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This protocol paper outlines an innovative multimodal and multilevel approach

to studying the emergence and evolution of how children build social bonds

with their peers, and its potential application to improving social artificial

intelligence (AI). We detail a unique hyperscanning experimental framework

utilizing functional near-infrared spectroscopy (fNIRS) to observe inter-brain

synchrony in child dyads during collaborative tasks and social interactions.

Our proposed longitudinal study spans middle childhood, aiming to capture

the dynamic development of social connections and cognitive engagement

in naturalistic settings. To do so we bring together four kinds of data: the

multimodal conversational behaviors that dyads of children engage in, evidence

of their state of interpersonal rapport, collaborative performance on educational

tasks, and inter-brain synchrony. Preliminary pilot data provide foundational

support for our approach, indicating promising directions for identifying neural

patterns associated with productive social interactions. The planned research

will explore the neural correlates of social bond formation, informing the

creation of a virtual peer learning partner in the field of Social Neuroergonomics.

This protocol promises significant contributions to understanding the neural

basis of social connectivity in children, while also o�ering a blueprint

for designing empathetic and e�ective social AI tools, particularly for

educational contexts.

KEYWORDS

hyperscanning, functional near infrared spectroscopy (fNIRS), child dyads, remote social

interaction, rapport, naturalistic conditions, social AI, embodied conversational agent

(ECA)

1 Introduction

Understanding how we learn to form social bonds with others, and the

roles that building of social bonds plays in our life, holds significant value

as it promises to unveil the intricate processes through which individuals

connect, form meaningful relationships, and cultivate a sense of belonging,

ultimately contributing to personal wellbeing, societal cohesion, and the

overall fabric of social interaction. As well as its importance in and of itself,

Frontiers inNeuroergonomics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org/journals/neuroergonomics#editorial-board
https://www.frontiersin.org/journals/neuroergonomics#editorial-board
https://www.frontiersin.org/journals/neuroergonomics#editorial-board
https://www.frontiersin.org/journals/neuroergonomics#editorial-board
https://doi.org/10.3389/fnrgo.2024.1290256
http://crossmark.crossref.org/dialog/?doi=10.3389/fnrgo.2024.1290256&domain=pdf&date_stamp=2024-05-17
mailto:Justine@cs.cmu.edu
https://doi.org/10.3389/fnrgo.2024.1290256
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnrgo.2024.1290256/full
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Bonnaire et al. 10.3389/fnrgo.2024.1290256

connections with those around us also play a significant role in task

performance where, for example, collaboration is improved when

friends work together (Sainsbury and Walker, 2009). However,

the picture is not all rosy, increasing even further the need to

understand. While a significant literature demonstrates that when

students feel a connection to their peers they learn more (Clark

and Dumas, 2015; Madaio et al., 2018), there is also a literature

demonstrating that some students may put so much energy into

building a relationship with their peers, that they neglect the

schoolwork on which they are supposed to collaborate. This is

particularly the case for low-performing students, who may wish

to distract their peers from collaborative work in order to avoid

engaging in tasks they do not enjoy or do well (Godwin et al., 2016).

We have coined the terms “productive rapport” and

“unproductive rapport” to describe the benefits and disadvantages

for task performance of engaging in social bond-building behavior,

adapting terms introduced by Nasir et al. (2022) to describe

productive and unproductive engagement in groups of students.

We employ the term “rapport”, the harmony, smoothness and

warmth experienced by participants in interpersonal interaction,

and that is also recognized by observers of that interaction

(Spencer-Oatey and Franklin, 2009), to avoid the vagueness that

can be introduced by referring simply to “social interaction”. In

order for young people to flourish, it is important to understand the

underpinnings of social connection, and to know how to support

them in building social bonds, but also how to use social bonds

to improve performance. And yet, despite an extensive body of

literature on the neural correlates of mentalizing and an increasing

literature on the neural aspects of social interaction, the specific

neural mechanisms underpinning the formation of social bonds

among peers remain unclear. In addition, there is an unspoken

assumption that putting time into building social bonds is always

a net positive, which impacts the kinds of analyses carried out,

and the conclusions drawn from these studies. In this context, we

emphasize the significance of investigating the neural synchrony

between two children engaged in both social and task interaction.

As well as including data on their educational performance, over

the course of a longitudinal study, and over the course of middle

childhood. The longitudinal study allows us to better understand

the time course of rapport, while the developmental study allows

us to better understand whether different behaviors contribute to

social bonds with age, whether the relationship of social bonds

to performance changes, and whether the areas of the brain

implicated in productive rapport change with age. We choose this

field of inquiry, this approach, and this age group, because it is

critical to better understand how children develop the ability to

build productive social bonds, and what neural structures and

dynamics underlie it, as we know that social interaction is critical

to linguistic, cognitive, and even neural development (Ladd, 2005;

Blakemore, 2010).

The results of this study will also serve to implement a virtual

peer that focuses on productive rapport. To do so, a homologous

second study, identical to the first, but where one child is replaced

by a social AI agent, a virtual peer or VP, then uses this VP as a

scientific tool to further understand the results of the child-child

study, and to also to serve as the framework for the implementation

of a virtual peer learning partner. Here we use fNIRS with the

one real child to investigate the similarity and differences between

child-child and child-VP social and task interaction. In this sense,

the work described here finds a home in the field of Social

Neuroergonomics (Dehais et al., 2020), where it has been suggested

that studies of the neural correlates of social interaction can serve

to improve performance of machines such as VPs. In turn, it is

argued, the ways in which individuals interact with these machines

can inform theories of social interaction, as well as to serve as a

tool for human use (here in education). Specifically we answer the

call by Kostrubiec et al. (2015) and Henschel et al. (2020) to turn

to human neuroscience tools, including mobile neuroimaging, to

explore long-term, embodied human–AI interaction in situ.

2 Background

In what follows we first look at relevant literature from

a number of fields relevant to the current study. We center

our literature review on real-time social interaction, a domain

characterized as the “darkmatter” of social neuroscience (Schilbach

et al., 2013), and of artificial intelligence (Bolotta and Dumas,

2022). The literature review leads us to lay out a framework

for the study of children’s social interaction in ecologically valid

contexts, and to a series of claims about what we will find in

such study. We then propose the design of a novel hyperscanning

experimental paradigm to adduce evidence for these claims,

using functional near-infrared spectroscopy (fNIRS) to investigate

interactions between pairs of children aged 5 to 12 communicating

over videoconference. Our proposed study brings together a full

range of conversational behaviors, data on interpersonal rapport,

task performance, and inter-brain synchrony (IBS), over a number

of weeks, across middle childhood.

