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P300 as a neural indicator for
setting levels of goal scores in
educational gamification
applications from the
perspective of intrinsic
motivation: An ERP study

Hiroki Watanabe and Yasushi Naruse*

Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of

Information and Communications Technology, Osaka University, Kobe, Japan

The challenge level of goal achievement a�ects intrinsic motivation. Thus, the

goal score learners are required to achieve is an important element in gamified

educational applications to foster users’ intrinsic motivation. However,

determining optimal goal scores that enhance the intrinsic motivation of each

learner is not easy because individual competence and preferences for the

challenge level (e.g., preference for di�cult-to-achieve challenges) vary. One

approach is to determine the goal score using physiological measurements to

estimate when an individual’s intrinsic motivation is reinforced. Measurement

of event-related potentials (ERPs) is considered useful for this purpose. ERPs

time-locked to feedback onset, such as feedback-related negativity and P300,

reflect intrinsic motivation. However, it remains unclear whether these ERPs

can serve as indicators of optimal goal scores for gamified educational

applications in terms of intrinsic motivation. The present study aimed to

examinewhether ERPmeasures vary with the challenge levels of the goal score

determined by participants’ competence (too-easy, moderate and too-hard

levels) and/or with their preference for these levels when using a gamified

mental arithmetic application. Thirty-three participants solved 64 addition

problems in one session in this application and received auditory feedback

immediately after each answer entry. Scores were then calculated based on

their task performance. Before each session, participants were informed of

the goal score and instructed to exceed it as much as possible. Sessions were

repeated six times at easy, moderate, and hard levels of goal scores, with two

sessions per level. Goal score preferences were quantified based on subjective

ratings of the motivation to achieve each level of goal score using a 7-point

Likert scale. The mean amplitudes of ERPs were obtained for each participant.

Results showed that P300 was significantly related to subjective ratings but not

to levels of goal scores, indicating that P300 could be an indicator of participant
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preference for goal score levels. This study suggests that measurement of

P300 may serve as a neural indicator providing an optimal goal score for

individual learners thatmaximizes their intrinsicmotivation in gamified learning

applications.

KEYWORDS

P300, feedback-related negativity (FRN), intrinsic motivation, achievement goal,

gamification, event-related potentials (ERPs), electroencephalogram (EEG), self-

determination theory (SDT)

1. Introduction

The challenge level of activities influences people’s intrinsic

motivation—spontaneous engagement in an activity for fun,

satisfaction, and challenge without expecting any other outcome

(Ryan and Deci, 2000a). Self-determination theory (SDT) (Deci

and Ryan, 1985; Ryan and Deci, 2000b) suggests that fulfilling

the psychological need of competence is important for human

motivation, along with relatedness and autonomy. Activities at

the optimal challenge level—not too easy and not too hard—are

associated with the satisfaction of competence (Deci and Ryan,

1985; Ryan andDeci, 2000b). Thus, setting the optimal challenge

level is expected to reinforce intrinsic motivation. However,

establishing the appropriate level is not easy because the

competence in an activity depends on the individual, and there

may be differences in the level of difficulty perceived as optimal.

At the same time, the relationship between intrinsic motivation

and challenge level suggests that the optimal level of challenge

may be estimated by noting the degree of intrinsic motivation

when individuals engage in activities at different levels. For

example, Rani et al. (2005) adjusted the difficulty levels of

a computer game based on users’ anxiety levels estimated

from physiological measurements from electrocardiograms or

electromyograms, and so on. The adjustments resulted in

improvements in the game performance and greater perceived

challenge. Given the real-world applications of such a system,

physiological data may have advantages over reliance on

subjective evaluation becausemeasuring physiological responses

during a task allows for online estimation without imposing

additional tasks and with less subjective bias.

Recent studies have shown that event-related potentials

(ERPs), such as feedback-related negativity (FRN) and P300,

can serve as physiological indicators of intrinsic motivation.

FRN is observed in the fronto-central region at approximately

250 ms from the onset of the negative feedback presentation

(Miltner et al., 1997; Gehring and Willoughby, 2002). Holroyd

and Coles (2002) explained this ERP component in terms of

reinforcement learning elicited when the outcome of an event is

worse than predicted. Consistent with reinforcement learning,

FRN reflects extraction of motivationally significant outcomes

(Pfabigan et al., 2010). Recent research has demonstrated that

FRN amplitudes calculated from the difference wave between

the ERP to incorrect feedback and one to correct feedback

are related to intrinsic motivation (Ma et al., 2014a; Fang

et al., 2018; Meng et al., 2021). The FRN response is also

modulated by affective mood states, such as positive emotion

(Zhao et al., 2016; Paul and Pourtois, 2017) or boredom

(Milyavskaya et al., 2019), which are presumably induced by

the degree of intrinsic motivation. P300 is observed in the

centro-parietal region approximately 300 ms after stimulus

onset and reflects the allocation of attentional resources to the

stimulus (Nieuwenhuis et al., 2005; Polich, 2007). P300 is

expected to serve as an indicator of intrinsic motivation because

heightened motivation induces greater attention to outcome

feedback (San Martín, 2012). In addition, P300 is also sensitive

to the motivational significance of the stimuli (Nieuwenhuis

et al., 2005). Indeed, Fang et al. (2020) demonstrated that the

decrease in human motivation due to autonomy frustration

led to a decrease in the amplitude of P300 time-locked to

feedback onset in the subsequent task. P300 amplitude was

also modulated by the affective significance of the outcome,

enhanced by changing the initial choice in the gambling task

(Zhou et al., 2010) and incidental negative emotion (Zhao et al.,

2016). In addition to FRN and P300, the N1 component of the

stimulus onset observed at approximately 100 ms, reflects the

top-down attention to the stimuli (Hillyard et al., 1973) and

possibly reflects intrinsic motivation.

If ERP measurements can serve as indicators of intrinsic

motivation, they could be used for more effective learning

in educational settings. In recent years, the concept of

gamification—“the use of game design elements in non-

game contexts” (Deterding et al., 2011) to promote intrinsic

motivation by enhancing task enjoyment—has become

widespread and its effectiveness has been investigated in the

fields of education and learning (Hamari et al., 2014). The

challenge level is also important in gamified learning content

because Hamari et al. (2016) showed that perceived challenge

affected engagement, immersion, and perceived learning in

gamified learning using video games. Therefore, establishing

a physiological measure of intrinsic motivation may lead to
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appropriate challenge levels for individuals engaged in gamified

learning content, increasing their intrinsic motivation for

the task.

