIRS/HbR 93.2

EEG-HbO/R 87.4

Zhu et al. (2017) Left-right hand grasping LDA T1

EEG 80.17

fNIRS 75.75

EEG-fNIRS 83.33

SVM

EEG 79.75

fNIRS 74.67

EEG-fNIRS 84

Al-Quraishi et al. (2021) Ankle movement EEG[4] 89.39 T5

fNIRS 85.61

EEG-fNIRS 92.13

Navigation (real or

simulated)

Dehais et al. (2019) High/low cognitive fatigue Simulated flight P547

EEG 86.7

NIRS 81.5

EEG-fNIRS 87.2

Real flight

EEG 86.4

fNIRS 83.2

EEG-fNIRS 87.6

Ahn et al. (2016) Sleep-deprived/Well-rested

driving

EEG[5] 59.7 T3

fNIRS 66.8

EEG+fNIRS 68.3

(Continued)
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TABLE 2 | Continued

Paradigm References Classification of interest Decoding, classification accuracy

measurement

Decoding

accuracy (%)

Source*

Cognitive

processing

Morioka et al. (2014) EEG: Spatial attention EEG 71.4 P133

NIRS: Cortical activity

detection

EEG-fNIRS 79.1

Saadati et al. (2020) N-back: 0-, 2- and 3-back N-back T3/6

Discrimination/selection:

target vs. nontarget

EEG 67

Word generation vs. rest NIRS (HbO+HbR) 80

EEG-fNIRS 87

Discrimination selection response

task

EEG 71

fNIRS (HbO+HbR) 84

EEG-fNIRS 91

Word generation

EEG 72

fNIRS 85

EEG-fNIRS 92

Shin et al. (2018a,b) Mental arithmetic/word chain

performance

Mental arithmetic (offline) P8/9

EEG 84.9

fNIRS 79.1

EEG-fNIRS 90

Word chain (offline)

EEG 78.7

fNIRS 77.4

EEG-fNIRS 85.5

Mental arithmetic (pseudo-online)

EEG 81.5

fNIRS 75

EEG-fNIRS 85.8

Word chain (pseudo-online)

EEG 73.2

fNIRS 74.3

EEG-fNIRS 79.8

Aghajani et al. (2017) n-back 3back v 2back v 1back v 0back v

Rest

T3

EEG 78

fNIRS 56.2

EEG-fNIRS 85.4

Coffey et al. (2012) 0-back, 1-back, 2-back EEG 73.34 T1[6]

fNIRS 61.34

EEG-fNIRS 73.08

Herff et al. (2015) Digit recall (5-level workload) EEG 90 P7[7]

fNIRS 71

EEG-fNIRS 93

Ge et al., 2019 Action observation and

intention classification

EEG 68.6 T1

fNIRS 52.7

EEG-fNIRS 72.7

Sereshkeh et al. (2019) Imagined speech (yes/no,

rest)

EEG 63.76 T1[8]

(Continued)
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TABLE 2 | Continued

Paradigm References Classification of interest Decoding, classification accuracy

measurement

Decoding

accuracy (%)

Source*

fNIRS 63.64

EEG-fNIRS 70.45

Affective/emotional

processing

Sun et al. (2020) Affective state Image-content stimuli T2/3

EEG 63

fNIRS 62

EEG-fNIRS 75

Video content stimuli

EEG-fNIRS 62

fNIRS 72

EEG 80

Al-Shargie et al. (2016) Stress level EEG 91.7 P13

fNIRS 84.1

EEG-fNIRS 95.1

Clinical diagnosis Abtahi et al. (2020) Healthy/Parkinson Patients vs. neurotypical controls[9] P6

EEG 92.79

fNIRS 81.23

EEG-fNIRS 92.27

EEG-fNIRS-MoCap-WearUp flex

sensors

93.4

Sirpal et al. (2019) Seizure identification EEG 97.6 T5[4]

fNIRS 97

EEG-fNIRS 98.3

Cicalese et al. (2020) Healthy/Alzheimer/Cognitive

impairment

EEG 65.52 T2/4[4]

fNIRS 58.62

EEG-fNIRS 79.31

Othman et al. (2020) Unresponsive/low-responsive

ICU patients vs. controls

Unresponsive patients vs. controls T2

ICU patients with vs. without

recovery of consciousness

EEG 89

EEG-fNIRS 97

Consciousness recovery vs.

non-recovery

EEG 82

EEG-fNIRS 1

Güven et al. (2020) ADHD patients vs. controls

(oddball detection)

SVM T4*

EEG 79.54

fNIRS 70.45

EEG-fNIRS 86.36

MLP

EEG 81.81

fNIRS 72.72

EEG-fNIRS 86.36

NB

EEG 79.54

fNIRS 77.27

EEG-fNIRS 93.18

(Continued)
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TABLE 2 | Continued

