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Enhancing motor imagery
detection e�cacy using
multisensory virtual reality
priming

Reza Amini Gougeh and Tiago H. Falk*

Institut National de la Recherche Scientifique-Energy, Materials and Telecommunications Center,

University of Québec, Montreal, QC, Canada

Brain-computer interfaces (BCI) have been developed to allow users to

communicate with the external world by translating brain activity into control

signals. Motor imagery (MI) has been a popular paradigm in BCI control where the

user imagines movements of e.g., their left and right limbs and classifiers are then

trained to detect such intent directly from electroencephalography (EEG) signals.

For some users, however, it is di�cult to elicit patterns in the EEG signal that

can be detected with existing features and classifiers. As such, new user control

strategies and training paradigms have been highly sought-after to help improve

motor imagery performance. Virtual reality (VR) has emerged as one potential tool

where improvements in user engagement and level of immersion have shown to

improve BCI accuracy. Motor priming in VR, in turn, has shown to further enhance

BCI accuracy. In this pilot study, we take the first steps to explore if multisensory

VR motor priming, where haptic and olfactory stimuli are present, can improve

motor imagery detection e�cacy in terms of both improved accuracy and faster

detection. Experiments with 10 participants equippedwith a biosensor-embedded

VR headset, an o�-the-shelf scent di�usion device, and a haptic glove with force

feedback showed that significant improvements inmotor imagery detection could

be achieved. Increased activity in the six common spatial pattern filters used were

also observed and peak accuracy could be achieved with analysis windows that

were 2 s shorter. Combined, the results suggest that multisensory motor priming

prior to motor imagery could improve detection e�cacy.

KEYWORDS

brain-computer interface, motor imagery, multisensory priming, virtual reality, haptics,

force feedback, olfaction

1. Introduction

Brain-computer interfaces (BCI) represent a burgeoning modality to control and
communicate with peripheral devices via non-muscular motor control and directly through
brain signals (Vidal, 1973). To establish a dialogue between the brain and computers, the
first BCI systems were developed based on electroencephalography (EEG) signals in the
early 1970s (Wolpaw et al., 2002). Their primary goals focused on clinical applications to
repair, improve, or replace the natural output of the human central nervous system (Wolpaw
and Wolpaw, 2012). Today, so-called passive/affective BCIs have emerged to monitor
unintentional, involuntary, and spontaneous modulations in user cognitive states (Zander
and Jatzev, 2011). For example, BCIs have been proposed to detect emotion states during
meditation (Kosunen et al., 2017), to provide insights on a user’s quality of experience
(Gupta et al., 2016), and have recently been integrated into virtual reality headsets to allow
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for personalized experiences (Bernal et al., 2022; Moinnereau et al.,
2022), just to name a few applications.

Reactive BCI systems, in turn, are driven by explicit
communication between humans and computers by exploiting
brain activity arising in reaction to external stimulation, which is
indirectly modulated by the user to control an application (Wolpaw
et al., 2020). For example, spellers using the P300 event-related
potential (ERP) have been proposed and perfected over the years
(e.g., Philip and George, 2020), as have games based on steady-
state visual evoked potentials (SSVEP) (e.g., Lopez-Gordo et al.,
2019; Filiz and Arslan, 2020). Active BCIs, on the other hand, derive
their outputs from brain activity which is directly and consciously
controlled by the user, independent of external events, to control an
application. The most common mental task used is motor imagery
(MI), where the person imagines moving their hands, feet, and/or
tongue and these imagined movements produce modulations over
the sensorimotor cortex.

MI-based BCIs are very popular (Zhang and Wang, 2021) as
they have shown to engage the same underlying neural circuits
associated with executed motor actions (Abbruzzese et al., 2015).
As such, they have been used to control, for example, wheelchairs,
drones, and exoskeletons (Kim et al., 2016) or to improve
attention levels (Yang et al., 2018) in both healthy and patient
populations (Ruffino et al., 2017). In the medical field, they have
been employed for stroke rehabilitation (Tang et al., 2018). In this
case, the coupling of the BCI with a functional electrical stimulator
allows for direct feedback to the user via muscle stimulation
(Marquez-Chin and Popovic, 2020) once a successful imagery task
is achieved. Research is showing that when the MI task is repeated
many times, it can induce greater brain plasticity, reduce spasticity,
and help patients more quickly restore movements (Sebastián-
Romagosa et al., 2020).

Despite these reported benefits of using MI-based BCIs, studies
have reported that detecting motor imagery tasks using off-
the-shelf neuroimaging tools can be challenging for 15–30% of
the population (Blankertz et al., 2010; Thompson, 2019). Earlier
studies referred to this as “BCI illiteracy,” which insinuates the
issue is on the user. While, indeed, studies have shown that
MI-BCI accuracy can be affected by user-related factors, such
as attention and frustration levels (Myrden and Chau, 2015),
limitations in hardware (e.g., signal acquisition systems and signal
quality) and software (e.g., accuracy of the classification algorithms)
also play a crucial role (Allison and Neuper, 2010). As such,
the terminology “BCI inefficiency” (Edlinger et al., 2015) has
been more recently incorporated. To overcome this issue, recent
research has focused on developing new filtering methods, feature
extraction techniques, and newer and more complex machine
learning algorithms to tackle the software aspect (Gaur et al.,
2015; Zhou et al., 2020; Benaroch et al., 2022; Tibrewal et al.,
2022). Moreover, improvements in bioamplifiers and electrodes
(dry versus gel-based; active versus passive) have been explored
to address the hardware issues (Cecotti and Rivet, 2014). Lastly,
new training paradigms and presentation modalities (e.g., virtual
reality), as well as priming methods have been explored to help
users generate neural signals that can be better detected with
existing technologies (Birbaumer et al., 2013).