However, it remains unclear whether variation in intrinsic

motivation—as a function of the challenge level of the goal

scores to be achieved by the user in a gamified educational

application—is reflected in neural indicators. Previous ERP

research on intrinsic motivation focused on the effects of

autonomy frustration (Fang et al., 2020), competence frustration

(Fang et al., 2018, 2021; Meng et al., 2021), or monetary reward

(Ma et al., 2014a) on intrinsic motivation. Meng et al. (2016)

defined challenge level as the differences in task competence

compared with an opponent in a stopwatch game. Results

demonstrated that the challenge level modulates intrinsic

motivation (Meng et al., 2016). However, the challenge levels

of goal scores set to be exceeded by the user in gamification

have not yet been the subject of ERP studies. Goal-setting theory

(Locke and Latham, 2002) states that setting concrete goals is

more motivating than abstract goals such as “doing your best,"

and this principle also applies to gamification (Tondello et al.,

2018). Setting concrete goal scores for users is considered an

important element in gamified educational applications to foster

users’ intrinsic motivation.

To determine goal scores in gamified educational

applications, the SDT predicts that a moderate goal score

(i.e., not too easy or too hard for the user to achieve) promotes

intrinsic motivation. However, while setting a moderate goal

score is generally considered motivating, the possibility of

individual differences in preferences for the level of goal scores

cannot be excluded. Some people prefer goal scores that are

very hard to achieve, while others prefer more easily achievable

levels. If such preferences for the level of goal scores can

be postulated, the neural indicators of intrinsic motivation

would be expected to be related to the preference. That is, we

would expect a correlation of ERP with the subjectively rated

preferences for too-easy, moderate, or too-hard goals rather

than the challenge level of the goal scores being determined by

the individuals’ competence (i.e., differences in the ERP across

the too-easy, moderate, and too-hard goals). If neural indicators

vary with the individual preference for the levels of goal scores

in the gamified educational applications, as shown by Rani et al.

(2005), an optimal goal score for an individual learner may be

provided in applications by enhancing intrinsic motivation.

However, to our knowledge, the ability of these neural indicators

to reflect the challenge level of the goal score and/or individual

preference has seldom been directly investigated.

The effectiveness of these ERP indicators has also not been

evaluated in real-world settings where gamified educational

applications are used. Most previous research has focused

on the stopwatch game task, adopted by Murayama et al.

(2010) requiring participants to stop a stopwatch precisely at

a specified time. With advances in EEG measurement systems,

recent research, however, has proven the applicability of EEG-

based state estimation in situations that mimic a real-world

environment (Watanabe et al., 2021a,b). In addition, recent

studies have shown that the FRN is observable in gaming tasks

using virtual reality (Yokota and Naruse, 2021). Nonetheless,

whether these neural indicators work effectively in actual

gamification educational applications remains unclear.

Based on the knowledge gaps described, we examined

whether ERP neural indicators (1) vary based on the challenge

level of the goal scores determined by participants’ competence,

and (2) are related to the preference for goal score levels in a

gamified educational application. For this purpose, we prepared

a graphical user interface (GUI) application that gamified the

“Hundred-Square Calculations" mental arithmetic task devised

in Japan to cultivate the foundations of calculation skills.

In this task, participants repeatedly solve mental arithmetic

(addition) problems in a single session and receive auditory

feedback immediately after entering the answer to a question.

Scores earned were calculated based on performance in a

single task session. Three levels of goal scores were prepared

(easy, moderate, and hard goal scores to achieve) based on

participants’ competence estimated from the practice session.

Participants performed a series of task sessions at those three

levels of goal scores, during which electroencephalogram (EEG)

measurements were taken. Preference for the goal score levels

was quantified using the subjective rating data on achievement

motivation for each level of goal score. We analyzed whether

there is a relationship between the level of goal score and/or

subjective ratings with these ERP neural indicators.

2. Methods

2.1. Participants

Thirty-three healthy adults participated in the current study

(16 females). Their mean age was 26.7 years old [standard

deviation (SD) = 6.86], and the age range was from 20 to

39 years old. They had normal or corrected-to-normal vision

and reported no medical history of neurological disorders.

Recruitment took place by accessing individuals registered with

a staffing agency. All participants provided written informed

consent to participate in the study. The study was approved

by the Ethics Committee for Human and Animal Research

of the National Institute of Information and Communications

Technology.

2.2. Data acquisition

Considering the usability of ERP indicators in a real-world

environment, EEG data were measured from a small number

of electrodes, as in our previous studies (Ihara et al., 2021;

Watanabe et al., 2021a,b; Yokota and Naruse, 2021). We used

three active dry electrodes placed at Fz, Cz, and Pz according to

the international 10–20 system, and a wireless portable system
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(PolymateMini AP108, Miyuki Giken Co., Ltd.). The locations

of the three electrodes were selected because N1/FRN and

P300 are distributed in the fronto-central and parietal regions,

respectively. Two electrodes were placed on the outer canthi and

above participants’ left eyes to monitor horizontal and vertical

electrooculograms (EOG). The ground and reference electrodes

were placed on the left and right earlobe, respectively. The

sampling rate was 500 Hz.

2.3. Experimental task

The appearance of the gamified mental arithmetic task is

shown in Figure 1, with a description of the game elements.

The task was implemented as a custom desktop application

using MATLAB (The MathWorks, Inc.). Participants were

instructed to achieve the goal score displayed on the application

(Figure 1A) as best they could and input the results of the

addition of every pair of numbers displayed in the row and

column headers into the table. The calculation was started by

pressing the start button using the mouse and adding the first

number in the row header and the numbers in each column

header in order from left to right. After adding the numbers

in the column headers, the calculation was moved to the next

number in the row header. The numbers in the row and column

headers were randomly determined per session, participant and

set, so that three- and two-digit numbers appeared alternately.