The framework advanced here demands a close analysis of

the phenomena examined and the natural contexts in which they

occur. While the cognitive science literature often relies on tightly

designed laboratory studies that may or may not transfer to real

world situations, studies of conversational interaction “in the wild”

may carry out fine-grained annotations of behavior (Schegloff,

2007). Here behaviors in different modalities are annotated and

analyzed for their function in conversation: patterns of language

(Schegloff, 1968; Schegloff and Sacks, 1973), non-verbal behaviors,

such as mutual eye gaze (Goodwin, 1980, 1986), and what are

called paraverbal behaviors, such as shifts in speech rate (Walker,

2017). In order to understand the role of these behaviors in

bringing about particular psychological states, such as lateral head

tilts that may convey empathy (Ambady and Weisbuch, 2010),

social psychologists instead correlate the instances of behaviors

with independent ratings of putative psychological states. Here a

well-validated technique divides videos of people interacting into

30 second “thin slices”, presents them to untrained independent

observers, and collects ratings for levels of particular psychological

states. The idea behind this approach is that 30 second thin slices

of video are too short to give the annotators time to reflect on

what behaviors are leading them to a particular rating of rapport.

This therefore evokes more rapid and thus more holistic ratings

of psychological states that, by definition, cannot be viewed, but

only inferred (Ambady et al., 2000). We have previously looked
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at the range of behaviors across modalities that are described

by conversational analysts, but have correlated them with, and

used them to predict, thin slice ratings in order to discover their

function in bringing about psychological states. For example, we

have identified what behaviors across modalities bring about the

state of curiosity in small groups of children (Sinha et al., 2022).

While previous research in the field of social neuroscience

has explored subjective self-reported rapport (Nozawa et al., 2019)

and related phenomena in teacher-student interactions (Zhang M.

et al., 2020), such investigations have not extended to peer dyads

and have yet to incorporate an analysis of the behavioral features

of the interaction. However, the behavioral correlates of rapport

are abundantly studied in social psychology (Tickle-Degnen and

Rosenthal, 1990, and following), and in linguistics (Spencer-

Oatey, 2005, and following). Rapport has also been studied in

the context of AI, where studies have demonstrated that it is

possible to automatically recognize it (Madaio et al., 2017a), and

to automatically generate behaviors that elicit it in conversational

agents (Abulimiti et al., 2023). Meanwhile, in neuroscience a focus

on social interaction continues to gain momentum.

While a lay use of the term sometimes refers to a feeling of

“instant rapport”, for the most part rapport is a psychological state

that develops over time. Because of the significant body of prior

work, and the identification of specific behaviors that appear to

play a role, and whose use continues to develop over the period of

middle childhood (Baines and Howe, 2010), rapport would seem

to be an ideal concept to anchor a developmental study. Indeed

research shows that children in this age group are sensitive to

quite similar phenomena, such as affiliation and togetherness, and

employ behaviors that involve two people, such as synchrony of

movement (what we call “dyadic behaviors”), to identify social

bonds (Bowsher-Murray et al., 2023). They also accept or reject

peers in part based on their ability to use the conversational

behaviors that play a role in rapport (Black and Logan, 1995). At the

same time, middle childhood is a time of structural and functional

social brain development (Decety and Cowell, 2016; Rice et al.,

2016). And yet, outside of pathologies, the topic of children’s social

competence and actual social interaction with peers is quite new in

both the behavioral sciences and neuroscience (Ladd, 2005).

In prior work we have found the following to be particularly

significant in the building, maintaining and destruction of rapport:

the verbal behaviors called conversational strategies, such as self-

disclosure and reference to shared experience, the non-verbal

behaviors of eye gaze, head nods, and facial expressions such

as smiles, and the paraverbal behaviors of laughter and pitch

excurses (large variations in intonation). In each case, reciprocal

instances of these behaviors (where both interlocutors engage in the

behavior at roughly the same time—laughing together, or disclosing

intimate information one after another—and conjunctions of

these behaviors across communication modalities (what is called

“multimodal communicative behavior”), appear to carry the most

weight (see Cassell, 2000; Schegloff, 2007 for a general discussion

of conversational behaviors). In such analyses it is essential to

require ground truth as to the strength of the psychological state

of rapport, so that the behaviors and psychological state are

independently assessed. To this end, the level of rapport between

two individuals relies on assessment by naive observers, given a

general definition of rapport, and using the thin slice technique

pioneered by Ambady and Rosenthal (1993). This is in contrast

to some recent neuroscience literature where annotators are told

to use particular non-verbal behaviors, such as mutual eye gaze

or head nods, to rate rapport. It is important to consider that

conflating the presence of non-verbal behaviors with social bonds

risks circularity in the analysis process.

In the neurosciences a considerable body of literature

has focused on the cognitive roots and neural signatures of

social interaction in adults, demonstrating, for instance, the

complementary roles of the mentalizing system (MS) and the

mirror neuron system (MNS) (Sperduti et al., 2014; Sadeghi

et al., 2022) including during peer-learning (Clark and Dumas,

2015). Within these systems, several key regions emerge: the

prefrontal cortex (PFC), the superior temporal sulcus (STS), and

the temporo-parietal junction (TPJ) (Molapour et al., 2021). The

PFC plays a key role in social decision-making and emotion

regulation (Franklin et al., 2017), processes which allow individuals

to engage in prosocial behaviors that may strengthen social bonds.