Virtual reality (VR) has emerged as one particular presentation
modality that has shown to positively impact BCI performance
(Vourvopoulos et al., 2016; Amini Gougeh and Falk, 2022a;
Arpaia et al., 2022; Choy et al., 2022). VR-based presentation
can increase the sense of embodiment, improve immersion, and
foster greater engagement levels, which, in turn, could lead to the
generation of neural signals with increased discriminability (Škola
and Liarokapis, 2018; Vourvopoulos et al., 2019). In fact,
Amini Gougeh and Falk (2022a) surveyed the literature and
showed that VR coupled with MI-BCIs could lead to improved
neurorehabilitation outcomes.

In addition to VR-based training, priming strategies have
also been explored as a tool to further enhance motor imagery.
For instance, Vourvopoulos et al. (2015) and Vourvopoulos and
Bermúdez i Badia (2016) showed that motor priming, where a
VR-based physical activity was performed prior to the MI task,
could enhance the imagery task. In particular, subjects who received
motor priming in VR had higher MI-BCI performance compared
to a standard setup. Stoykov and Madhavan (2015), in turn,
highlighted the potential of sensory priming and showed how
incorporating vibration stimuli during priming could improve
motor imagery and neurorehabilitation outcomes. Vibrotactile
stimuli, however, covers only one modality in sensory priming,
which leaves the question “Are there any benefits to including other
sensory modalities during VR-based priming?” still unanswered. In
this work, we wish to explore the impact of including olfactory and
tactile stimuli on overall motor imagery performance in order to
help answer this question.

It is known that smells can influence user behavior through
affective priming (Smeets and Dijksterhuis, 2014). Multisensory
stimuli can result in experiences that enhance the sense of
embodiment, presence, immersion, engagement, and overall
experience of the user relative to a conventional audio-visual
experience (e.g., Melo et al., 2020; Amini Gougeh and Falk, 2022b;
Amini Gougeh et al., 2022). As such, it is hypothesized that a
multisensory immersive priming paradigm will further improve
motor imagery detection accuracy. In fact, olfaction has been
linked to improved relaxation states, increased attention, and more
positive emotions (Gougeh et al., 2022; Lopes et al., 2022). Hence,
inclusion of smells during priming may counter the negative effects
that attention and frustration can have on motor imagery accuracy,
as reported by Myrden and Chau (2015).

Moreover, sensory processing, including olfactory, has been
shown to influence motor processing (Ebner, 2005). In a recent
study using transcranial magnetic stimulation, the perception of a
pleasant smell and its olfactory imagery showed to be associated
with primary motor cortex excitability (Infortuna et al., 2022).
The results were in line with those of Rossi et al. (2008), which
showed a cross-link between the olfactory and motor systems. The
work by Tubaldi et al. (2011), in turn, suggested a superadditive
effect on brain activity during action observation executed with a
small odorant object (e.g., grasping a strawberry, almond, orange,
or apple). Combined, these findings suggest that the combination
of motor tasks in the presence of olfactory stimuli could have
an impact on user behavior and on motor cortex excitability.
Ultimately, this could lead to improved MI-BCI performance.
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In light of these insights, our main research question (RQ)
is to investigate if VR training, combined with multisensory
priming, can improve MI-BCI performance. Here, improvement
will be explored across two dimensions: accuracy and timing.
Improvements in accuracy suggest neural signatures that are more
discriminative for existing signal processing and machine learning
pipelines. Improvements in timing suggest that imagery can be
detected faster. Timing is important, as it is known that mental
fatigue from long task times can induce frustration and, ultimately,
reduce overall BCI performance (Talukdar et al., 2019). In addition
to this main RQ, several other sub-RQs will be explored. These will
investigate aspects, such as, user experience and sense of presence
provided by the multisensory priming paradigm, the differences in
accuracy achieved on a per-subject versus global scale, the impact
of varying distances and depths cues of the movement imagination
on overall accuracy, as well as the impact of multisensory priming
on different aspects of the signal processing pipelines, including
window duration size and time-from-cue, and their impact on
overall accuracy.

To help answer these questions, a multisensory motor priming
experiment was performed in VR. Two motor priming tasks took
place between two motor imagery tasks: a multisensory one that
included tactile, olfactory, and audio-visual stimuli, and a baseline
that included only audio-visual. Different analyses are performed
to help answer the RQs and sub-RQs mentioned above. The
remainder of this paper is organized as follows. In Section 2, we
detail the material and methods used in the study. Experimental
results are then presented in Section 3 and discussed in light of
existing literature. Lastly, Conclusions are presented in Section 4.