As a result, three types of addition problems were presented:

pairs of three-digit numbers (16 calculations), pairs of three-

digit and two-digit numbers (32 calculations), and pairs of two-

digit numbers (16 calculations; c.f. Figure 1). The first digit was

set to be five or more so that carry-over from the first digit

to the next digit would always occur. This difficulty level of

the task was determined based on the preliminary experiment

results, ensuring it was neither too difficult nor too easy. There

are usually 100 sums in the “Hundred-Square Calculations,"

but considering the time required for the experiment and

participants’ concentration, 64 questions were prepared for a

session. Participants used a numeric keypad to input their

answers. Negative and positive auditory feedback for incorrect

and correct answers was given to the participants immediately

after they entered their answers by pressing the Enter key. Scores

earned were based on the number of correct answers in each

session.

Several elements were included to gamify the mental

arithmetic task. First, the point earned for each correct answer

was increased according to the number of consecutive correct

answers. If the number of consecutive correct answers was less

than five, participants got one point for each correct answer.

For each consecutive correct answer that exceeded a multiple

of five, the number of scores increased by a multiple of four.

If the number of consecutive correct answers exceeded 50, the

point for a correct answer was 40. In other words, if the number

of consecutive answers was in the range of [1, 5), [5, 10), . . . ,

[50, 64], the point for a correct answer would be 1, 4, . . . , 40,

respectively. The points earned for the correct answer and the

number of consecutive correct answers were displayed during

the task (Figures 1B,C). Second, a time limit for each question

was set to 10 s. If an answer was not input within the time limit,

negative feedback was given, and the time for the next question

automatically started. The remaining time for a question could

be viewed on the progress bar above the table (Figure 1D).

2.4. Procedure

Data collection was carried out in a dimly lit and

soundproofed room. Participants ran the application for the

mental arithmetic task on the monitor display. A within-

subjects design was employed for the experimental procedure,

with participants performing the task for each level of goal

scores. The EEG data collection consisted of two practice

sessions and six main sessions, followed by a subjective rating

of each level of goal score (Figure 2). In the first practice session,

participants familiarized themselves with the GUI application. If

they found the task very difficult during the first practice and the

percentage of correct answers was low (<10%), the time limit

was extended to 12 s. Five participants used the extended time

limit. In the second practice session, the participants performed

the task the same way as in the main session. The score in this

second practice session was used as a baseline to set goals for the

main session.

In the main session, the task was conducted under three

levels of goal scores (easy, moderate, and hard) aimed at

varying participants’ intrinsic motivation for the task. The

baseline score defined the criterion of each level of goal score:

a baseline score × 0.3 for easy, × 1.3 for moderate, and ×

5.0 for hard. The goal score was displayed on the application

before the session (Figure 1A). Participants were instructed to

confirm the score before starting the session and try to achieve

or exceed that goal score. Two sessions were conducted for

each level of goal score (hereafter referred to as the first and

second attempts per level of goal score; six main sessions in

total). The order of the level of goal scores was randomly

determined for each participant, and every session included a

short break. Participants were discouraged from making large

body movements and being overly tense during the session

to avoid artifacts from manipulating the GUI application.

Speaking the numbers out loud or counting on fingers was

also prohibited. After completing the mental arithmetic task,

participants subjectively rated how motivated they were to

achieve the goal score for each level on a 7-point Likert scale (1:

most motivated–7: least motivated). The entire data collection

procedure lasted approximately 2.5 h, including preparation.
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FIGURE 1

The appearance of a gamified mental arithmetic graphical user interface application. The participant enters answers to addition sums using the

number pairs in the column and row headers in sequence. After entering the answer, auditory feedback on the correctness of the answer is

immediately provided. The goal score and the current score earned are shown in the upper left area (A). Participants were instructed to confirm

the goal score before starting the task and to try to exceed the goal score as much as possible. The number of consecutive correct answers is

visualized by a bar (B). Below the bar, the current number of consecutive correct answers and the points earned for each correct answer are

displayed (C). The points earned vary depending on the number of consecutively correct answers. The remaining time for each question is

displayed as a progress bar (D). If an answer is not entered within the time limit, negative feedback is returned, and the participants are

automatically moved to the next question. The dashed squares are shown for illustration purposes only.

FIGURE 2

Data collection procedure. Participants performed two practice sessions, one to familiarize themselves with the task and the other to determine

the baseline score. In the main sessions, they performed a mental arithmetic task with three levels of goal scores: easy (baseline score × 0.3),

moderate (baseline score × 1.3), and hard (baseline score × 5.0). Each level of goal score was administered twice in random order. After

completing the task, the participants subjectively rated how motivated they were to achieve the goal score, using a 7-point Likert scale.

2.5. Statistical analysis

First, we determined whether the levels of goal scores

modulated participants’ subjective intrinsic motivation using

the subjective rating data. We used a Friedman test, a

non-parametric test, because the subjective rating data were not

normally distributed. Next, we aimed to determine whether the

levels of goal scores (Goal: easy, moderate, and hard) and/or

the preference for these goal levels (i.e., subjective rating data;

Rating: a continuous variable) affected behavioral performances

and ERP responses. The statistical tests were conducted on each

behavioral performance measure, such as scores, the frequency

of negative feedback in the task and the mean amplitudes of N1,

FRN, and P300. To eliminate the possibility of any confounding

differences in performance that would affect the ERP responses,

we also investigated whether the behavioral factors potentially

influencing ERPs differ by Goal and/or are related to Rating.

For these behavioral and ERP analyses, we used a linear mixed-

effects model (LME) or generalized linear mixed-effects model

(GLME) depending on the data distribution. The factors of
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Goal and Rating were included as fixed effects. The subjective

rating data were centered so that the mean was zero when it

was used as a fixed effect. A random intercept was specified

for each participant in the (G)LMEs. We used the conditional

Akaike information criterion (cAIC) (Vaida and Blanchard,

2005) to determine whether a random slope for Rating should

be included. The Type III F-test using the Kenward-Roger

method and the Type III likelihood ratio test (LRT) were used

for determining the significance of the fixed effects in the LME

and GLME analysis, respectively. A treatment contrast was

adopted for all (G)LMEs. The alpha level (α) was 0.05. When

the post-hoc pairwise comparisons were performed, a Bonferroni

correction was used to control the familywise error rate for

the multiple comparisons. We report the raw p-value and the

Bonferroni corrected α when the Bonferroni correction was

administered. The afex package (Singmann et al., 2021) for R (R

Core Team, 2021) was used for (G)LME analyses, and pairwise

comparisons were performed using the emmeans package

(Lenth, 2021). The details of the statistical analysis procedures

for each behavioral measure and ERP are described in the

following sections.