Paradigm References Classification of interest Decoding, classification accuracy

measurement

Decoding

accuracy (%)

Source*

Other Shin et al. (2018a,b) Mental arithmetic, motor

imagery, idle state

EEG 76.1 P5

fNIRS 64.1

EEG-fNIRS 82.2

Subject-dependent classification

Putze et al. (2014) Visual/auditory processing EEG (POW) 83.5

EEG (ERP) 86.9

fNIRS (HbO) 75.8

fNIRS (HbR) 70.9

EEG-fNIRS 94.7

Subject-independent classification

EEG (POW) 71.8 T3

EEG (ERP) 81.7

fNIRS (HbO) 66

fNIRS (HbR) 63.5

EEG-fNIRS 88.6

Please refer to Table 1 for further methodological details for each of these studies. Remarks: [1] Scores averaged over subjects, [2] IA = instantaneous amplitude, IP = instantaneous

phase, IF = instantaneous frequency, [3] This study compared classification performance with or without the inclusion of a slope indicator (SI) as part of the classification algorithm for

the NIRS signal. For reasons of clarity we distinguish values obtained with or without SI, [4] Only accuracy values are given, please refer to the articles for further classification values

(e.g. precision, sensitivity, specificity, recall, etc.), [5] Classification values with additional information from electrocardiographic and electrooculographic features are omitted, [6] values

averaged over subjects, [7] 1 vs. 5-back contrast only, [8] Results for all test blocks, [9] highest accuracy scores. *This column provides information as to where in the original papers

the results reported in the present review can be found: T: Table, P: Page. Bold values represent the highest decoding accuracy scores reported in each study.

Given the implications of neuroergonomics research in
matters of public safety, another relevant sector interest
for bimodal EEG-fNIRS technologies is the measurement of
cognitive fatigue and engagement during navigation (driving
and flying, Ahn et al., 2016; Dehais et al., 2019). The neural
correlates of cognitive fatigue have been an important area
of neuroergonomics research using EEG (Lal and Craig, 2001;
Wascher et al., 2014; Mu et al., 2017), and several studies
have now been conducted on cognitive fatigue using fNIRS
(Borragán et al., 2018, 2019; Tanveer et al., 2019). A widely
cited study in this respect reported higher accuracy of EEG-
fNIRS in discriminating driving under well-rested vs. sleep-
deprived conditions (Ahn et al., 2016). However, these authors
also combined EEG-fNIRS with electrocardiography (ECG),
achieving even higher discrimination compared to bimodal EEG-
fNIRS (76% against 68.3%). Another study by Dehais et al.
(2019) showed that EEG-fNIRS could appropriately decode levels
of mental fatigue in pilots during simulated and real flight
conditions, with little to no accuracy differences between the two
(87.2% in simulation vs. 87.6% in a light aircraft). Altogether
these findings not only stress the benefits of using bimodal EEG-
fNIRS in parallel with other relevant physiological features to
improve classification performance but also open the possibility
to equip modern navigation systems with neurophysiological
tools apt to precisely detect harmful levels of fatigue in moderate-
to high-risk navigation situations.

Another central concept handled in half of the studies
included in the “cognitive” category is that of mental workload—
defined as the amount of information to be retained in working
memory for prospective action (Krueger, 1989; Wickens, 2008;

Loeppke et al., 2009; Mizuno et al., 2011; Raslear et al., 2011;
Sievertsen et al., 2016). Here again, these studies report that
bimodal EEG-fNIRS performs better (∼85%) than EEG (∼77%)
or fNIRS alone (∼67%) in decoding mental workload. It must
be noted however that cognitive load is a multiplex concept
encompassing several distinct but highly interactive components
(Cain, 2007; Wickens, 2008). Beyond factors related to stimulus
or task information, other intrinsic factors such as stress or
emotional state (Al-Shargie et al., 2016) are also susceptible
to modulating mental workload in multiple ways, as reflected
in both hemodynamic and electrophysiological responses. For
instance, Al-Shargie et al. (2016) investigated the neurocognitive
correlates of stress in a task designed to tax cognitive processing.
Their results revealed superior accuracy in stress identification
for the bimodal technique (95.1%) compared to unimodal EEG
(91.7%) and unimodal fNIRS (84.1 %). Altogether these studies
highlight the practical payoffs of bimodal EEG-fNIRS in revealing
the multiple facets of mental workload.