2. Materials and methods

2.1. Participants

Eleven participants (three female, 25.81 ± 3.88 years old)
were recruited to participate in this pilot study. Eligibility
criteria included healthy individuals. Participants with a history
of severe cybersickness and sensitivity to scents were excluded.
The experiment protocol was reviewed and approved by the Ethics
Committee of the Institut national de la recherche scientifique
(INRS), University of Quebec (number: CER-22-663). During data
collection, COVID-19 safety measures were considered and put
in place, including maintaining social distance, wearing a face
mask, and disinfecting all devices with alcohol wipes and a UV-
C chamber. All participants were considered novice BCI users,
and this was their first time performing a motor imagery task.
It is important to emphasize that the data from one subject was
considered too noisy for analysis, thus was discarded here from
the analysis.

2.2. Equipment and data integration

In this study, a VR head-mounted display (HMD) was coupled
with force feedback haptic gloves, an electromyogram (EMG)
armband, a portable scent diffusion device, and a wireless BCI
system (henceforth referred as “BCI-HMD") embedded directly

into the headset following guidelines described by Cassani et al.
(2020). An illustration of the different components of the system
is shown in Figure 1A, along with a visual of a user wearing them
in Figure 1B. In addition, a VR game was created and synchronized
with the hardware. More details about the instrumented HMD is
given next.

2.2.1. Instrumented headset: BCI-HMD
AMeta Quest2 HMD (LCD display with a resolution of 1, 920×

1, 832, 72 Hz refresh rate, and 89◦ field of view) was used. Three
physiological signal modalities, including electroencephalography
(EEG), electrooculography (EOG), and photoplethysmography
(PPG) were integrated into the facial foam and head straps of the
VR headset and directly connected to an OpenBCI bioamplifier
encased in a 3D-printed box and placed on top of the HMD
straps (see Figure 1B). OpenBCI Cyton and Daisy bioamplifiers
(OpenBCI, USA) were used to capture 11 EEG channels from
frontal (Fp1, Fpz, Fp2, F3, F4, Fz, Fc1, Fc2) and central (C3, C4,
Cz) regions following the international 10-20 system (Jasper, 1958)
at a 125 Hz sample rate. In order to ensure participant comfort,
softPulseTM soft dry EEG electrodes (Datwyler, Switzerland) were
employed on the VR strap and flat sensors were placed directly
on the faceplate cushion of the headset. A PPG sensor was used
to monitor heart rate and was also integrated into the faceplate
of the HMD, as well as two pairs of vertical and horizontal
EOG electrodes. A green LED light was used in the PPG sensor
to ensure more accurate measurements (Castaneda et al., 2018).
Moreover, a pair of Myo 8-channel armbands (Thalmic labs,
Canada) were placed on the participant forearms in order to
capture electromyography (EMG) signals at a rate of 200 Hz
using dry electrodes. Different modalities and signal inputs were
synchronized and recorded using lab streaming layer (LSL) to be
used in post-experiment offline data processing.

2.2.2. Multisensory stimuli
Apair of NovaTM haptic gloves (SenseGlove, Netherlands) were

employed to deliver accurate force feedback to each finger. The
gloves could also track wrist, hand, and finger gestures using inertial
measurement unit (IMU) sensors. Taking advantage of linear
resonant actuators on the thumb and index fingers, participants
could perceive the texture and stiffness of a 3D object in the virtual
environment. Mounting the Meta Quest2 controllers on the gloves
enabled 3D mapping of the hand locations onto the virtual space,
as shown in Figure 1B. Furthermore, an OVR ION2 scentware
device (OVR Technologies, USA) was connected to the BCI-HMD
to provide an olfactory stimulus by dispersing aromas close to the
user’s nose. The employed scent kit contains nature-oriented scents
including beach, flowers, earth dirt, pine forest, ocean breeze, wood,
citrus, ozone, and grass smells. In this study, the citrus scent was
chosen as an olfactory stimulus.

2.2.3. Developed virtual environment
A custom virtual environment was designed in Unity3D 2021.

As illustrated in Figure 2A, five oranges were placed on each of six
plates positioned on top of a table. The participant was seated at the
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FIGURE 1

(A) Instrumented BCI-HMD headset comprised of a HMD-VR and bioamplifier to monitor electroencephalography (EEG), electrooculography (EOG),

facial electromyography (EMG), and photoplethysmography (PPG). Other devices include the OVR ION2 scentware, Myo armbands, and a

Senseglove Nova haptic glove. (B) A participant wearing the BCI-HMD system.

center and three plates to the left and three to the right side of the
participant were strategically positioned at three different distances
(three levels). The nearest plates (level 1) positioned at a relative
distance of 20 cm from subject in the real-world, while the farthest
plates (level 3) were located at 60 cm; the middle plates were placed
at 40cm (level 2). With this arrangement, we could investigate
the role of depth cues on sense of presence and, ultimately, on
BCI performance. The environment and the distance were devised
in a way that even the oranges placed on the farthest plate were
accessible by full arm extension, without the need for any additional
body movement.