2.6. Subjective rating analysis

Subjective rating data were submitted to a Friedman test

to determine whether the levels of goal scores modulated

participants’ subjective intrinsic motivation and whether the

moderate goal was the most motivating—as predicted by SDT

theory. When the effect of Goal was significant, pairwise

comparisons across levels of goal scores were employed using

the Wilcoxon signed-rank test.

2.7. Behavioral performance analysis

The behavioral data analyses aimed to reveal whether

participants’ motivation levels, predicted to be modulated by the

levels of the goal scores, affected their behavioral performance.

First, we tested whether the scores earned in the sessions differed

across levels of goal scores (analysis of Scores). An LME was

employed. The response variable was the mean score across

the first and second attempts in each level of goal score. Since

EEG analysis focused on the data from the two attempts for

each level of goal score, analyzing them together in terms of

signal-to-noise ratio (SNR) of the ERPs (see the ERP analysis

section for more detail), the data from the two attempts were

analyzed in combination in all analyses of the behavioral data.

Mean scores were log-transformed because of the non-normal

distribution of the data. Both Goal and Rating were included as

fixed effects.

Second, the frequency of negative feedback (i.e., the number

of incorrect or timed-out trials) was submitted to the statistical

analysis (analysis of Negative feedback frequency) to determine

whether the motivation levels affected the frequency of incorrect

answers. The frequency of negative feedback did not follow

a normal distribution. Thus, a GLME with the Poisson

distribution and the log link function was used. The total

number of negative feedback trials between the first and second

attempts for a level of goal score was used as the response

variable for the analysis. The fixed effects were the same as the

analysis of the Scores. In both analyses, if the effect of Goal was

significant, pairwise t-tests using the Kenward-Roger method in

the LME analysis and pairwise z-tests in the GLME analysis were

performed across possible pairs of goals based on the estimated

coefficients.

2.8. Analysis of behavioral factors
potentially influencing ERPs

Further analyses of behavioral performances were carried

out to eliminate the possibility of any confounding differences in

performance that would affect feedback-related ERP responses.

First, we acknowledged that the expected reward magnitude

might affect the FRN (Bellebaum et al., 2010) and P300 (Yeung

and Sanfey, 2004). The differences in points earned for each

correct answer (i.e., reward magnitude) varied by the number of

consecutive correct answers and might have affected our results

across the level of goal score. We examined whether the mean

points earned for the correct answers in the session differed

by the level of goal scores or covariates with subjective ratings

(analysis of Reward magnitude). For each level of goal score,

the mean points earned for the correct answers within a session

were further averaged between the first and second attempts

and used as response variables. The values were log-transformed

because of the non-normal distribution and submitted to the

LME. The fixed effects were Goal and Rating. If the effect of

Goal was significant, pairwise t-tests using the Kenward-Roger

method were performed across possible pairs of goals based on

the estimated coefficients.

Second, the temporal local probability of success, calculated

based on the probability of success up to a certain trial, affects

FRN (Yokota and Naruse, 2021), and P300 amplitudes are

also affected by the probability of the target stimuli (Duncan-

Johnson and Donchin, 1977). Thus, we examined whether

the mean number of consecutive correct answers before the

incorrect answer trials in a session (i.e., local frequency of the

negative feedback) differed across the level of goal scores or

covariates with subjective ratings (analysis of Local outcome

frequency). The mean number of consecutive correct answers

before incorrect trials within a session was further averaged

across the first and second attempts for each level of goal score.

The timed-out trials were not considered because they were

not used in the EEG analysis (see the ERP analysis section).
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The non-normal distribution led to log-transformation of values

submitted to the LME. The fixed effects were Goal and Rating.

If the effect of Goal was significant, pairwise t-tests using the

Kenward-Roger method were performed across possible pairs of

goals based on the estimated coefficients.

Third, we tested for differences in the rate of question type

(i.e., the addition of three-digit number pairs, three-digit and

two-digit number pairs, and two-digit number pairs) included

in the incorrect trials (analysis of Effort magnitude). Previous

research has demonstrated that the mental effort for calculation

affects the feedback-related ERPs (Ma et al., 2014b; Wang et al.,

2017). For this purpose, a GLME was constructed using the

Poisson distribution and the log link function. The response

variable was the total number of incorrect trials across the first

and second attempts per calculation type (Effort: categorical

variable). The fixed effects were Goal, Rating, Effort, and

interactions of Goal× Effort and Rating× Effort. In the analysis

of Effort magnitude, if the effects of Effort were significant,

pairwise z-tests were performed across possible pairs of the effort

levels based on the estimated coefficients. If the effects of Goal

were significant, pairwise z-tests were performed across possible

pairs of the goals.Where significant interactions of Goal× Effort

were noted, the pairwise z-tests across levels of goal scores were

employed for each effort level. If the interaction of Rating ×

Effort was significant, the significance of Rating coefficients was

tested for each effort level.

2.9. ERP analysis

EEG data were preprocessed for every session and

participant. MATLAB and the FieldTrip toolbox (Oostenveld

et al., 2011) were employed for EEG data analysis. The raw

EEG and EOG data were high- (filter coefficients = 908, −6 dB

cutoff frequency= 1 Hz) and low-pass filtered (filter coefficients

= 244, −6 dB cutoff frequency = 30 Hz) using one-pass

zero phase Kaiser window sinc finite impulse response filters.

Ocular artifacts were corrected using independent component

analysis. The filtered data were decomposed into independent

components, and the components of ocular artifacts were

removed from the data. Artifacts derived from eye movements

and blinks were determined by visual inspection of each

component waveform and Pearson correlation between each

component and EOGs. The EEG data were extracted from

−50 to 400 ms relative to the onset of each feedback sound

and baseline-corrected using the mean amplitudes of the pre-

stimulus time window. Data from two participants in one

session were excluded from the analysis because of mechanical

trouble with the trigger. Trials with trigger intervals shorter

than the epoch length were excluded from the analysis because

the baseline region of subsequent trials could be contaminated

with ERPs. It is also unlikely that the participants performed the

calculations properly in such limited time. The median value of

the number of trials removed because of the short epoch length

was 2 (first quartile = 0, third quartile = 4). Trials including

data points exceeding the range of ±65 µv were excluded from

the analysis for artifact rejection. One participant’s data were

excluded from further ERP analysis because more than 30%

of their trials were rejected by this procedure. The median

value of the number of rejected trials among the remaining

participants was 1 (first quartile = 0, third quartile = 6). The

Wilcoxon signed-rank tests showed no significant differences in

the number of rejected trials for all pairs of levels of goal score

(moderate–hard:W = 126, p = 0.727, moderate–easy:W = 86,

p= 0.311, hard–easy:W = 121, p= 0.168, Bonferroni-corrected

α = 0.017).