Methodology
Studies varied substantially in terms of their sensor setups, signal
recording parameters, and mental state classification methods.
To better present the implications of these methodological
choices in bimodal EEG-fNIRS research we chose to describe
them following a typical EEG-fNIRS recording-to-analysis
pipeline represented in Figure 3 (for other examples see Hong
and Khan, 2017). At each of the steps along this pipeline, we
will describe the main options chosen in the studies reviewed,
considering some of the advantages and challenges in the effort
to achieve higher mental state decoding accuracy.
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FIGURE 2 | Differences in decoding accuracy between unimodal NIRS, unimodal EEG, and bimodal EEG-fNIRS across the seven paradigms considered. Scores

were obtained by averaging percent decoding accuracy scores reported for each method by the studies reviewed in each category (see Tables 1, 2 for detail). When

more than one possible score was obtained for the same individual method (e.g., when comparing different decoding algorithms), the highest score was

systematically chosen. Note that these graphs are displayed for visual presentation and not statistical inference.
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FIGURE 3 | A standard acquisition and (pre-)processing pipeline using bimodal EEG-fNIRS systems for performance-related mental state classification.

Sensor Setups, Scalp Coverage, and Signal

Denoising
Studies varied substantially in their EEG and fNIRS sensor setup,
notably regarding the number of sensors used and scalp coverage.
In most cases, EEG and fNIRS channels were laid out on the same
scalp locations under the assumption that they should record
activity from the same underlying cortical sites. For instance,
studies targeting hand-related motor movements mostly placed
both EEG and fNIRS channels in the vicinity of the motor
cortex (e.g., Leamy and Ward, 2010; Leamy et al., 2011; Blokland
et al., 2014). Studies measuring mental workload focused on
frontal regions typically associated with attention and working
memory (Coffey et al., 2012; Herff et al., 2015), and studies
investigating auditory vs. visual discrimination placed their
EEG/fNIRS channels in regions corresponding to the primary
auditory vs. visual cortex (Putze et al., 2014). Although these
targeted placements make sense it should be remembered that
EEG and fNIRS differ substantially in their spatial resolution.
Indeed, despite a universal appeal to standardized layouts
supposed to relate electrode locations to underlying cortical

areas (e.g., the international 10–20 system), the notoriously
poor spatial precision of traditional electrophysiological methods

impede the mapping of EEG responses to functional anatomic
patterns revealed by hemodynamic techniques (Laureys et al.,
2009). In many cases, the scalp distribution of certain well-
known EEG responses can be quite misleading as to their actual

cortical sources (Halgren et al., 2002; Osterhout et al., 2004; Lau
et al., 2008). Several methodological tools have been developed
to overcome this mismatch. These include the recording of
EEG signal from a larger number of electrodes, enabling source

reconstruction of the signal through multiple dipole modeling
(Darvas et al., 2006), or 3D registration of EEG signal onto high-
resolution MRI images (Yoo et al., 1997). The latter method
has already been explored in research combining EEG and
fNIRS signals acquired simultaneously (Aihara et al., 2012;
Morioka et al., 2014), with significant improvements in decoding
accuracy (see Feature Extraction and Integration formore detail).
Crucially, the possibility to incorporate source reconstruction
methods into bimodal EEG-fNIRS research is contingent on the
specific goals and constraints of individual studies. They may

turn out particularly difficult to implement in studies seeking to
minimize the number of sensors for wearability or convenience
(e.g., in BCI technologies). Progress in developing source
reconstruction from low-density EEG coverage (e.g., Guevara
et al., 2020) or using anatomical priors from the fNIRS signal
(Aihara et al., 2012), see also Feature Extraction and Integration)
may provide a partial solution to these constraints and help
further increase precision in the correspondence between fNIRS
and EEG source localization.

Most studies in the review made use of custom-built EEG-
fNIRS sensor setups from separate EEG and fNIRS equipment.
However, such setups have been shown to create higher electrical
interferences or noise in the EEG signal due to inadequate
shielding of NIRS optode circuits and suboptimal return current
paths (von Luhmann and Muller, 2017). Additionally, these
setups typically involve using separate EEG and fNIRS event
files that need to be fused after data acquisition—a procedure
likely to alter synchronicity between them and therefore affect
precision in event-timing reconstruction (von Luhmann and
Muller, 2017). Built-in hybrid EEG-fNIRS systems on the
other hand significantly reduce both issues (von Luhmann
and Muller, 2017). Several such systems are now commercially
available (example systems includeMedelopt© by Seenel Imaging
[cf. Safaie et al., 2013 and https://seenel-imaging.com/], Brite
© by Artinis Medical Systems [cf. https://www.artinis.com/],
g.Nautilus© by Gtec [cf. https://www.gtec.at] or NIRScout by
NIRx [cf. https://nirx.net/], see also von Lühmann et al., 2017
and Kassab et al., 2018) and offer miniaturized, wireless modular
technology allowing for greater mobility and flexibility of use
across a wide range of real-life situations.