2.3. Experimental design

A repeated measures experimental design (so-called within-
subject experimental protocol) was followed in which all the
participants underwent the same experimental conditions (with
counterbalanced ordering). Figure 3 illustrates the step-by-step
protocol timelines and experimental blocks. In the pre-experiment
phase, participants were first assessed for any known motion
sickness or sensitivity to smells, as well as their comfort with
the BCI-HMD and haptic gloves. Each participant was then
given comprehensive instructions verbally, before wearing the
Myo armbands and BCI-HMD. Afterwards, all the systems were
calibrated, signal quality checked, and any adjustments were made
to increase signal quality. Finally, participants received in-game
training with and without multisensory stimuli.

After the pre-experiment, participants were asked to perform
a common BCI MI task where they imagined grabbing an
orange using either their left or right hand (Chatterjee and
Bandyopadhyay, 2016). In this MI session, the user was cued to
imagine reaching for and grabbing the orange that has turned red
for a duration of 10 s. Oranges were randomly turned red between

the left and right sides, as shown in Figure 2B. During the 10 s, the
participants were instructed to imagine grabbing the cued orange,
moving it to themiddle of the table, and squeezing it onto the center
bowl. After the 10 s the orange disappeared for a 5-s rest period,
after which another orange was cued. This procedure was repeated
until all 30 oranges (5 oranges × 6 plates) were squeezed, all plates
became empty, and the center bowl filled with orange juice, as
depicted by Figure 2C). It is important to emphasize that this was
an offlineMI-BCI task, without any online BCI classification model
involved. The visuals were provided only as cues to which orange to
imagine grabbing and when to finalize the imagery task.

Following this first motor imagery task, participants were
instructed to perform the motor priming (MP) task twice, once
with only audio-visual stimuli (audiovisual MP) and once with
the multisensory (multisensory MP) stimuli. A counterbalanced
ordering of conditions was applied across subjects to eliminate any
biases. Given the high inter-subject variability of MI-BCI accuracy,
as reported previously (Blankertz et al., 2010; Thompson, 2019), it
was decided to have all participants perform both tasks, as opposed
to having half of them perform the multisensory MP task and the
other half the conventional task. The work by Wriessnegger et al.
(2018) showed the benefits of motor execution training prior toMI.
As such, we will refer to the condition preceding the last MI task
as the motor priming condition in our analyses and compare the
conventional and multisensory MP paradigms.

In the motor priming sessions, a randomly assigned orange
was cued in red color and users were instructed to grab them
(Figure 2D), move them over the center bowl, and squeeze the
orange until all juice was extracted, causing the orange to burst
and vanish and the juice level in the bowl to rise (Figure 2E).
Participants had their real-world hand movement mapped onto the
virtual hand models (shown as blue hands in the figures) with a
100 Hz refresh rate. Unlike the MI sessions where imagery was
performed for a fixed period of time (i.e., 10 s), in the motor
priming sessions participants were allowed to interact with the
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FIGURE 2

(A) Developed game environment, five oranges placed in each of the 6 plates (overall 30 oranges). (B) A randomly cued orange in the MI session. The

task in the MI session was to imagine grabbing a cued orange, moving it on top of the bowl placed in center, and squeezing it. (C) After a

pre-determined amount of time, the bowl fills up with orange juice. (D) A randomly cued orange that participants were required to grab, move to the

top of the center bowl, and squeeze. In the multisensory condition, participants felt the volume and texture of the 3D object, while in audio-visual,

oranges could be grabbed and squeezed without any force. (E) After successfully squeezing the orange, the cued orange disappeared

simultaneously with playing an animation. In the multisensory condition, this event was synchronized with the olfactory stimulus, whereas in the

audio-visual condition, it was followed by auditory e�ects.

FIGURE 3

An overview of the experiment timeline. Screening for motion sickness and smell sensitivity was part of the pre-assessment process. Afterwards,

instructions were given, followed by system calibration and in-game training. The experiment begun with a motor imagery session, where users only

receive visual cues as to which oranges to grab and when the imagery task was concluded. Subsequently, the motor priming block consisted of two

experimental conditions with varying types of sensory stimuli. Next, another motor imagery session was conducted. A final post-experiment

interview was conducted.

virtual environment at their own pace and a trial ended only
when the orange was successfully squeezed. In the audiovisual
MP experimental condition, squeezing an orange was followed
by a “squish” sound effect synced with an animation without
applying any physical force feedback. In the multisensory MP
condition, on the other hand, users were able to feel the 3D
shape and texture of the oranges in the virtual environment and
had to apply force in order to successfully squeeze and extract
the orange juice. In this condition, the audio-visual stimulus
was also time-aligned with a 3-s burst of citrus scent. The

experiment concluded when all oranges had been squeezed and all
juice extracted.

After the two counterbalanced priming conditions were
performed, users underwent a second (offline) motor imagery
task following the same instructions and procedure as the first
MI session described above. All the participants completed
both training conditions, however, half of them completed the
audiovisual MP first, whereas the other half completed the
multisensory MP task first. Upon completion of each priming
condition, participants responded to several questionnaires that
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appeared directly into the game environment (more details in the
next section) as well as the EmojiGrid, a graphical tool to gauge user
emotions. At the end, a post-experiment comparison questionnaire
was answered and an open-ended interview was conducted.