We averaged each participant’s trials by the level of goal

score and the type of feedback to obtain individuals’ ERPs.

Trial data were concatenated across two attempts for each level

of goal score to ensure a sufficient number of incorrect trials

to calculate the ERPs. The timed-out trials were not included

in the analysis because it could be predicted in advance that

negative feedback would be returned, leading to differences in

the cognitive processing of feedback. The mean amplitudes for

each ERP were calculated for each participant and the level of

goal score. The Fz electrode was used to calculate the mean

amplitude of N1 and FRN (fronto-central distribution), and Pz

was used to calculate that of P300 (parietal distribution). A small

number of trials for calculating the mean amplitude for each

level of goal score results in a poor SNR and unreliable results.

Thus, if the number of incorrect trials used for ERP calculation

was less than 12 for a certain goal score level, that level was

excluded from the analysis. If all levels were excluded, the

participant was not used in the ERP analysis. The time windows

for calculating the mean amplitude of ERPs were defined as

from 92 to 132 ms (40 ms length), from 160 to 200 ms (40

ms length), and from 262 to 342 ms (80 ms length) for N1,

FRN, and P300, respectively. The center time-point of each time

window was the peak latency of each component of the grand

average difference ERP waveform. The grand average difference

ERP waveform was calculated using trials in all conditions (Luck

and Gaspelin, 2017) based on the grand average ERP of negative

feedback minus the grand average ERP of positive feedback. The

length of the time windows was determined by visual inspection

of the grand average difference wave. The minimum number of

trials across the levels was randomly selected from each level.

Themean amplitude of each level was calculated with these trials

to ensure that the SNR of ERPs across conditions did not differ

because of differences in the number of trials across levels of goal

scores.

The mean amplitudes of N1, FRN, and P300 were submitted

to each LME to determine whether differences in participants’

motivation levels modified by the level of goal score were

reflected in their ERP responses. The fixed effects were Goal,

Rating, and Feedback (types of feedback: correct or incorrect),

and interactions of Goal × Feedback and Rating × Feedback.
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FIGURE 3

Results of subjective ratings for each level of goal score. Filled

dots and error bars indicate median and interquartile range,

respectively. The transparent dots are the values for each

participant. *p < Bonferroni-corrected α.

The inclusion of Feedback as a fixed effect allowed us to

determine whether participants’ motivation levels were reflected

in the positive or negative feedback ERPs. If the effect of the

Goal was significant, pairwise t-tests using the Kenward-Roger

method were performed across levels of goal scores based on the

estimated coefficients. Where a significant interaction of Goal

× Feedback was found, pairwise t-tests using the Kenward-

Roger method across the level of goal scores were conducted for

each feedback type. If the interaction of Rating × Feedback was

significant, the significance of the estimated coefficient of Rating

was determined for each feedback type.

3. Results

3.1. Subjective ratings

The subjective ratings for goal score levels are summarized

in Figure 3. The Friedman test revealed a significant effect of

Goal [χ2
(2) = 14.31, p = 7.80E−4]. The pairwise Wilcoxon

signed-rank test for all pairs of levels of goal score indicated

subjective ratings of the moderate goal were significantly higher

than those for the easy and hard ones (moderate–easy: W =

58, p = 8.46E−4, moderate–hard: W = 62.5, p = 7.53E−4,

Bonferroni-corrected α = 0.017). There was no significant

difference between easy and hard goals (W = 184, p = 0.672,

Bonferroni-corrected α = 0.017).

The variance in subjective ratings for easy and hard goals was

larger than for moderate ones, confirming individual differences

in the level of goal score preferences. Therefore, to determine

whether this difference in variance was statistically significant,

we tested the homogeneity of the variance of subjective ratings

for easy and moderate goals and hard and moderate goals,

using a Brown-Forsythe test. The Brown-Forsythe test is a

modification of the Levene test to increase robustness for non-

normality. The variances of the subjective ratings in the easy

and hard goals were significantly greater than for the moderate

goal [easy–moderate: F(1, 64) = 16.22, p = 1.52E−4; hard–

moderate: F(1, 64) = 12.72, p = 6.91E−4, Bonferroni-corrected

α = 0.025].

The difference in the variance of subjective ratings may be

derived from the difference between goals and earned scores. For

example, if a participant scores close to the goal score on a hard

goal assumed to be hard to achieve, the subjective rating may

be relatively higher. To eliminate this possibility, we used LME

analysis to determine whether the absolute difference between

the goal score and the earned score was related to subjective

ratings for the easy and hard goals. The response variable was

the absolute value of the difference between the goal and earned

scores, log-transformed to approximate a normal distribution.

Fixed effects were Attempt (1st attempt and 2nd attempt), Goal,

and Rating. The interaction of Attempt × Goal and Attempt

× Rating were also included in the model. The LME revealed

no significant effects of Rating [F(1, 28.55) = 2.09, p = 0.159]

and no interaction of Attempt × Rating [F(1, 76.94) = 1.75, p =

0.190]. The effect of Goal was significant [F(1, 101.8) = 28.34, p

= 6.10E−7]—the log-transformed, absolute differences between

the goal scores and earned scores were larger for the hard goal

than the easy one. The interaction of Goal × Attempt was

not significant [F(1, 76.94) = 2.28, p = 0.135], and the effect

of Attempt was marginally significant [F(1, 76.94) = 3.49, p =

0.066].

3.2. Behavioral performance

The mean values of the goal scores across participants were

40.94 (SD= 27.03), 212.8 (SD= 140.4), and 786.7 (SD= 473.7)

for easy, moderate, and hard, respectively. Figure 4 shows the

percentage of participants who achieved their goal score for each

attempt and the level of goal score. While almost all of them

achieved the easy goal, most participants failed to achieve the

hard one, and approximately half of the participants reached the

moderate goal in each attempt.