Feature Extraction and Integration
Bimodal EEG-fNIRS provides substantial amounts of
complementary information that can be exploited by advanced
signal processing algorithms for mental state classification.
A precondition for accurate mental state decoding is the
choice and appropriate extraction and integration of EEG and
fNIRS features (Hong et al., 2018). Feature extraction implies
transforming the raw signal into numerical information (i.e.,
“features”) that can be processed while preserving the essential
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information of the original data set. This information can be
obtained from the time domain (mean, standard deviation,
entropy, etc.), frequency domain (Fourier transform, wavelets,
time-frequency distributions, etc.), or synchronicity between
two or more spatial channels (coherence, correlation, mutual
information, etc.). Naturally, efficient mental state decoding
significantly depends on the proper methods of EEG and/or
fNIRS feature extractions and classification. This particular
aspect is the one in which the studies reviewed here vary the
most, revealing the widespread selection of procedures available
for achieving this crucial step in mental state decoding using
bimodal EEG-fNIRS methodologies. Since no consensus exists as
yet about which of these procedures are to be recommended, this
point will be devoted to describing them in a way that highlights
their primary distinctive characteristics.

EEG features. The most common EEG features selected for
classification are the four major EEG frequency bands—i.e.,
delta (< 3Hz), theta (3–8Hz), alpha (and its motor homolog
mu rhythm, 8–13Hz), and beta frequency (>13Hz)—and their
various subcategories (e.g., low/high beta (Abtahi et al., 2020),
low/high alpha (Cicalese et al., 2020). Considerable research
has been aimed at characterizing the physiological/functional
significance of each of these frequency bands across a broad
variety of tasks (Gevins and Smith, 2006), providing a wealth of
prior knowledge to target appropriate task-specific frequencies
for classification. Many of the studies reviewed therefore
selected their frequency bands of interest based on a priori
knowledge of their task relevance. Eight studies of motor
execution and motor imagery for example focused on event-
related synchronization/desynchronization patterns (ERS/ERD)
characterized by short-time local alpha/mu suppression prior
to movement onset followed by beta power increases after
movement execution (Pfurtscheller et al., 1996; Pfurtscheller and
Lopes da Silva, 1999). The functional significance of ERS/ERD-
type patterns in motor execution and motor imagery has
long been recognized within BCI research (McFarland et al.,
2000), but ERD/ERS patterns also constitute reliable indices
of high-level cognitive processing (Pfurtscheller and Lopes da
Silva, 1999; Friedrich et al., 2013). Most studies investigating
navigation (driving or flying) under well-rested vs. sleep-
deprived conditions selected their frequency bands of interest
based on previous literature or top-down analyses showing that
lower frequencies (beta, alpha, and theta) reliably discriminated
between well-rested vs. sleep-deprived conditions (Ahn et al.,
2016; Nguyen et al., 2017; Dehais et al., 2019). Another study
focused on decoding mental stress during task performance
selected alpha and beta frequencies based on previous research
showing that these frequency bands are reliable indicators of
mental stress and cognitive engagement (Al-Shargie et al., 2016).

Other EEG features used, though less extensively than
oscillatory frequencies, included wavelet approximation
coefficients for motor event identification (Zhu et al., 2017;
Sereshkeh et al., 2019), current density for EEG source
reconstruction (Ge et al., 2019) or perception- and decision-
specific ERP waveforms (Güven et al., 2020; e.g., N100, P200,
P300, see Putze et al., 2014). One study (Fu et al., 2020)
combined instantaneous amplitude, instantaneous phase, and

instantaneous frequency of the EEG signal into a single vector
in order to maximize classification performance, though little
justification is given as to why integrating these particular
features should enhance classification. Two clinically oriented
studies selected their relevant EEG features based on their
association with the neurological conditions of interest (i.e.,
interictal EEG discharge in epilepsy (Sirpal et al., 2019) and
attention-related P300 in ADHD (Güven et al., 2020), achieving
greater decoding accuracy for bimodal EEG-fNIRS compared
to unimodal EEG and fNIRS. This illustrates the relevance of
also exploiting abnormal EEG signatures in bimodal EEG-fNIRS
decoding studies with diagnostic purposes.