2.4. Subjective ratings

After completion of each priming condition, participants
answered questions about their quality of experience, including
their perceived level of presence, immersion, realism, engagement,
overall experience, and cybersickness using a 5-point absolute
category rating like scale ranging from low/poor to high/excellent
(ITU, 2008). The ratings and questions were embedded directly into
the game environment to avoid any disruption in the experience;
the toolkit developed by Feick et al. (2020) was used. Moreover,
subjects also reported their valence and arousal state levels using the
Emojigrid (Toet and van Erp, 2019), a graphical instrument used
to capture emotional states on a continuous Cartesian grid. After
both MI sessions, participants also rated their perceived difficulty
in performing eachMI task using a 5-point scale with options “very
easy,” “easy,” “neutral,” “difficult,” and “very difficult.” At the end
of the overall experiment, users were asked to rate their preference
for the audio-visual or multisensory MP conditions in terms of
presence, immersion, realism, engagement, and overall experience.
Lastly, an open-ended interview was conducted to gather candid
feedback from the participants.

2.5. Signal processing and classification

Physiological data including EEG, EOG, EMG, and PPG signals
were synchronized with game events using lab stream layer (LSL).
In this paper, we focused only on the EMG and EEG signals. Using
MATLAB (R2021a, The MathWorks, USA), the EMG signal was
band-pass filtered between 10 and 500 Hz and full-wave rectified.
The mean absolute value (MAV) of the EMG signal was then
extracted for both left and right arms, as suggested by Alkan and
Günay (2012), and finally averaged across arms to obtain a final
overall muscle activity for each user.

Using the EEGLAB toolbox (Delorme and Makeig, 2004), the
EEG signals were band-pass filtered between 4 and 70 Hz, then
zero-mean normalized, and spectral power from alpha (7–13 Hz)
and beta (13–30 Hz) bands were computed, as suggested by Ahn
et al. (2013). Artifact subspace reconstruction (ASR) was also
employed to eliminatemovement-related artifacts (Kothe and Jung,
2016). For offline classification, common spatial pattern (CSP)
features were extracted from theMI trials (Nguyen et al., 2018; Jiang
et al., 2020; Amini Gougeh et al., 2021) and fed to a support vector
machine (SVM) classifier to discriminate between left or right hand
motor imagery (Ramoser et al., 2000; Dornhege et al., 2005).

For binary tasks, CSP features calculate spatial filters
that maximize the variance of one class while simultaneously
minimizing the variance for the other class. The spatially filtered
signal S of an EEG trial is given by:

SL×T = WL×N ×MN×T , (1)

whereW is a L×N matrix of spatial filters, whereas L is the number
of filters and N number of EEG channels. M represents the EEG
signal of a certain trial with N rows and T data points. The first
J rows of the W matrix reflect the maximum variance in the first
class (and minimum variance in the second class) and the last J
rows reflect maximum variance in second class. In this study, we
used six spatial filters, three (J = 3) from each side, as suggested by
Blankertz et al. (2007).

Here, several tests were performed. First, we explored the
accuracy achieved with CSP features computed over the entire 10-
s (cue duration) motor imagery trial. Next, we explored the use
of different window sizes to gauge if priming resulted in motor
imagery patterns that could be more quickly discriminated by the
available processing pipeline. Lastly, using a fixed window of 5 s
duration (as per suggestions by Mzurikwao et al., 2019; Garcia-
Moreno et al., 2020; Leon-Urbano and Ugarte, 2020), we explored
the impact of different post-task-cue starting points on overall
accuracy. As the task involved reaching for an orange, grabbing the
orange, moving the orange to the center of the table and squeezing,
this analysis could shed some light on what parts of the task
may be more discriminative, thus resulting in shorter experimental
protocols in the future. These analyses were performed per subject
and then averaged to obtain an overall MI-BCI accuracy.

Classification was performed under three settings: in the first,
all plates on the left and all plates on the right were aggregated
into two classes: left and right. In the second, classification of
left versus right imagery was done per level (i.e., plate distance,
as shown in Figure 2A) to gauge if depth imagery played a role
on motor imagery accuracy. For these two methods, a per-subject
analysis was performed and a bootstrap methodology was applied
to account for the small dataset size. As such, of the available
30 trials, 20 were randomly assigned to the training set and 10
were set aside for testing and this resampling was repeated 200
times for each subject. An SVM classifier with a linear kernel
and default parameters (with OptimizeHyperparameters option in
MATLAB) was used for classification, resulting in 200 accuracy
values per subject which were then used for significance testing.
Lastly, in the third setting we pooled all participants together to
explore the impact of motor priming on a generic BCI combining
neural patterns consistent across multiple subjects. In this case,
a total of 300 trials were available (150 left-side oranges and
150 right-side). As done previously, a bootstrap methodology was
applied. In this case, 70% of the data was assigned to the training
set and 30% to the test set and this was repeated 200 times.
An SVM classifier with a linear kernel and default parameters
(with OptimizeHyperparameters option in MATLAB) was used for
classification, resulting in a total of 200 total accuracy values, which
were then used for significance testing.