The statistical results of the (G)LME analyses of behavioral

performance are summarized in Table 1. Figure 5 depicts the

estimated coefficients of Goal (left) and predicted values on

Rating (right) in the (G)LMEs. The LME analysis of Scores

did not show any significant effect of Goal [F(2,57.74) = 1.37,

p = 0.263; Figure 5A left] and Rating [F(1, 31.10) = 0.035, p

= 0.854; Figure 5A right]. In the GLME analysis of Negative

feedback frequency, both effects of Goal [χ2
(2) = 0.521, p =
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0.771; Figure 5B left] and Rating [χ2
(1) = 0.001, p = 0.982;

Figure 5B right] were also not significant.

3.3. Behavioral factors potentially
influencing ERP

The statistical results of the (G)LME analyses on the

behavioral factors potentially influencing ERP are summarized

in Table 2. Figure 6 depicts the estimated coefficients of Goal

(left) and predicted values on Rating (right) in the (G)LMEs.

The results of Reward magnitude showed no significant effects

of Goal [F(2, 56.78) = 1.17, p = 0.317; Figure 6A left] and

Rating [F(1, 31.39) = 0.081, p = 0.778; Figure 6A right]. Local

outcome frequency also showed no significant fixed effects

[Goal: F(2, 52.85) = 0.044, p = 0.958, Figure 6B left; Rating:

F(1, 32.06) = 0.079, p= 0.780, Figure 6B right].

Effort magnitude reports indicated that the effect of Effort

was, unsurprisingly, significant (χ2(2) = 297.0, p = 3.24E−65;

Figure 6C left). Pairwise z-tests across effort levels showed that

incorrect addition of the two- and three-digit number pairs

was significantly more frequent than for two-digit number pairs

FIGURE 4

Percentage of participants who achieved the goal score for each

level of goal score and attempt. Almost all participants achieved

the easy goal and did not achieve the hard one. The percentage

of participants who achieved the moderate goal was

approximately 50% in both attempts.

(two- and three-digit number pairs—two-digit number pairs:

z = 15.70, p = 1.59E−55, Bonferroni-corrected α = 0.017)

and the three-digit number pairs (two- and three-digit pairs—

three-digit number pairs: z = 5.79, p = 6.95E−9, Bonferroni-

corrected α = 0.017) because there were more two- and three-

digit numbers than other pairs in the task (c.f. Figure 1). The

number of incorrect trials for three-digit number pairs was

significantly higher than for two-digit number pairs (three-

digit number pairs—two-digit number pairs: z = 10.98, p =

4.65E−28, Bonferroni-corrected α = 0.017), possibly because

three-digit number pairs are more difficult to calculate than

two-digit number pairs. The effect of Goal approximated

significance (χ2(2) = 5.70, p = 0.058) while other fixed effects

did not reach significance (all other χ2s ≤ 1.53; all other

ps ≥ 0.465).

3.4. ERPs

Figure 7 shows the grand average ERPs for correct and

incorrect trials time-locked to feedback onset. Their difference

waveforms are also shown for each channel and level of goal

score. The results of the statistical analyses are summarized

in Table 3. Figure 8 shows the estimated coefficients of Goal

(upper) and predicted values on Rating (lower) in the LMEs

for each mean amplitude. The LME analysis for N1 components

showed a significant effect of Feedback [F(1, 83.85) = 165.9, p =

1.42E−21]. The N1 amplitude of the negative feedback showed

more negative deflection than the positive feedback. No other

significant effects were found (all other Fs ≤ 0.482; all other ps

≥ 0.492) (Figure 8A).

The FRN analysis confirmed the significant effect of

Feedback [F(1, 110.8) = 98.25, p = 5.79E−17], where the mean

FRN amplitudes of the negative feedback showed significantly

more negative deflection than for positive feedback. No other

significant effects were found (all other Fs ≤ 0.748; all other ps

≥ 0.389) (Figure 8B).

Analysis of P300 showed a significant effect of Feedback

[F(1, 106.0) = 83.88, p= 4.38E−15], withmore positive deflection

for negative feedback than for positive. The effect of Rating

was marginally significant [F(1, 115.0) = 2.95, p = 0.088],

and the effect of Goal was not significant [F(2, 102.4) = 1.36,

TABLE 1 Summary of statistical analyses for behavioral performances.

Test Fixed effects Statistic d.f. p

Scores F-test Goal 1.37 (2, 57.74) 0.263

Rating 0.035 (1, 31.10) 0.854

Negative feedback frequency LRT Goal 0.521 2 0.771

Rating 0.001 1 0.982

d.f., the degrees of freedom; LRT, the likelihood ratio test.

The statistics of the F-test and LRT are F and χ
2 , respectively.
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FIGURE 5

The estimated coe�cients of Goal (left) and the predicted values on Rating (right) in the (generalized) linear mixed-e�ects models [(G)LME]

analyses for Scores (A) and Negative feedback frequency (B). In Goal results, the filled dots and error bars represent the estimated coe�cients

and 95% confidence intervals. The transparent dots are data points for each participant. In Rating results, the black line represents the predicted

values from the (G)LME, and the gray area represents the 95% confidence interval. Black dots are data points for each participant (number of

participants × number of levels of goal scores).

TABLE 2 Summary of statistical analyses of behavioral factors potentially influencing event-related potentials.

Test Fixed effects Statistic d.f. p

Reward magnitude F-test Goal 1.17 (2, 56.78) 0.317

Rating 0.081 (1, 31.39) 0.778

Local outcome frequency F-test Goal 0.044 (2, 52.85) 0.958

Rating 0.079 (1, 32.06) 0.780

Effort magnitude LRT Goal 5.70 2 0.058

Rating 0.289 1 0.591

Effort 297.0 2 3.24E−65*

Goal× Effort 0.710 4 0.950

Rating× Effort 1.53 2 0.465

d.f., the degrees of freedom; LRT, the likelihood ratio test. *p < 0.05.

The statistics of the F-test and LRT are F and χ
2 , respectively.

p = 0.263]. The effect of Goal × Feedback approximated

significance [F(2, 100.4) = 2.74, p = 0.069]. There was a

significant interaction of Rating × Feedback [F(1, 102.8) = 5.93,

p = 0.017]. The coefficients of Rating reached significance for

the negative feedback [β = −0.678, t(109) = −2.43, p = 0.017].