The superior temporal sulcus (STS) region is well-known for

its involvement in a wide array of processes required for social

interaction, such as understanding another’s actions and beliefs,

language, face perception, and the interpretation of others’ eye

gaze (Carlin and Calder, 2013; Monticelli et al., 2021). Finally, the

TPJ, with its involvement in theory of mind processes (Saxe and

Kanwisher, 2003), plays a role in perspective-taking, fostering the

ability to engage in the kind of cooperative interactions essential

for forming meaningful social connections. Moreover, the TPJ

has been recently demonstrated to serve as a hub between self-

and other-related behavior at the sensorimotor level, and a key

input to the PFC for a more representational level (Dumas et al.,

2020). However, studies of the mentalizing process focus in large

part on single individuals, adducing evidence for hypothesized

prerequisites for social interaction, and not social interaction

itself, as a process co-constructed in real time by two or more

participants. There are now, however, relevant technologies to

study actual social interaction, such as hyperscanning; that is, the

simultaneous measure of brain activity of at least two individuals

engaged in interaction (Montague et al., 2002). And there are now

relevant techniques to analyze social interaction. These include

dyadic data analysis (Kenny et al., 2006), analyses that take the

dyad as the unit of analysis, and the coordination dynamics

framework (Tognoli et al., 2020), that allows social dynamics to

be understood at multiple levels of description. In fact, researchers

have increasingly argued, not to discount the importance of social

perceptual processes, but to also integrate phenomena that require

looking at two or more interactants at a time. This argument has

recently been made for cognitive science (Dingemanse et al., 2023;

Hamilton and Holler, 2023). It was first made for neuroscience

in a visionary article by Hari and Kujala (2009), reiterated by

Dumas et al. (2010), and Schilbach et al. (2013), and it has been

echoed repeatedly since then, including in a recent special issue

(Schirmer et al., 2021). In each case, the authors call for studies

that involve two or more people engaging in interaction with one

another in real time, and they call for analyses that look at the

dyad as the unit of analysis, as well as the role of the individual

in the dyad.
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At the intersection of cognitive science and neuroscience lie

experiments that deploy the tools of each to both better understand

and better support human social interaction in all its complexity.

We specifically argue here that a better understanding of the

neurobiological basis of social interaction between children is

necessary, including how the building of social bonds with peers

develops over the course of multiple interactions, and over middle

childhood. Since learning is the primary “job” of children, as a

part of this investigation we also examine how certain types of

rapport may increase learning while others may be detrimental.

These topics require a dyadic perspective of the kind described

above, as well as a perspective that implicates multiple levels of

data—conversational, psychological, and neurobiological, as well

as multiple approaches to understanding their conjunction. As

hyperscanning research has progressed and continues to grow

rapidly (for reviews, see Babiloni and Astolfi, 2014; Czeszumski

et al., 2020), including through the use of fNIRS (Pinti et al., 2018,

2020; von Lühmann et al., 2021), it has become possible to evaluate

theories concerning the nature of social interaction through in-

situ experimentation by enabling the concurrent examination of

multiple brains. This is achieved through the measurement of

IBS, which assesses the temporal coherence and/or consistency in

phase and amplitude of neural or hemodynamic signals across

a specified time period (Dumas et al., 2010). The advances in

electroencephalography (EEG) and fNIRS hyperscanning have

allowed recent studies to more directly address the neural signature

of social interaction, including a number of studies looking at

conversational behaviors. Jiang et al. (2012) found that IBS was

more present in the left inferior frontal cortex during face-to-face

dialogue than when sitting back-to-back, suggesting a role for non-

verbal behavior. More recently, mutual eye gaze has been identified

as a potential modulator of IBS in several studies (inter alia;

Dikker et al., 2017; Cañigueral and Hamilton, 2019; Piazza et al.,

2020). Kinreich et al. (2017) report the first hyperscanning study

integrating detailed annotation of non-verbal behaviors—what they

call gaze and positive affect. They found that IBS was present in

romantic couple dyads and not stranger dyads, and that gaze was

positively correlated with IBS, while expressions of positive affect

were weakly correlated, with no effect found for speech content.

However, affects are underlying psychological states, and are

themselves correlated with a number of different observable non-

verbal behaviors, which may have therefore obscured a correlation.

In addition, content of speech was not defined, and specific

functions of talk may be more related to IBS than others, as

described above. This is also suggested by Nguyen et al. (2021b)

where an fNIRS hyperscanning protocol examined free discussion

between pre-school children and their mothers. Turn-taking,

conversational relevance and content contingency were assessed

and only the number of turn-taking instances was correlated with

IBS. This study is one of few that examine the temporal dynamics

of IBS. Results showed that IBS increased more over time in

mother-child dyads than in random pairs, and increased turn-

taking throughout the 4-min conversation was associated with

greater IBS later in the conversation. However, the presence of

silences was used to assess turn-taking, while research has shown

that non-verbal behaviors such as eye gaze also play an essential role

(Kendrick et al., 2023), and that turn-taking can include significant

overlap in speech, as well as silences. For an informative review of

studies such as these, see Kelsen et al. (2022).

While the research described in the previous section focuses

on conversation for its own sake, another line of research has

examined the association between IBS and performance. Here,

for instance, in looking at problem-solving tasks carried out

independently and in teams of four individuals, it was found

that IBS, as measured by EEG hyperscanning, predicted collective

performance, even when the team members did not self-report

strong cooperation (Reinero et al., 2021). Mayseless et al. (2019)

also found a relationship between cooperation and IBS, such that as

cooperation increased over time, IBS decreased (see also the recent

meta-analysis by Czeszumski et al., 2022). These findings parallel

those from the rapport literature, where research has highlighted

the increasing importance of coordination over the course of

a relationship (Tickle-Degnen and Rosenthal, 1990), but where

increasing coordination almost paradoxically is accompanied by

reduced use of coordination behaviors such as head nods (Cassell

et al., 2007), as the dyad has perhaps less need of them to

coordinate. Just as strikingly, a study of college students in a

lecture and discussion neuroscience class used a novel protocol to

assess group IBS over the course of an 11-session semester. Results

demonstrated that the extent of IBS across students predicted

both student self-reported engagement in the class and the social

dynamics of the group, as measured by both individual and

group characteristics (Dikker et al., 2017). However, as the authors

themselves emphasize, it is difficult to disentangle engagement

from joint attention, as all students were participating in the

same activities. In addition, the study did not integrate a measure

of student performance, and student engagement by no means

predicts performance (Nasir et al., 2022). A number of other

studies allying IBS and education have found significant neural

synchrony between teachers and students, starting with Holper

et al. (2013), who showed increased synchrony when the lesson

was successful (see also Zheng et al., 2018; Sun et al., 2020). This

literature parallels our own research showing that rapport, both

directly and as a mediating variable for conversational behaviors,

improves performance on collaborative tasks (Sinha and Cassell,

2015a; Madaio et al., 2018).

While the studies summarized above demonstrate a

relationship between IBS and some aspects of social interaction

and some conversational behaviors, each study is limited in the

behaviors it examines and the modalities included (among verbal,

non-verbal, and paraverbal), limited in the nature of the interaction

between the participants, and limited in the analysis of how IBS

changed over time. In addition, to the best of our knowledge, while

hyperscanning experiments have looked at teacher-student dyads

and caregiver-child dyads, experiments with child-child dyads have

not been previously published.