fNIRS Features
fNIRS signal reflects variations in the concentration of
oxygenated hemoglobin (conventionally indicated HbO)
and deoxygenated hemoglobin (HbR, Pan et al., 2019), these
values usually being negatively correlated with each other (Cui
et al., 2009; Guerrero-Mosquera et al., 2016). HbO and HbR
values together enable the calculation of the total hemoglobin
mobilized during task performance (HbT). The studies reviewed
here used these three values either alone or in combination.
A majority of studies used HbO and HbR in combination.
Eleven studies only used HbO and three used a combination
of HbO, HbR, and HbT. Of the remaining studies, one used
the difference between HbO and HbR as a relevant feature of
interest (HbD). Since HbO and HbR typically show negative
correlations with each other, its authors reasoned that HbD
would further increase the amplitude of concentration changes
as a function of task. This feature used in combination with
HbO and HbR significantly improved classification accuracy
in bimodal EEG-fNIRS. Another study computed the Hurst
coefficient of HbO (Ge et al., 2017). The Hurst coefficient has
been shown as a reliable measure of the internal consistency
of time series produced by biological systems (Vorobyov and
Cichocki, 2002). The authors however do not explain how
this measure would improve the classification accuracy of the
fNIRS signal. More generally, and contrary to EEG feature
selection, little justification is explicitly provided across studies
for choosing one fNIRS feature over others. In some cases
(Morioka et al., 2014; Güven et al., 2020), the selection is based
on prior evidence for the higher sensitivity of HbO compared
to other fNIRS features in detecting cerebral blood flow (Hoshi
et al., 2001). Other research using fMRI and NIRS however
showed that the BOLD response as measured with fMRI was
more correlated with HbR as measured by fNIRS (Huppert
et al., 2006). In the case of studies with clinical populations (e.g.,
ADHD, cf. Morioka et al., 2014), the choice of HbO is in part
motivated by prior evidence highlighting the suitability of this
particular feature in detecting certain neurological conditions.
Alternatively, other indicators of hemodynamic activity can be
derived from recorded HbO and HbR such as cerebral oxygen
exchange (COE) and cerebral blood volume vector (CBV)
(Tanaka et al., 2014; Oka et al., 2015; Borragán et al., 2019).
COE can show better sensitivity to detect changes in brain
activity than HbO alone and is less affected by changes in CBV
(Oka et al., 2015). The amplitude of low-frequency fluctuations
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(ALFF) is computed by assessing the oscillations within the
frequency range 0.01-0.1Hz and represents a good measure
of local spontaneous activity. This measure has shown good
performance to identify processes related to resting states or
rumination (Lu et al., 2010; Rosenbaum et al., 2020).

EEG-fNIRS Integration
Efficient mental state decoding in bimodal EEG-fNIRS critically
requires an appropriate combination of fNIRS and EEG features
(Ahn and Jun, 2018; Li et al., 2019, 2020a,b). As explained
in the introduction, however, fNIRS has substantially lower
temporal resolution compared to EEG, a mismatch likely
to severely limit the use of EEG-fNIRS in real-time studies
typically requiring relatively high information transfer rates
(Ahn and Jun, 2018). This temporal issue may also hinder
proper source reconstruction of EEG signals based on the
hemodynamic response provided by fNIRS. Several studies
have addressed this issue by proposing a hierarchical Bayesian
approach incorporating fNIRS and EEG (Aihara et al., 2012).
In particular, rather than estimating source localization from
electrophysiological current alone through current dipoles or
distributed currents methods, both of which are insufficient for
resolving the limited spatial resolution of EEG, the Bayesian
approach imposes functional imaging data as a hierarchical
prior to constrain estimation of the EEG current sources.
This additional information has been shown to significantly
help current source localization even with a small number
of electrodes (Aihara et al., 2012). This approach was tested
in the context of bimodal EEG-fNIRS research by Morioka
et al. (2014) who compared its mental state decoding accuracy
against an approach using EEG alone. Results showed that
using fNIRS as a prior significantly increased decoding accuracy
(79.1%) compared to using EEG alone (71.4%). Complementing
these findings, Morioka et al. compared decoding performance
between the Bayesian approach and another method of source
reconstruction that did not use a hemodynamic signal as a
prior (i.e., minimum L2-norm, cf. Wang et al., 1992). Results
confirmed higher decoding accuracy for the hierarchical Bayesian
approach (79.1 vs. 75.9%). Another potential avenue of progress
lies in the detection of the so-called ‘initial dip’ in the fNIRS
signal, characterized by a local decrease in the HbO response
around 1 second post-event onset and prior to the conventional
increase in HbO (Zafar et al., 2016; Hong and Zafar, 2018).
Improved techniques for detecting this initial dip have been
considered among the methods for enhancing mental state
decoding in BCI systems (Hong and Zafar, 2018). The study
by Li et al. (2017) explored this issue in a bimodal EEG-fNIRS
experiment on motor control in which fNIRS was used for
initial dip detection. Improvement in decoding accuracy was
significantly higher for bimodal EEG-fNIRS (91.02%) compared
with unimodal EEG or fNIRS (< 86%). Finally, very recent
studies have explored the possibility to use fluctuations in specific
EEG frequency bands (e.g., gamma, alpha, or beta) to predict
fluctuations in local fNIRS signal (Li et al., 2020a,b). Future
research is expected to test which of these techniques might best
improve decoding accuracy through more precise localization of
task-related cortical activity.