To test the significance of the differences of the two priming
conditions, statistical analysis was performed using IBM SPSS
20. Normality of the variables was assessed using the Shapiro-
Wilk (S-W) normality test, recommended for small sample size
datasets (Elliott and Woodward, 2007). For measures found to
be normally distributed, the paired sample t-test was used to
determine whether there were statistically significant differences
between the two priming conditions. For measures that did not
exhibit a normal distribution, a Wilcoxon signed-rank test was
performed. We report the obtained mean (M) and standard
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FIGURE 4

Stacked bar chart of comparison of di�culty of performing MI task during the first and last MI sessions.

FIGURE 5

Box plots of subjective ratings averaged across participants for both priming conditions. Asterisks represent statistically significant di�erence.

deviation (SD) across the 200 runs, as well as the p-value. For all
analyses, a probability level of p < 0.05 was considered to be
statistically significant.

3. Results and discussion

3.1. Subjective ratings

The stacked bar chart in Figure 4 depicts the perceived difficulty
ratings reported by each subject after execution of theMI tasks. The
S-W test indicated a non-normal distribution of these ratings. A
statistically significant difference was observed across the first (M =
2.82, SD = 1.079) and the last (M= 2.00, SD = 0.775)MI session (Z =
–2.165, p = 0.030), suggesting the latter task was perceived as being
easier relative to the first. This was expected, as motor imagery tasks
have been reported to become easier with training, especially in
VR (Wang et al., 2019). For the first MI task, four participants rated
it as “easy,” whereas three others rated it “difficult." In the last MI
task, on the other hand, all participants rated the task as either “very
easy," “easy," or “neutral." Figure 5 depicts bar plots of the average
subjective ratings provided after each priming condition. The S-W

TABLE 1 Descriptive statistics of the subjective ratings for each motor

priming condition.

QoE subscale Audiovisual MP Multisensory MP

Presence 3.73± 0.467 4.36± 0.505

Immersion 3.73± 1.104 4.36± 0.505

Realism 3.18± 0.603 3.73± 0.467

Engagement 3.55± 0.934 4.45± 0.52

Cybersickness 1.09± 0.302 1.00± 0.000

Overall experience 3.82± 0.405 4.27± 0.467

Values are mean± standard deviation.

test indicated a non-normal distribution of subjective ratings. The
descriptive statistics observed for eachmotor priming condition are
reported in Table 1.

Using a Wilcoxon signed-rank test, a statistically significant
difference was observed for the presence (Z= 2.449, p= 0.014),
engagement (Z = 1.983, p= 0.047) and overall experience (Z =
2.121, p= 0.034) ratings; the multisensory MP condition resulted
in higher ratings. As the virtual environment was stationary,
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FIGURE 6

Box-plot of binary classification accuracy for first and last motor

imagery sessions. Asterisk shows statistically significant di�erence

among two conditions revealed by a paired sample t-test.

all participants reported a low cybersickness level and only one
participant reported mild dizziness symptoms during the audio-
visual session. Lastly, from the EmojiGrid ratings, a statistically
significant increase was reported in valence [t(9) = 2.882, p = 0.018]
and arousal [t(9) = 7.258, p = 0.001] with the multisensory MP
condition relative to the audio-visual condition, thus suggesting a
more pleasant and exciting experience.

3.2. MI-BCI performance per subject

As previously described, each MI trial consisted of 10 s of
imagery followed by 5 s of rest. Participants were asked to perform
the MI task 15 times for all of the left oranges and 15 times for
all of the right oranges, totalling 30 trials per subject. Figure 6
depicts the accuracy (averaged across participants and bootstrap
instances) achieved for the first and last MI tasks. As can be seen,
a statistically significant difference was observed by the paired
sample t-test between the initial (M = 77.76, SD = 2.23) and the
final (M = 80.32, SD = 2.62) MI sessions [t(9)= 2.407, p= 0.039].
This finding, aligned with the subjective reports described above,
highlights the importance of priming prior to the motor imagery
task, thus corroborating the findings from Daeglau et al. (2020).

More importantly, we were interested in investigating which
priming condition performed directly before the motor imagery
task resulted in the greatest improvement. To this end, Figure 7
illustrates the accuracy achieved in the first (green) and last
(beige) MI task, but now separated based on the subjects that
performed the multisensory MP task first, followed by audio-visual
(left graph), versus those that performed the audio-visual MP
first and the multisensory last (right graph). The S-W test only
revealed non-normal distribution for values of the first and last
MI sessions in the group that received multisensory MP as their

FIGURE 7

Box-plot of binary classification accuracy for the first (green) and

last (beige) motor imagery sessions grouped by motor priming

order. The * symbol indicates a statistically significant di�erence

across experimental conditions using a paired sample t-test.

second condition. Using a Wilcoxon signed-rank test, a statistically
significant difference was observed between the first (M = 78.02,
SD = 2.48) and the last (M = 80.89, SD = 2.91) MI session (Z
= 2.023, p = 0.043) in this group. This finding highlights the
potential of multisensory MP directly preceding motor imagery as
an interesting candidate to enhance MI-BCI accuracy. This short-
term effect of priming on MI accuracy was also reported by Sun
et al. (2022).