3 Framework

The research summarized here leads us to propose a next

step in understanding the neural signature of social bonds

through a multimodal, multi-level, dyadic, and temporally-sensitive

framework that provides quantitative testable predictions. By
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multimodal we mean, as it is used in the social sciences, linguistics,

and artificial intelligence literature, multiple communication

modalities. Here we include verbal (language), non-verbal (such

as eye gaze), and paraverbal (such as intonation). We use the

term multilevel to refer to the set of data types that includes

conversational behaviors, psychological states, task performance,

and brain activity. By dyadic we mean the analysis of reciprocal

and mutual behaviors and psychological states. And by temporally-

sensitive we refer to analyses that take into account the time of

a single interaction, the 6 weeks of a longitudinal study, and the

period of middle childhood. The predictions derived from the

framework can be summarized with the following 6 claims:

• Claim 1: Conjunctions of conversational behaviors across

modalities better predict IBS. Understanding how social

bonds among peers are reflected in IBS requires the

integration across the conversational modalities: verbal, non-

verbal, and paraverbal, rather than looking at one single

conversational modality or behavior (such as eye gaze).

• Claim 2: IBS and rapport evolve similarly across time.Weuse

Dynamic Time Warping to quantify the temporal similarity

between the two representations of social connectedness,

through dyadic measures at the neural and psychological level.

• Claim 3: IBS Granger-causes reciprocal conversational

behaviors. Beyond temporal similarity, we expect that IBS is a

precondition of successful dyadic conversational behavior and

thus the emergence of rapport.

• Claim 4: Not all rapport is productive. We introduce

the notion of “productive rapport”; that is, rapport that

leads to learning gains in educational tasks, in contrast to

unproductive rapport that is detrimental to learning. We

therefore run analyses that examine whether there is a inverted

U-shaped curve between rapport-building and performance.

• Claim 5: Rapport-building is a process that takes time.

Rapport is rarely built in a 1-h session, and so we argue that

a study design must illuminate the time course of rapport at

both the time scale of an hour during a single interaction, and

of several weeks in a longitudinal design.

• Claim 6: Brain regions evolve with age. It is well-known

that the brain evolves across the period of middle childhood

and beyond (Lebel and Beaulieu, 2011). We argue that with

age we will find more reciprocal conversational behaviors,

as children become more able to participate in interpersonal

synchrony, and increasingly able to develop abstract shared

mental representations with others. We predict that this will

lead to greater IBS, and a progressive shift in activation from

rTPJ to PFC.

Bringing these axes together we predict that we will find

stronger and more generalized IBS where conversational behaviors

(verbal, non-verbal, and paraverbal) are reciprocal. That is, in cases

of mutual eye gaze and mutual smiles, reciprocal self-disclosure,

and entrainment (sometimes called alignment) where the pattern

of behavior is increasingly similar between members of a dyad,

such as increasingly similar speech rate. We predict that these

patterns of dyadic behavior will be followed by increased IBS and

that, in turn, this will allow us to distinguish between productive

and unproductive rapport on the basis of IBS that follows dyadic

behavior. That is to say, IBS will be present in more regions of

interest, and will be stronger, when it co-occurs with high rapport

that accompanies (and just precedes) learning gains.

Here, due to its non-invasive nature, high safety profile,

reduced sensitivity to participants’ motion, and higher spatial

resolution than EEG, the fNIRS technique can play an important

role (Providência and Margolis, 2022). Its reduced sensitivity to

movement makes it ideally suited to investigate the naturalistic

phenomena that make up social interaction (Pinti et al., 2020),

and particularly social interaction among children, who may find

it difficult to stay completely still. While EEG captures responses to

individual events at a high temporal granularity (single syllables,

articulation of the face), fNIRS integrates over these to reveal

the different brain region that are more or less active on the

timescale of seconds, and therefore allows us to focus on overall

task components, rather than events at the sensory modality level

of resolution.

An earlier study conducted by Rabinowitch and Knafo-

Noam (2015) found that ratings of closeness were higher for

children who participated in a synchronous finger tapping

exercise, a result thought to illustrate the positive effects of

synchronous (non-conversational) interaction in children, but

given the increased focus in neuroscience on actual social

interaction, and the tools available to do so, it is time to study

IBS in child dyads engaging in actual social interaction, with an

eye toward better understanding and better implementation of

supporting technologies.

In what follows we therefore propose a novel study and

concomitant methodology to address some of the questions raised

by prior work, and to adduce evidence for the claims laid out above.

We have adapted an ecologically valid interactive task used in our

prior work (Finkelstein, 2018; Cassell, 2022), attractive to children

across middle childhood, that can be carried out by one child

(solo phase), and by dyads (collaborative phase), while attached

to fNIRS apparatus. The task has variations that allow children

to engage several times over a period of weeks, each time with

a solo phase and a collaborative phase, and calling on slightly

different skills each time, but demanding the same amount of

effort. In a subsequent study, the same tasks can be carried out

by a child-virtual peer dyad (as has been demonstrated in our

prior work). Because the results will also inform the design of

that VP, which will interact with its child interlocutor through a

computer screen, all phases of the child-child experiment take place

via videoconference. This also facilitates matching children with

strangers of the same age, so that all evaluations of rapport are

based on interactions between children who have never before met.

A recent study of interaction across videoconference has shown

that neither mimicry nor levels of trust are significantly different

from face-to-face conditions (Diana et al., 2023). However, other

studies suggest that remote interactions exhibit reduced levels of

IBS compared to in-person interactions (Schwartz et al., 2022). This

observed reduction might be associated with the reduced turn-

taking found in Zoom interactions (Balters et al., 2023), and is

postulated to be due to a decrease in the intensity of face processing

and social interaction (Zhao et al., 2023). Nevertheless, assessing

IBS in dyads communicating via videoconference remains feasible
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(Wikström et al., 2022) and important, given the increased presence

of videoconference interactions in everyday life.

4 Experimental paradigm

Analyzing children’s behavior in natural settings is the most

ecologically valid method of assessing how they build social bonds

(Elliott and Gresham, 1987). Consequently, the methodology we

propose involves a combination of familiar tasks, comprising

hypothesis construction and free discussion. A videoconference

setup will include a camera and high-quality microphone, allowing

us to collect high-fidelity video and audio during the entire

course of the experiment (Figure 2A), that we can then analyze

(in large part automatically). Our data analysis pipeline uses new

methods for allying the multiple streams of data: verbal, non-verbal

and paraverbal behaviors in conversation, levels of rapport, task

performance, and IBS.