The coefficients, however, did not demonstrate significance

for positive feedback [β = 0.083, t(111) = 0.470, p = 0.639;

Figure 8C]. The estimated coefficients and 95% intervals in

LMEs are summarized in Table 4.

4. Discussion

This study examined whether ERP measures are modulated

by the challenge level of the goal scores determined by

participants’ competence or are related to the preference

for these goal levels when using a gamified educational

application. The achievement percentages for each level of

goal score showed that almost all participants achieved

the goal score for the easy goal, while almost no one
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FIGURE 6

The estimated coe�cients of Goal (left) and the predicted values on Rating (right) in the (generalized) linear mixed-e�ects models [(G)LME]

analyses for Reward magnitude (A), Local outcome frequency (B), and E�ort magnitude (C). In Goal results, the filled dots and error bars

represent the estimated coe�cients and 95% confidence intervals. The transparent dots are data points for each participant. In Rating results,

the black line represents the predicted values from the (G)LME, and the gray area represents the 95% confidence interval. Black dots are data

points for each participant (number of participants × number of levels of goal scores).

reached the hard goal. In contrast, approximately half the

participants achieved the moderate goal, indicating that

the moderate goal was not biased toward either difficult

or easy. Participants also reported that they were most

motivated to achieve moderate goals, as predicted by the

SDT and supporting the validity of the goal scores in the

current research. The ERP results indicated that the P300

amplitude in response to negative feedback is significantly

related to subjective ratings of achievement motivation for

each level of goal score rather than the level of goal

scores themselves.

P300 amplitude reflects the motivational significance of

the target stimuli (Nieuwenhuis et al., 2005) and is also

enhanced by increased allocation of attentional resources to

target stimuli (Nieuwenhuis et al., 2005; Polich, 2007). Thus, it

is likely that as participants’ intrinsic motivation to achieve the

goal scores increased, their allocation of attentional resources

to negative feedback increased and/or negative feedback was

perceived as more motivationally significant information for

goal achievement.

These motivation effects on the P300 amplitudes are

consistent with previous research (Kleih et al., 2010; Fang et al.,
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FIGURE 7

The grand average event-related potentials (ERPs) for correct and incorrect trials time-locked to the feedback onset and their di�erence

waveforms for each channel and level of goal score. The blue and red area represents the standard error for correct and incorrect trials, and the

gray rectangles represent the range of the time window for calculating the mean amplitude of each ERP. For each level of goal score,

participants with fewer than 12 incorrect trials were excluded from the calculation of ERPs for incorrect trials at that level of goal score in terms

of signal-to-noise ratio.

TABLE 3 Summary of statistical analyses (F-tests) of the mean

amplitudes of event-related potentials.

Fixed effects F d.f. p

N1 Goal 0.051 (2, 98.67) 0.950

Rating 0.482 (1, 40.62) 0.492

Feedback 165.9 (1, 83.85) 1.42E−21*

Goal× Feedback 0.314 (2, 81.22) 0.731

Rating× Feedback 0.157 (1, 85.99) 0.693

FRN Goal 0.077 (2, 105.6) 0.926

Rating 0.748 (1, 122.4) 0.389

Feedback 98.25 (1, 110.8) 5.79E−17*

Goal× Feedback 0.292 (2, 102.7) 0.747

Rating× Feedback 0.052 (1, 106.3) 0.821

P300 Goal 1.36 (2, 102.4) 0.263

Rating 2.95 (1, 115.0) 0.088

Feedback 83.88 (1, 106.0) 4.38E−15*

Goal× Feedback 2.74 (2, 100.4) 0.069

Rating× Feedback 5.93 (1, 102.8) 0.017*

d.f., the degrees of freedom. *p < 0.05.

2020). The results of the subjective ratings showed that moderate

goals were the most motivating compared with easy and hard

goals. Despite the subjective rating results, modulation of ERP

amplitude by the degree of intrinsic motivation was observed as

a covariate with subjective ratings rather than the levels of the

goal scores. The variance in subjective ratings was significantly

greater for easy and hard goals than for moderate goals. This

difference in variance was not related to the proximity of

the earned score to the goal score. Thus, even though most

participants were willing to achievemoderate goals, the degree of

motivation for easy and hard goals may depend on participants’

preferences. One group may prefer a level of goal score that

is difficult to achieve, while another may prefer a level below

their competence. The P300 indicators successfully captured

such preferences for the level of goal scores in the gamified

educational application.

The current research did not find any relationship between

FRN and intrinsicmotivation linked to the levels of goal scores—

in contrast with P300. Positive emotions increase FRN responses

because a positive mood decreases the expectation of negative

feedback (Paul and Pourtois, 2017). Boredom states also affect

the response (Milyavskaya et al., 2019). Thus, the finding that

FRN was not affected by the levels of goal score suggests,

at least, that the settings of the levels of goal scores did not

affect participants’ boredom and positive emotions during the

current task. However, previous studies have reported FRN’s

role as indicating intrinsic motivation (Ma et al., 2014a; Fang

et al., 2018; Meng et al., 2021) and have yielded inconsistent
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FIGURE 8

The estimated coe�cients of Goal (upper) and the predicted values on Rating (lower) for each incorrect and correct trial in the linear

mixed-e�ects models (LME) analyses for the mean amplitudes of N1 (A), feedback-related negativity (FRN) (B), and P300 (C). In Goal results, the

filled dots and error bars represent the estimated coe�cients and 95% confidence intervals. The transparent dots are data points for each

participant. In Rating results, the colored line represents the predicted values from the LME, and the colored area represents the 95% confidence

interval. Filled dots are data points for each participant (number of participants × number of levels of goal scores for each feedback type).
*p < 0.05.

results regarding whether changes in the degree of intrinsic

motivation are reflected in P300. Contrary to the present results,

several studies failed to observe the effect of the degree of

intrinsic motivation on P300 amplitude. For example, Ma et al.