EEG-fNIRS Classification and Detection Methods
Immediately following EEG and fNIRS feature extraction and

integration is the actual processing of this integrated signal for
accurate mental state decoding (cf. Figure 1). This decoding

capacity largely depends on machine learning algorithms applied
to brain imaging data (Lemm et al., 2011; Hong et al., 2018).
Machine learning methods, including supervised/unsupervised
learning algorithms and reinforcement learning, have now
reached unprecedented levels of complexity in task outcomes

such as classification, detection, or regression. These levels
were achieved through increased computational power, efficient
learning algorithms, valuable activation functions, and restricted

or back-fed neuron connections (Pinti et al., 2015). The formal
principles underlying the decoding of brain imaging data are
detailed in Lemm et al. (2011). The following paragraphs provide
an overview of the main decoding algorithms used in the studies
reviewed here, assessing to the extent possible their relative
merits and potential challenges.

The most common mental state classification technique used
in the studies reviewed was the Linear Discriminant Analysis
(LDA, 14 studies). LDA is a supervised algorithm that consists in
breaking datasets down into two or more classes by maximizing
the distance between the means of these classes while minimizing
the variance within each class. This method’s success lies in its
low computational costs, making it suitable for use in online
BCI systems. Second come Support Vector Machines (SVM, 11
studies), which work by first training a model in assigning data
points to one or another category (supervised), ensuring that
the distance between them and the class boundary is maximal,
then using this trained model for assigning new incoming data
to one or the other category. This method’s primary strength
is to enable nonlinear classification through the use of kernel
functions (Hong et al., 2018). Seven studies used neural network
algorithms for classification, including multilayered or Deep
Neural Networks (DNNs), (Cichy and Kaiser, 2019). A variant
of simple neural networks aimed at simulating learning as
instantiated in the human brain, DNNs feature several (more
than two) interconnected layers of processing units (i.e. neurons)
which increase their reciprocal connections as a function of
learning. These algorithms’ principal specificity is to directly
use non-preprocessed data for classification (Schirrmeister et al.,
2017; Saadati et al., 2020), feeding it into varying numbers
of convolutional layers enabling them to decode the signal at
different levels of specificity and abstraction. Their primary
advantage compared to LDA or SVM is to bypass a priori
feature selection and automatically detect hierarchical patterns
of information from the raw signal. This improvement however
comes with the potential drawback of yielding wrong learning
outputs or requiring longer periods of learning (Schirrmeister
et al., 2017, but see Yin et al., 2015). Saadati et al. (2020)
directly compared classification accuracies between SVM and a
deep neural network (DNN) from bimodal EEG-fNIRS signals
recorded in a number of cognitive and motor tasks. Not only
did EEG-fNIRS perform better than unimodal EEG or fNIRS,
but classification accuracy was overall higher for DNN (∼90%)
than for SVM (∼84%). Another study aimed at discriminating
children with ADHD vs. control during an ‘oddball’ detection
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paradigm (Güven et al., 2020) directly compared discrimination
accuracies between three supervised algorithms using EEG,
fNIRS, and EEG-fNIRS features: SVM, the multilayer perception
network and the naïve Bayes classifier. Results showed that
accuracy was highest for EEG-fNIRS but did not differ between
SVM and the neural network (86.3%). The highest accuracy level
was obtained through the use of the naïve Bayes classifier (93.2%).

New methods of mental state decoding from bimodal EEG-
fNIRS signals are still being developed. Most recent work in this
respect has focused on optimizing procedures for fusing EEG
and fNIRS signals, with important improvements in decoding
accuracy compared to previous classification algorithms (Khan
and Hasan, 2020; Sun et al., 2020). Also, the spatial relationship
between EEG and fNIRS signals have been used to feed up deep
learning architectures for classification, such as convolutional
neural networks (RCNNs) for mental task (precision of 99.6%,
cf. Ghonchi et al., 2020) or CNNs for mental workload (accuracy
89%, cf. Saadati et al., 2020). Furthermore, with the rapid
development of BCI technology, the feasibility of new hardware
setups using few EEG channels and fNIRS source-detector pairs
has been tested in three different mental tasks using shrinkage
LDA classifier), and also for channel selection through k-nearest
neighbor (kNNs) and Tree classifiers (Hasan et al., 2020). These
results show classification accuracy high enough to be used in
practical BCI applications.