4.1 Target population and sample

An a priori power analysis was conducted using G∗Power

3.1.9.7 (Faul et al., 2007) to determine the sample size needed for

the study. The analysis was based on an ANOVA with 4 age groups

and 6 measurements, using an effect size of (d = 0.24), based on

our pilot study results, and an alpha of 0.05. The results indicate

that a total sample size of 176 dyads will be required to achieve

a power of 0.95. This aligns with the recommendation of Bizzego

et al. (2022), who suggested a minimum sample size of N = 150 to

detect significant IBS. There are significant challenges in recruiting

participants for hyperscanning experiments, and particularly for

recruiting dyads of unfamiliar children. In the event of a smaller

sample size, we can adopt an analytical approach, such as the non-

parametric bootstrap test with a pooled resampling method, as

proposed by Dwivedi et al. (2017), and cited in Bizzego et al. (2022),

which has demonstrated satisfactory performance in cases of small

sample sizes and non-normally distributed data. We will enlist

equal numbers of dyads from 4 age groups: 5–6, 7–8, 9–10, and

11–12 years (44 dyads per group). As social interaction may differ

between boys and girls at these ages (Underwood et al., 1999), dyads

will be of the same gender (both boys or both girls), and half of

our participants will be male and half female (88 dyads of girls and

88 dyads of boys). As described above, in order to assess the initial

building of rapport, all children will be strangers to one another.

Our videoconference set-up will facilitate this, as we will set up

video-conferencing in 2 different schools or after-school programs.

4.2 Task description

Adducing evidence for the claims outlined above places a

number of constraints on the kind of task we can use: in order

to investigate neural synchrony during collaboration, the task must

allow both a solo and collaborative mode, so that we can compare

IBS between the two and ensure that it is not due to looking at

the same stimuli (Hasson et al., 2008). The task also needs to

encourage social exchange, as well as to be engaging for children

in a quite wide age-range (5–12 years old). In order to measure

performance, the task must have answers–either tasks with correct

answers, or where the nature of answers can be assessed. The age

of the participants indicates that they will have a relatively short

attention span, meaning that the task must be able to be completed

relatively rapidly. On the other hand, since a relatively rapid task

may not give enough time for rapport to develop, we have designed

a longitudinal component, whereby participants engage in slightly

different but comparable tasks, spending 2 weeks on each of three

tasks, for a total of 6 weeks, as we have done in prior research

(Finkelstein, 2018; Madaio et al., 2018; Cassell, 2022). In order to

collect high-fidelity data, the task needs to be displayed on the

external screen in front of the child (rather than on a piece of

cardboard laid on a table, for example) so that the child’s face

and body are oriented toward a webcam and microphone placed

next to the monitor (the computer and keyboard will be located

elsewhere to diminish distractions). Finally, because a subsequent

study will integrate an AI learning companion that is based on

optimal performance in the child-child task, the task must allow

a virtual peer agent to collaborate with the child, as well as allowing

two real children to participate.

Keeping all of these constraints in mind, we therefore designed

a relatively simple paradigm: a set of three tasks (described below)

that ask children to generate hypotheses and evidence for their

hypotheses. The children work on each of the three tasks for 2

weeks, meaning that the entire study takes 6 weeks.

Specifically, in the first, solo, phase the children will be asked to

describe out loud as much evidence as they can muster for claims

they are making. While this kind of task may sound too scientific

for 5–6 year old children, a significant body of literature describes

children’s ability to do just this, albeit without necessarily using

the words “hypothesis” or “evidence” (Sodian et al., 1991; Ruffman

et al., 1993). Indeed, requesting scientific thinking of this sort is a

common style of educational activity for the entire age group. If

the participants are still generating answers at 8min they will be

encouraged to wrap up, and after 10min they will be stopped.

Next the children will be invited to collaborate by sharing their

ideas with the other child in the dyad, in order to come up with a

final list of claims and evidence for those claims that they will later

present to an experimenter.

After the collaboration phase, the children will engage in a

social phase, where they will be asked to chat with one another

in free discussion for 8–10min while the experimenters “get their

paperwork together”.

After the social phase, we will turn off the children’s cameras

and ask them to self-report their feelings of closeness to the

other child in two ways: first by rating their level of preferred

closeness to the other child in the dyad, using a well-validated

preferred closeness scale for children (Strayer and Roberts, 1997),

and then by completing their feelings of closeness using the

“Inclusion of Other in Self ” (IOS) scale (Aron et al., 1992;

adapted for children by Rabinowitch andKnafo-Noam, 2015). They

will then present their task results to an experimenter located

locally in each of the two venues, for no more than 8–10min.

The experimenter will give no feedback other than continuation

markers such as “uh huh”. This phase will serve to assess the

children’s learning gains after each week. Figure 1 summarizes the

experimental paradigm.
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FIGURE 1

Experimental paradigm of proposed study.

The first task, used during weeks 1 and 2, will present children

with an image of an imaginary animal in a pastoral environment,

and will ask them to make inferences about the creature’s survival

habits with regard to food, protection, and movement based on

its appearance and the environment depicted. The second task,

presented during weeks 3 and 4, depicts a girder and beam bridge

made from square blocks. The abutments and piers are of unequal

widths and are spaced unequally. Children will be asked about

structural changes that would allow the bridge to support more

weight. The third task, presented during weeks 5 and 6, depicts a

ramp with a tennis or golf ball that could roll down the ramp. The

length, degree of incline and material used on the surface of the

ramp are shown to be adjustable. The children will then be asked

to determine how the ramp parameters could be set to maximize

the speed of a ball rolling down the ramp. The tasks are depicted in

Figure 1.

In week one, prior to the solo phase, children will undergo

training, in which the rules andmechanics of the tasks are explained

and they will be guided through describing claims (what they think)

and evidence (why they think that). The training is neither recorded

nor timed and children are encouraged to ask any questions that

they have about the experiment. After the training, during which

fNIRS capping will also be carried out, fNIRS recording will begin

and a first baseline recorded, during which the children will be

asked to look at a white crosshair on a black screen for 60 seconds

to determine resting brain activity. A second baseline will be

collected before the collaborative phase of the game, and the mean

of the two baselines will serve as the resting brain activity of

each child.

While 176 dyads will engage in the phases described above,

a small number of dyads will serve as a control. These children

will engage only in solo work, and in a report to the teacher

each week, with a pre-test and post-test as above, in order to

differentiate between the impact on learning gains of simply

engaging in the task and that of collaborating on that task.