To gain further insights on the impact that priming has on
motor imagery detection accuracy, we explored the impact of
priming on the magnitude of the six CSP filters, where greater
activity could be indicative of higher discriminability between the
two classes. As shown in Figure 8, in both cases the CSP activity was
higher in the last MI session relative to the first. This is expected
given the effect of training and experience on BCI efficiency
(Jochumsen et al., 2018). Notwithstanding, when multisensory MP
was performed last, the CSP activity seen during the subsequent MI
task was higher than when the audio-visual priming was performed
last. This higher CSP activity corroborated the higher overall MI
detection accuracy reported previously.

3.3. E�ect of window size and
time-from-cue on accuracy

The results reported above relied on CSP features computed
over the entire 10-s imagery window and these features were used
for offline BCI analysis. For real-time applications, however, it may
be interesting to rely on lower window durations. To this end, we
explored the effect that this window size has on overall accuracy.
Lower window sizes would mean CSP filters would be computed
faster and decisions could be made more quickly. Window size
duration corresponds to the amount of time from the task cue.

Figures 9A, B depict the achieved accuracy as a function of
window size for the first and last MI tasks, respectively. Accuracy

Frontiers inNeuroergonomics 08 frontiersin.org

https://doi.org/10.3389/fnrgo.2023.1080200
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Amini Gougeh and Falk 10.3389/fnrgo.2023.1080200

FIGURE 8

Distribution of extracted data using six CSP filters. The first row reflects the average activity of newly spatially filtered data during the first and last MI

session for participants who received multisensory MP prior to audio-visual experience. In the second row, the average activity of newly spatially

filtered data are reflected for subjects who exposed to audio-visual MP as their first priming condition.

is reported per subject, as well as averaged across subjects (dashed
line). As can be seen, for window sizes between 1 and 4 s, chance
or below-chance levels were achieved on the unseen test dataset,
suggesting that the imagery task should be performed for at least
5 s. However, this could be related to the time users needed to
perform the MI task proposed here, i.e., reaching, grabbing, and
squeezing the orange. In the first MI task, accuracy levels stabilized
for some subjects for window sizes greater than 8 s, whereas in the
last MI session, this could be achieved for most subjects around 7 s
and for some even at 6 s. These findings suggest that after priming,
peak MI-BCI accuracy could be achieved potentially 2 s faster than
without priming for some subjects.

Next, we examined the effect of time-from-cue on overall
accuracy. Time from cue indicates the amount of time waited once
the subjects were cued to perform the task until CSP computation
was performed. As the motor imagery task was fairly long (reach,
grab an orange, move to the middle of the table, and then squeeze),
certain parts of the imagery task may elicit stronger sensorimotor
cortical activity. A longer time-from-cue duration will likely focus
more on the imagery of moving the orange to the middle of the
table and squeezing and less about the reaching of the arm to grab
the orange. For this analysis, we kept the window size constant
and varied the starting point for analysis. A 5-s window length was
used based on the previous analysis. Figure 10 shows the achieved
accuracy per subject and averaged across all subjects (dashed line)
as a function of time-from-cue in seconds.

As can be seen, the greatest gains were seen when 1 s or
more were considered post cue presentation for CSP feature
computation; such findings corroborate those reported previously
in the literature (e.g., Blankertz et al., 2007). For the first MI task,
average accuracy continued increasing, whereas in the last MI
task, it plateaued after 3 s, where it reached peak values. These
findings suggest that the arm reaching part done at the beginning
of the imagery task may not generate sufficiently discriminative
CSP patterns for the BCI processing pipeline. In fact, this part
during priming received no tactile or olfactory stimuli. These only
appeared later in the task during the grabbing and squeezing of the
oranges. These findings further motivate the use of multisensory
MP prior to MI.

3.4. Global MI-BCI accuracy

Results reported up to now have been based on classifiers
trained and tested on the same subject, thus were fine-
tuned on their unique neural patterns. Here, we trained a
global classifier where data from all subjects were pooled
together. The first row of Table 2 reflects the average accuracy
achieved on the test set for the first and last MI sessions. A
paired sample t-test suggested a statistically significant difference
[t(199) = –18.213, p ≤ 0.001].
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FIGURE 9

Accuracy as a function of window size per subject in the (A) first motor imagery session and (B) last motor imagery session. Dashed line indicates

average accuracy across users per window length while shaded interval shows the standard deviation.

FIGURE 10

Accuracy of SVM classifier using 5-s fixed-length window size with di�erent start points after cue in (A) First motor imagery session, (B) Last motor

imagery session. Dashed line indicates average accuracy across users per window length while shaded interval show standard deviation.

Next, we were interested in observing if the distance of the
imagined movement had an effect on overall MI-BCI accuracy. In
this case, the left versus right classification task was performed three
times, once for plates closest to the participant (level 1), at middle
distance (level 2), and furthest away (level 3), each comprised of
100 trials. As can be seen, for level 1 classification, the last MI
session actually achieved slightly lower accuracy compared to the
first MI session. For the other two levels, higher accuracy was

achieved during the last MI task. This finding may be explained
by the underlying effects of distance postulated by Fitt’s law in
previous studies (e.g., Lorey et al., 2010; Anema and Dijkerman,
2013; Gerig et al., 2018; Errante et al., 2019). For instance, the
work by Decety and Jeannerod (1995) showed a linear relationship
between time elapsed to imagine a movement with width and
distance to the cues. This influence could be a result of spatial
presence in virtual environments (Ahn et al., 2019). Therefore,
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TABLE 2 Global performance accuracy achieved once all left or right

oranges were grouped together (binary), vs. when the classification was

done per distance level.