(2014a) reported that the reduction in intrinsic motivation,

brought about by the undermining effect of monetary rewards,

is reflected in the FRN, not the P300 amplitude to outcome

feedback. Fang et al. (2021) also showed that a change in intrinsic

motivation due to negative information about participants’

task performance based on comparison with others—such as

“your performance was below average”—did not affect the P300

amplitude time-locked to outcome feedback. The discrepancy

between these previous studies and the current result may

be because of the method used to change the participants’

intrinsic motivation. In this study, participants were presented

with a goal score prior to the session and encouraged to

exceed that score. Such instructions might have increased the

allocation of attentional resources to negative feedback when

they were more intrinsically motivated to achieve goals, because

negative feedback for each answer was motivationally significant

information for whether the goal could be achieved. Related

to this result, Leng and Zhou (2010) reported the impact of

interpersonal relationships on outcome evaluation during a

gambling task, i.e., whether observing a friend or stranger’s

outcome feedback was reflected in the P300 only and not in FRN.

Findings from that study suggested that outcome evaluation can
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TABLE 4 Estimated coe�cients (β) and the 95% confidence interval in the linear mixed-e�ects models of the mean amplitudes of event-related

potentials.

N1 FRN P300

Predictors β CI β CI β CI

FB[cor.] (Intercept) −0.300 [−1.20, 0.599] 5.04 [3.93, 6.15] 2.50 [1.36, 3.64]

FB[incor.] −3.85 [−4.84, −2.85] −5.57 [−7.18, −3.97] 4.23 [2.77, 5.70]

Rating 0.149 [−0.147, 0.446] −0.199 [−0.569, 0.170] 0.083 [−0.260, 0.426]

Goal[mod.] 0.211 [−0.707, 1.13] −0.694 [−2.15, 0.761] 0.181 [−1.14, 1.50]

Goal[hard] 0.006 [−0.911, 0.923] −0.236 [−1.63, 1.15] −0.270 [−1.53, 0.990]

FB[incor.]: Rating −0.086 [−0.506, 0.335] 0.078 [−0.590, 0.745] −0.761 [−1.37, −0.150]

FB[incor.]: Goal[mod.] −0.603 [−2.11, 0.901] 0.924 [−1.53, 3.38] −1.51 [−3.74, 0.720]

FB[incor.]: Goal[hard] −0.274 [−1.86, 1.31] 0.526 [−2.04, 3.09] 1.77 [−0.571, 4.11]

CI, 95% confidence interval; FB, Feedback; cor., correct; incor., incorrect; mod., moderate.

be divided into an early semi-automatic process reflected in FRN

and a later outcome evaluation process sensitive to the allocation

of attentional resources, reflected in P300 (Leng and Zhou,

2010). As in their result, changes in intrinsic motivation due to

levels of goal scores may affect only the later cognitive processes

reflected in the P300, not the early semi-automatic processes in

outcome evaluation. It should be noted, however, that the failure

to observe the effect of the intrinsic motivation to achieve the

goal scores on FRN may be due to the number of trials used in

the analysis. In the present analysis, we used at least 12 trials to

calculate ERP waveforms for each level of goal scores. This is a

relatively small number compared with typical ERP studies, and

to observe reliable FRN responses, 20 trials are desirable (Marco-

Pallares et al., 2010). The lack of FRN effects may be because

of the small number of trials, given the amplitude of the FRNs

was generally smaller than P300. Taken together, the current

result suggests that the measurement of P300 amplitude is most

appropriate for using neural indicators to set the appropriate

level of goal scores to foster users’ intrinsic motivation in

educational gamification applications. The usefulness of FRNs

for this purpose will be addressed in future studies.

Behavioral performance—earned scores and negative

feedback frequency—did not differ significantly between the

levels of goal scores and was not related to subjective ratings.

Thus, at least for the task in this study, differences in intrinsic

motivation did not affect behavioral performance. These

behavioral results suggest that even though motivation levels

varied by the levels of the goals, participants were engaged

in the task even if the goals were easier or harder to achieve.

When considering a system that adaptively sets goal scores

for each learner based on their degree of intrinsic motivation,

ERP measurement is superior to measurements of behavioral

performance. One might argue that the P300 results for

the negative feedback were derived from differences in the

behavioral performances affecting the feedback-related ERPs.

However, analyses of the possible factors influencing these ERPs,

such as reward magnitude, local outcome frequency, and effort

magnitude, showed no significant relationship with subjective

ratings, ruling out the possibility that the P300 results obtained

were confounded by these behavioral factors.

The P300 effect was observed only for negative feedback.

However, Fang et al. (2020) showed that P300 motivational

effects were noted regardless of outcome valence, and other

studies indicate that P300 is sensitive to the magnitude of the

reward, not the outcome valence (Yeung and Sanfey, 2004; Sato

et al., 2005). However, the sensitivity of P300 to outcome valence

remains controversial and may be influenced by outcome

probability (San Martín, 2012). In Fang et al. (2020)’s research,

the probability of success in a task was approximately 50%.

However, in the current study, the number of incorrect trials

was lower than the number of correct trials. In addition, our

gamified GUI application was designed to return sequential

feedback immediately after the answer to a calculation was

entered. This sequential feedback was similar to the oddball task,

where P300 was observed for infrequent target stimuli. Thus, the

frequency of negative feedback and the sequential presentation

of feedback—like in the oddball task—might produce P300 in

response to negative feedback.

A limitation of this study is that we did not consider

anxiety levels or history of psychiatric disorders in the

study participants. Participants were healthy and had no

history of neurological disease, but further information

about their mental health was not gathered. Studies

have shown that individuals with depression (Keren

et al., 2018)—even remitted depression (Santesso et al.,

2008)—and high trait anxiety (Gu et al., 2010; Takács

et al., 2015) modulate the FRN. These factors might

have influenced the feedback-related ERPs observed

in the current study, and will be taken into account in

future studies.

In conclusion, this study showed that EEG measurements

during a gamified educational GUI application could reflect
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the modulation of intrinsic motivation by the levels of the

goal scores. P300 amplitudes varied based on a preference

for each level of goal score rather than the levels of goal

scores. The results indicate individual differences in preference

for the level of goal scores and that P300 can serve as an

indicator to capture these individual differences. Using this

neural indicator, it may be possible to adaptively set each

learner’s goal score in gamified educational applications to

reinforce learners’ intrinsic motivation. Setting goal scores

in line with individual preferences may help improve and

maintain learners’ motivation when engaged in gamification

educational applications.
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