These tasks, annotation schemes and performance metrics, have

been successfully used in both a child-child and child-VP

longitudinal study with 7- to 8-year-olds (Finkelstein, 2018;

Cassell, 2022), and have been successfully pilot-tested with 5–

6 year-olds.

Because of the complexity of recruitment for longitudinal

studies, and particularly those using neuroscientific methods

with children, we will start by collecting data with 9–10-

year-old dyads, and expect to analyze and publish the

results from that work while collecting data from other

age groups.
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5 Data collection

5.1 fNIRS data acquisition

Functional NIRS data will be collected using two NIRx

NIRSport2 machines. Each child will be connected to a separate

machine with 16 sources and 16 detectors, using a sampling rate

of 7.81Hz, and wavelengths of 760 nm and 850 nm. The imaging

montage of the fNIRS caps (pictured in Figure 2B) covers the

3 areas implicated in social interaction described in prior work

above: the left and right PFC, STS, and TPJ. Eight short channels

(8mm source-detector separation, illustrated in Figure 2B) will

be used to address systemic physiological artifacts (Wyser et al.,

2020). Neural signals will be recorded using the NIRx Aurora and

Hyperscan software packages, which automatically synchronize

the recording from both NIRSport 2 machines via an ad hoc

network. Because children may vary in head size, even within

one age group, optodes that are destined to be placed in the

same ROI may in fact capture data from a different region.

Improved precision in channel localization will therefore be

addressed by pinpointing the locations of the channels for each

child in terms of the MNI coordinates, through digitization of

fNIRS optode locations, as detailed by Hu et al. (2020). This

method facilitates accurate spatial mapping of neural activation

across participants.

5.2 fNIRS data pre-processing

For each subject, raw data will be visually inspected for evidence

of artifacts that would result in poor data quality. Pre-processing

will be carried out by MNE-NIRS, a dedicated Python library for

pre-processing fNIRS data (Luke et al., 2021). To further enhance

data quality, for each source-detector pair, the impact of systemic

physiological factors will be attenuated by performing short-

channel regression using the temporally embedded Canonical

Correlation Analysis (von Lühmann et al., 2020). Raw intensity

values will be converted into optical density values and then

motion-corrected using temporal derivative distribution repair

(Fishburn et al., 2019). The scalp coupling index (SCI), a measure

of signal strength between the optodes and the scalp (Pollonini

et al., 2014), will then be calculated for each of the 42 channels

for the entire experiment. Any channel with an SCI value lower

than 0.8 will be excluded from subsequent analysis (Pollonini et al.,

2016). For the subsequent dyadic neural synchrony calculations

(described further below), only shared channels with sufficient

SCI will be used. Remaining data will then be converted into

hemoglobin concentration values using the modified Beer-Lambert

law (Baker et al., 2014). Data will be filtered in order to

remove heart rate and respiration artifacts by applying a band-

pass filter between 0.01 and 0.5Hz (Yücel et al., 2021). Both

oxygenated hemoglobin (HbO) and deoxygenated hemoglobin

(HbR) will be analyzed, as HbO exhibits greater sensitivity to

changes in cerebral blood flow (Jiang et al., 2012), while NIRS

data acquired during verbal communication is most accurately

represented by the HbR signal (Zhang et al., 2017), since speaking

can influence end-tidal CO2 blood levels (Scholkmann et al.,

2013).

5.2.1 Epochs
Before calculating IBS, we will segment the neural data from

each phase into 30-second epochs, as described in Nguyen et al.

(2021b). These 30-second epochs allow us to observe the change

in IBS over time. As well as its use in prior neuroscience

studies, 30 seconds is the time period used in our prior work

estimating rapport, facilitating the behavior analysis pipeline we

describe below.

5.2.2 Inter-brain synchrony
Inter-brain synchrony will be calculated using wavelet

transform coherence (WTC), which allows comparison of

similarity between signals in terms of spectral content (Czeszumski

et al., 2020). WTC calculations will be conducted using the

hyperscanning Python pipeline (HyPyP) developed by Ayrolles

et al. (2021), across six regions of interest (left and right PFC, left

and right TPJ, left, and right STS) within the low-frequency range

0.01 to 0.15Hz. This range is chosen to filter out respiration and

heart rate while still allowing a relatively wide range of frequencies

implicated in free verbal interaction in prior work (specifically

Mayseless et al., 2019; Nguyen et al., 2021b). Like these previous

authors, however, we will carry out visual inspection and spectral

analyses and add higher frequencies if motivated by the data.

For each dyad, we will obtain IBS values for each 30 second

epoch and each ROI pair. We will also compute the average

IBS across each 8–10min phase of the experiment. In total, we

will thereby obtain IBS values for each dyad, from each ROI,

for the entire phase and for each 30-second epoch within that

phase. To best capture the IBS evoked by social interaction, we

normalize the values of the social phase by computing a Z-

score, i.e., removing the average value of the solo phase and

dividing by the standard deviation. This process is repeated for

each dyad. To compare the difference between phases, then, we

run a general linear model (GLM). Normalized IBS values are

entered as the dependent variable with interactive phases (i.e.,

collaboration and discussion) and the interaction effect of ROIs

(six per dyad) as fixed factors. To assess whether the observed

neural activity is most likely due to exchanges between the children,

as opposed to being primarily driven by the content of the task,

we will also generate random pairings by calculating IBS with

false dyads (the child’s time-series paired to the time-series of

another child coming from a different dyad during the same

phase). We will create multiple such random pairs to generate

the distribution of IBS expected under the null hypothesis (H0)

(Nguyen et al., 2021a). The values of the actual real pairs will

then be compared to these H0 distributions, thus providing an

empirical p-value. An example of this analysis is illustrated for

the feasibility study in Figure 5B. We will also generate a more

conservative intra-pair comparison based on temporally shuffled

behavior. In this case, the participants stay the same but the

epochs are randomized to generate false dyads (Ayrolles et al.,

2021).
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FIGURE 2

(A) Representative set-up of one of the experimental rooms (here in the feasibility study). (B) fNIRS montage showing the regions of interest: PFC

(blue channels), STS (yellow channels), and TPJ (green channels). Red and blue circles represent the sources and detectors, respectively.