EEG-fNIRS Use in Ecologically Valid
Contexts
As mentioned at the outset the enhanced wearability of bimodal
EEG and fNIRS instrumentation should in principle facilitate the
monitoring of brain activity in real-world situations. It must be
noted however that almost all the studies reviewed here were
still performed in laboratory settings, highlighting the many
remaining challenges of using bimodal EEG-fNIRS equipment
in ecologically valid contexts. Further progress in this domain
depends in part on the availability of miniaturized hybrid EEG-
fNIRS setups and signal (pre-)processing algorithms handling
motion-related artifacts in a near-instantaneous fashion. Another
challenge comes from the versatility of real-world over laboratory
conditions where events of interest can be precisely identified
through computer-controlled experimental scenarios (Pinti
et al., 2017; von Lühmann et al., 2021). An important short-
term objective is to be able to retrace the history of an
experiment in the absence of scenario files. While little if
any progress has been achieved in the particular case of
bimodal EEG-fNIRS several methods have been developed for
unimodal fNIRS that could be extended to bimodal EEG-
fNIRS research. Pinti et al. (2015) for example made use
of video cameras fitted onto subjects and accompanying
experimenters. Careful analysis of video recordings allowed
authors to recover functional events of interest and to use
them for tolerably good HbO and HbR measurements in
two separate conditions. Another approach developed by the
same authors consists in recovering functional events in the
fNIRS signal through a GLM-based data-driven method (Pinti
et al., 2017). Used in combination with the video recordings

on the same 2015 study dataset, this method allowed authors
to recover 50 to 75 percent of functionally relevant events.
Crucially, however, these methods remain limited by the
temporal precision of fNIRS, which is not fitted to capture
the versatility and rapidity of real-world environments the
way EEG is (Casson, 2019). In this respect, recent research
has concentrated on building wearable EEG setups capable of
retracing functional events through eye-fixation data (Casson
and Trimble, 2018). Future efforts should be geared at combining
these methods.

RECOMMENDATIONS FOR FUTURE
NEUROERGONOMICS RESEARCH USING
EEG-fNIRS

The main focus of neuroergonomics is to build human-
machine interfaces for assisting safe and autonomous real-
world performance in populations with motor or communicative
disabilities, or healthy individuals engaged in high-risk private or
professional activities. The recent emergence of bimodal EEG-
fNIRS systems apt to decode performance-related mental states
as part of these interfaces has received increased attention.
This review article aimed to examine the level of improvement
achieved in mental state decoding using bimodal EEG-fNIRS
compared to unimodal EEG or fNIRS. It also considered the
state of progress and challenges in implementing wearable
versions of these interfaces. Its results reveal consistent increases
in decoding accuracy for bimodal over unimodal EEG and
fNIRS despite a limited number of studies and significant
variation in the studies’ research questions and methods. They
also highlight several important challenges in the real-world
use of bimodal EEG-fNIRS systems. The remaining paragraphs
synthesize these points in the form of recommendations for
future research.

First, increased effort should be placed on achieving higher
consistency in terms of sensor setups, feature selection, and
extraction methods. In terms of sensor setup hybrid EEG-
fNIRS hardware should be favored over custom EEG-fNIRS
systems built from separate fNIRS and EEG equipment to guard
against potential crosstalk and event-timing offsets between
EEG and fNIRS signals. Additionally, sensor layouts should be
designed by taking into consideration the discrepancies between
EEG and fNIRS regarding temporal vs. spatial granularity.
Compared with the relatively unambiguous spatial distribution
of fNIRS responses the scalp distribution of EEG signatures
can be misleading in terms of signal sources. Depending
on the level of sophistication in the experimental paradigm
and sensor layout, it should therefore be ensured that the
fNIRS and EEG signal captured in the same scalp area
are tied to the same underlying processes. Conversely, the
greater spatial resolution of fNIRS compared to EEG comes
at the cost of larger temporal latencies likely to cause
difficulties in the real-time monitoring of performance-related
brain-signal. Though several avenues have been explored to
minimize the temporal discrepancy between EEG and fNIRS,
it remains difficult if not impossible to align both modalities
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at the same level of temporal resolution. Future research
should hopefully help minimize or compensate for these
temporal discrepancies.

Second, as decoding accuracy naturally depends on signal
quality the relevance of signal preprocessing and artifact rejection
methods cannot be overlooked. These methods should take into
account both modality-specific and modality-independent
artifacts, appropriately distinguish between systemic and
nonsystemic sources of noise and account for the constraints
associated with signal preprocessing such as stimulus repetition
and averaging. The latter point poses a particular challenge in the
attempt to decode mental states in real-world contexts devoid of
repetition and regularity. It is therefore central to focus on the
development of online preprocessing algorithms and systems
that can optimize noise rejection on single events.

Third, increased effort should also be put into a more targeted
and justified selection and integration of EEG and fNIRS features.
In the case of EEG, themost common features are themajor brain
oscillatory frequencies, while the use of event-related potentials
remains relatively marginal. In most cases, the frequency bands
of interest were selected based on prior knowledge of their
functional involvement in the target tasks. In the case of fNIRS,
the main features of interest included local changes in HbO,
HbR, and HbT. Compared to EEG features, however, little
justification is given for selecting one over the other fNIRS
features. Possible reasons for this gap include limited knowledge
of the relation between hemodynamic signal and underlying
neurocognitive processes and of the functional significance of
variations in local oxy- or deoxyhemoglobin concentration.
Available evidence indicates a correspondence between HbR and
HbT concentration and negative bold responses as measured
through fMRI (Maggioni et al., 2015). The exact meaning of
negative blood dynamics however has remained elusive (Wade,
2002).