Classification
mode

First MI
accuracy %

Last MI
accuracy %

Binary* 79.1± 1.33 81.3± 1.05

Level 1* 74.3± 2.23 73.7± 2.38

Level 2* 75.9± 2.12 77.1± 1.86

Level 3* 73.4± 2.05 75.3± 1.94

The values reported indicate the average test set accuracy and standard deviation (SD). An

asterisk indicates a statistically significant difference across experimental conditions using a

paired sample t-test.

FIGURE 11

EMG MAV during each experimental condition. Asterisks indicate

statistically significant di�erence.

alongside duration and type of stimulus, the distance to the cued
object from the participants or the depth of the 3D objects in the
virtual environment could potentially play an important role in MI
performance. Further studies are needed to validate this hypothesis.

3.5. EMG activity

Lastly, to gauge the changes in EMG activity during the tasks,
Figure 11 illustrates the changes in EMG MAV during the two
MI tasks, as well as the two priming conditions. Using a paired
sample t-test, a statistically significant difference was observed [t(9)
= 2.935, p = 0.016] in muscle activity between the audio-visual (M
= 8.16, SD = 1.40) and multisensory (M= 9.51, SD= 2.30) priming
sessions, as the force feedback gloves were on only in the latter
condition. The slight activity observed during the motor imagery
tasks are likely indicative of the signal noise floor of the EMG
sensors, but could also be an indicator of covert motor function
that has been reported during motor imagery (Lebon et al., 2008;
Dos Anjos et al., 2022).

3.6. Interviews and user feedback

As mentioned previously, at the very end of the experiment
an open-ended interview was conducted with each participant. All

of the participants reported being able to perceive and recognize
the olfactory and tactile stimuli in the multisensory condition.
All confirmed they could feel the texture of the objects in the
virtual environment and that this helped improve their sense
of presence and the realism of the interaction. Regarding the
citrus scent, some participants reported it as pleasant, while others
suggested it was too intense. Such variability could be associated
with age and/or gender related factors, as reported previously
by Murray et al. (2013). The majority reported that the olfactory
stimulus helped them enhance their sense of immersion, thus
corroborating previous studies (Kreimeier et al., 2019; De Jesus
et al., 2022).

3.7. Limitations and future directions

The presented study was conducted during the sixth wave
of the COVID-19 pandemic, therefore, several limitations
were applied to ensure participant safety. Consequently, this
limited our sample size, as well as the generalizability of
the achieved results. As such, future work should aim to
increase the participant pool size. Nevertheless, the observed
significant changes already corroborate those found in previous
studies with higher number of participants, thus the obtained
results are promising. Future work should take advantage of
multisensory priming directly preceding motor imagery tasks
to improve MI-BCI performance, especially for inefficient
users. Moreover, analysis of the impact of different window
duration during the MI task suggested that for some subjects,
decisions could be made up to 2 s faster. These benefits could
lead to BCI protocols that are faster and more engaging
for participants.

The methods used here relied on conventional feature
extraction (i.e., CSPs) and classification (i.e., SVM) pipelines.
Future work could explore the use of more recent algorithms, such
as deep neural networks. In fact, deep learning approaches have
provided opportunities for real-time analysis and interpretation
of brain signals (Cho et al., 2021), as well as improved
MI accuracy (Zhang et al., 2019), thus could further benefit
inefficient users.

The development of the virtual environment for the MP task
was driven by the available functionalities of the haptic glove
and the available smells within the OVR kit, which was custom-
developed for nature scenes. Therefore, future motor priming
tasks could benefit from the use of multisensory VR systems that
incorporate more realistic scenarios tailored to the preferences and
interests of each user. Personalized environments could increase
levels of engagement during theMP sessions and potentially further
improve MI performance. By providing a more immersive and
engaging experience, multisensory VR systems could help users
sustain interest in the task at hand. This aspect is particularly
important for rehabilitation purposes, where participants have been
shown to struggle with motivation and adherence to conventional
protocols Oyake et al. (2020). Lastly, the proposed multisensory
MP task requires users to have some functional motor control,
which may limit its application for individuals with severe motor
disabilities, such as those with locked-in syndrome or post-stroke.
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4. Conclusions

In this paper, we reported the results of a pilot study
conducted on 10 participants to evaluate the impact of
multisensory motor priming in VR (where olfactory and
haptic stimuli were included) to improve motor imagery
performance. To this end, a biosensor-instrumented head-
mounted display was developed and coupled with an off-the-shelf
scent diffuser and haptic glove. Experimental results showed
the benefits of a multisensory VR-based priming task relative
to a conventional audio-visual VR MP task, with significant
improvements achieved in motor imagery detection accuracy.
Insights on the impact of window size and time-from-cue
duration were also obtained and reported. Overall, these
preliminary results provided insights on the advantages of
multisensory motor priming on motor imagery performance
and offered new perspectives on how to potentially improve
MI-BCI performance.
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