5.3 Behavioral annotation

We argued above that it is not sufficient to focus on one single

conversational behavior, nor one single modality of conversational

behaviors, in order to understand the ways in which the behaviors

of social interaction are related to IBS. Here we describe how we

acquire the multimodal data. Conversation is influenced by the

situational context (e.g., classroom vs. playground, brainstorming

vs. class presentation), and by the interlocutor (e.g., adult vs. child,

stranger vs. friend or familymember). These differences underscore

the importance of rigorous annotation, including using automatic

extraction based on advances in signal processing to allow efficient

treatment of large amounts of data, as well as hand annotation using

coding manuals tested and normed for the culture and age group

in question.

In terms of the automatic extraction of nonverbal behavior,

we will employ OpenFace, a widely-used open-source computer

vision framework that utilizes action units (AUs) to detect facial

landmarks, allowing us to detect facial expressions in video

(Baltrusaitis et al., 2018). AUs are translated into behavioral features

such as smiles. This allow us, for example, to differentiate between

the Duchenne or genuine smile and the polite smile (Ekman et al.,

1990). We will next perform a manual check on 10% of the data

at each age using the ELAN video annotation tool (Wittenburg

et al., 2006) to ensure that the behaviors are correctly annotated

by the software. We have conducted such checks in the past, and

have found alignment between high inter-rater reliability hand

annotation and OpenFace. If, however, this is not the case for

these data for any reason, we will fine-tune the software with the

annotated data to ensure alignment and then retest on a second

sample of 10%. Second order behaviors (e.g., mutual smiles) will

then be automatically extracted. Assessment of eye gaze in the

videoconference-mediated conversations will be achieved using the

framework developed by Tran et al. (2022) applied to the raw eye

gaze data generated by OpenFace. This application enables the

extraction of eye gaze direction employing a dynamic clustering

algorithm. As with facial expression, we will then automatically

extract the second-order behavior of mutual eye gaze.

In addition to non-verbal behavior, we will also extract prosodic

features (e.g., pitch, loudness and speaking rate), which have also

been shown to play a role in rapport management (Grimberg et al.,

2022). These features will be extracted using a widely used open

source audio analysis framework called OpenSmile (Eyben et al.,

2010), which enables acoustic features in the audio to be extracted

and then interpreted as prosodic features such as intonation,

speech rate, and loudness. We will then automatically extract the

second order behaviors (e.g., identical speech rate, entrainment of

loudness, etc.).

Finally, we will annotate verbal or linguistic behaviors using

the Elan software package, version 6.7 (Wittenburg et al., 2006),

concentrating specifically on what are called conversational

strategies—ways of speaking that serve particular interpersonal

functions (such as using praise to “soften up” one’s interlocutor,

or hedges to avoid embarrassing the other person), that have

been shown to play a role in building rapport among adults

and young people (Zhao et al., 2014; Madaio et al., 2018). Our

coding scheme for conversational strategies, refined and published

in numerous papers over the last decade, is based on behavioral

phenomena that have been shown in work by others and by

our own team to impact rapport. Each coding scheme treats

one verbal behavior. In the current work, we will annotate self-

disclosure (revealing details about oneself that are not publicly

available, such as “I love dogs”), reference to shared-experience

(referring to an event that was engaged in together, such as “last

week’s problem was really hard, right?”), praise (such as “you’re

better at this than me”), and backchannels (sounds or words that
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indicate that the listener is following, such as “uh huh” or “yeah”).

We will then use a grounded theory (Glaser and Strauss, 1967)

bottom-up approach on a subset of the data from each age to

understand if we have missed any relevant conversational strategies

in the dataset and we will add them to the annotation scheme

if so. Following this, we will automatically extract second-order

conversational strategies, such as mutual self-disclosure (“I love

dogs.” “Me too”). Annotation of conversational strategies will be

carried out by experienced annotators whose inter-rater reliability

on Krippendorf ’s alpha must be above 0.7 before they proceed

to annotating independently (Krippendorff, 2011). Importantly,

we will annotate only what is visible, and then correlate with

the underlying dyadic psychological state of rapport, rather than

placing annotation of putative underlying states such as beliefs

(e.g., this child likes her partner), feelings (she looks happy), and/or

intentions (she wants to convince the other child that she’s right) on

the same level as visible behaviors.

5.4 Rapport estimation

We argue that analyzing only conversational behaviors

with respect to IBS without associating them to underlying

psychological states obscures how those psychological states are

produced dyadically through particular multimodal conversational

behaviors. For this reason we will carry out careful objective

estimation of the level of rapport between the children in each

dyad by using the “thin-slice” method, described above, in which

the video is divided into 30-second “thin slice” segments (Ambady

and Rosenthal, 1993; Ambady et al., 2000). These segments will

be presented in random order to four independent raters on an

online micro-work platform (such as Amazon Mechanical Turk

or Prolific). The annotators will be provided with a simple one

sentence definition of rapport as harmony and ease of interaction,

and asked to evaluate each slice of video on a Likert scale ranging

from 1 to 7, where higher scores indicate higher rapport (Sinha

and Cassell, 2015a). A single rapport value for each slice will be

produced by throwing out the rater most distant from the other

three, and then calculating intraclass correlation and Cronbach’s

alpha among the remaining raters to determine consistency and

reliability, respectively (Ambady and Rosenthal, 1993;Madaio et al.,

2018). The 30-second slices will then be reassembled in their

original order, giving a picture of the temporal dynamics of rapport

over the course of the interaction.

While we sometimes refer to feeling instantly “in sync”

with somebody we have just met, for the most part rapport

fundamentally has to do with the change of a relationship over

time. In order to assess the changes in rapport over the course

of the 6 weeks of the longitudinal experiment, we will rely on

the concept of utopy (Sinha, 2016). Prior work has shown that

statistical summaries such as a measure of central tendency or

proportion of high and low ratings of rapport, collapse the temporal

dimension and are not as robust as more stochastic-based models

which capture the evolution of rapport over time (Sinha, 2016).

We will thus fit a Markov chain of order 1 to the sequence of 16

to 20 rapport ratings for each session (8–10min), the sequence of

32 to 40 rapport ratings over the two dyadic sessions (collaboration

and open-ended chat) and the 192 to 240 rapport ratings for the

two dyadic sessions over the entire 6 weeks, and use the resulting

transition probability matrix to generate a measure of the “utopy,”

or likelihood of the dyad being in a high-rapport state. This

likelihood is calculated as the sum of each transition probability

weighted by the distance of the transition (Sinha, 2016; Madaio

et al., 2017b). This allows us to assess the temporal dynamics

of rapport.