Fourth, whereas an immediate goal of neuroergonomics
research is to decode task-related mental states in naturalistic
conditions, most studies featured in the review were still
performed in highly controlled laboratory settings. This indicates
that the multimodal exploitation of EEG-fNIRS in real-life
applications is still in its infancy. The most likely conditions to
meet in achieving this goal include proper miniaturization of
EEG-fNIRS systems, the development of advanced algorithms
for signal preprocessing, and more powerful methods of real-
time EEG and fNIRS analysis. Another major challenge concerns
the precise tracking of a sufficient number of events of
interest. Overcoming these challenges should not only pave
the way toward a better understanding of the neurocognitive
correlates of human performance but should open new
possibilities for equipping modern hardware (e.g., vehicles,
prosthetic devices, etc.) apt to usefully exploit mental states for
assisting or enhancing behaviors. On this particular point, it
is worth acknowledging the possibility to complement EEG-
fNIRS signal with other behavioral and physiological measures.
These include motion capture, heart rate, skin conductance, or
eye-tracking technologies. The studies reviewed that exploited
these additional measures report further improvements in
decoding accuracy.

Finally, although decoding is shown to be better in the
bimodal than the unimodal approach, this observation is for
many studies based on absolute percentage values rather than
formal statistical comparisons. Until such comparisons are
systematically made the merits of bimodal EEG-fNIRS over
unimodal EEG or fNIRS in mental state decoding should
therefore be considered with caution. It must be remarked how
few studies reviewed approach their research question from a
theoretical vantage. Regardless of the issue investigated, little
conceptual work is exploited to predict or account for the
patterns reported. This point might seem unfortunate given
the considerable potential of bimodal EEG-fNIRS in moving
neuroergonomics research forward at both fundamental and
practical levels (Pfurtscheller et al., 2012; Wallois et al., 2012;
Balconi et al., 2015; Pinti et al., 2018b). The development of
advanced tools for investigating the neurocognitive correlates
of behavior does not replace careful theoretical analysis of
the phenomenon addressed (Krakauer et al., 2017). A strong
working definition of the cognitive processes targeted by
specific experiments is of fundamental importance in an
effort to decode mental states from electrophysiological or
hemodynamic signal.

CONCLUSION

The advent of portable methods of multimodal brain monitoring
foreshadows significant progress in understanding and exploiting
performance-related mental states in naturalistic situations.
Amongst these methods, bimodal EEG-fNIRS technologies
potentially represent an important step forward in this direction.
Available evidence, though recent and relatively limited in scope
and amount, consistently points to significant improvements in
the decoding of performance-related mental states, with crucial
implications in both the conceptual and practical domains of NE.
Many challenges however still stand in the way of fully exploiting
these technologies in the service of human factors research
and development. Relevant questions to be addressed in future
research in our view comprise the following: First, is bimodal
EEG-fNIRS systematically more desirable than unimodal EEG
or fNIRS across all domains of NE? The superior decoding
accuracy of bimodal EEG-fNIRS would intuitively seem to
bring a positive answer to this question, but one must also
weigh the gains of combining these technologies in human-
machine interface systems against the costs incurred by their
limitations. It is possible in practice that unimodal technologies
remain at present more efficient due to their greater flexibility
of use in real-world situations as well as a higher degree of
technical and conceptual knowledge of their neuroergonomic
potential. Most recent state-of-the-art reports highlight the
considerable technological advances afforded by portable EEG
in neuroergonomics research (Wascher et al., 2021). In contrast,
neuroergonomic applications of fNIRS still exhibit comparably
greater conceptual and methodological shortcomings (Zhu et al.,
2020). Only when these gaps are overcome will it be possible to
appreciate the scope and limits of multimodal brain imaging in
human-machine interface applications.
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Second, do the improvements afforded by bimodal EEG-
fNIRS alleviate the need for theoretically grounded approaches
to their exploitation in the neuroergonomic context? As has
been noted above few of the studies reviewed ground their
research into fine-grained theoretical considerations of human
performance and its underlying cognitive processes as reflected
in the EEG and fNIRS signal. This theory-free approach might
in part be symptomatic of the general enthusiasm for the ever-
increasing multiplication and sophistication of novel techniques
of neuroscientific investigation, which may in turn overshadow
the need for deep conceptual analyses of how behavior emerges
from the computational operations of the brain (Krakauer
et al., 2017). Such analyses however remain in our view an
essential precondition for improvement in the use of multimodal
brain imaging in human-machine interface systems, particularly
with regard to the choice of appropriate decoding algorithms
(Kriegeskorte and Douglas, 2018).
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