As described above, we will also ask children after each

interaction to rate their preferred closeness and feelings of closeness

to their partner.

5.5 Educational performance

We argue for two types of rapport to be distinguished:

productive and unproductive. Both types are associated with

important health and wellbeing benefits, such as feelings of social

cohesion. However, we define productive rapport as that which

serves not only to improve wellbeing, but also to increase learning

gains when two children collaborate. Unproductive rapport, on the

other hand, may serve to distract the learners and reduce learning

gains. To assess what behaviors identify productive rapport, we will

assess the learning gains of the individuals in each dyad, and the

mean learning gain of the dyad, each week and over the period

of the 6 weeks, as follows: as described above, the children will

individually report their hypotheses and evidence to a locally-

located experimenter each week, after the collaborative and free

discussion phases are finished. This “reporting out” serves as a

metric of performance on each week’s work. In addition, the delta

between a pre-test (before the 6 weeks begin) and post-test (after

the end of the 6th week) will measure learning gains over the

course of the 6 weeks for each individual and for the dyad in

order to assess the relationship between IBS, use of conversational

behaviors, level of rapport, and learning gains. The pre-test and

post-test will be similar to the first task used in week 1 and 2,

and they will be administered by the experimenter located in each

venue. Here the experimenter will show the child an image of a

new imaginary animal (a different animal for the pre-test than for

the post-test), and several pictures of environments, and ask the

child whether each of the environments would be a good or bad

place for the animal to live in and why. After the child has given

arguments for why each of the environments would be suitable or

unsuitable for the imaginary creature, the experimenter will ask

which of the environments would be best and why. Once again

this will last no more than 8–10min. The students’ responses on

the weekly read-out and the pre- and post-test will be annotated

for instances of every-day science reasoning language (hypotheses,

claims and evidence, expressed in lay language, such as “I think

that he can climb trees because he has long claws”). The annotation

will be carried out using a scoring manual for everyday science

language that we developed for prior work (Finkelstein et al., 2013;

Finkelstein, 2018), and that has achieved high inter-rater reliability.

The manual was developed based on a significant body of prior

work (inter alia, Lemke, 1990; Kafai and Ching, 2001; Kurth et al.,

2002; Nemirovsky et al., 2004). The categories include “testing or

evaluating ideas”, “causation”, “explanation”, sorting/classifying”,
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and “comparing”, among others. The children’s interactions with

one another, both during the collaboration phase and the social

phase are also annotated for conversational behaviors and for

rapport, as described below.

6 Data analysis

Intrinsic to the novel methodology we are proposing is the

alignment of neural data with multimodal conversational data on

the one hand, and ratings of interpersonal rapport on the other.

Synchronization of the video, audio and fNIRS equipment will

be carried out by event timings from PsychoPy (Peirce et al.,

2019), as described above. For the analyses below, therefore, while

potentially challenging due to the different time-scales of the

different modalities, we use the mean calculated on each 30-second

window for each data type, and can therefore synchronize the

different behavior streams (audio, video, rapport estimations, and

IBS) using the event codes recorded in the fNIRS data, prior to

subsequent cross-data type analysis.

6.1 Claim 1: conjunctions of conversational
behaviors across modalities better
predict IBS

We argue that focusing on a single conversational behavior

(such as eye gaze) under-estimates the complex interplay among

modalities in their relationship to neural synchrony. To adduce

evidence for this claim we will leverage Long Short-Term Memory

(LSTM) networks to predict IBS on the basis of temporal sequences

of behavioral data (see Table 1 for further details on the behavior

types and variables). Since conversational behaviors are likely to

lead to IBS with a certain lapse of time, we insert a 1 to 10

second time lag between the sequences of conversational behaviors

and the IBS (Chang et al., 2022). The dataset will be structured

into sequential behavioral data over time, each associated with

a 30-second interval IBS value and normalized through a Min-

Max scaling technique, ensuring consistent proportions across all

features, while preserving the original distribution of the data.

The study will employ a hierarchical LSTM model to process

these multimodal inputs. Within this framework, different LSTM

modules will be dedicated to distinct input modalities, with their

outputs subsequently merged in the following stage. Given that

each modality may generate inputs at varying frequencies, we will

synchronize these signals, setting a uniform frequency for the

temporal signals that aligns as a common multiple of their various

frequencies. To overcome the inherent limitation of traditional

LSTM models, which often lose track of initial inputs over

time, we will incorporate attention mechanisms known for their

effectiveness in preserving memory. Additionally, the LSTMmodel

will feature a feed-forward network capped with a softmax function

at its output, aiming to categorize the hidden representations into

specific conversational behaviors. Themodel’s weight functions will

be honed through supervised learning, utilizing Back Propagation

Through Time (Mozer, 1995). For the training of our LSTMmodel,

we will employ cross-entropy loss as a key metric.

Training will involve temporal cross-validation, preserving the

chronological order of sequences. Post-training, we will employ

two techniques for feature importance analysis: an ablation analysis

to selectively remove features in such a way as to evaluate their

impact on model performance, and SHAP (SHapley Additive

exPlanations), a model agnostic method proven effective in our

prior work (Grimberg et al., 2022), for quantifying each feature’s

contribution to rapport predictions. The model’s performance will

be evaluated on a distinct test set, with adjustments made based

on results. This comprehensive approach will allow us to not

only predict IBS from behavioral data but also determine the

contributions of specific behavioral features and combinations of

features, shedding light on the factors influencing IBS dynamics.

6.2 Claim 2: IBS and rapport evolve similarly
across time

After describing how we will assess the relationship between

reciprocal conversational behaviors and IBS, we now turn to the

relationship between the psychological state of rapport, as brought

about by conversational behaviors, and IBS. To achieve this, we will

establish a behavior analysis pipeline that preserves the temporality

of the different data streams, while highlighting the relationship

among them. Because the time scales of different behavior streams

may differ, it can be challenging to analyze the potentially non-

linear relationship between rapport and neural synchrony. Here

we will therefore set up a pipeline using Dynamic Time Warping

(DTW), a powerful method that has been previously used to

compare the dynamics of brain activation between the time series

of two participants (Azhari et al., 2019). In our own prior work,

DTW has also been used to characterize how the conversational

strategy usage for each partner in a dyad is aligned in time with

that of the other partner (Sinha and Cassell, 2015b), allowing us

to assess entrainment, and influence of each member of the dyad

on the other. The application of non-linear transformations as

carried out by DTW is particularly advantageous for the relatively

slow fNIRS time scale compared to the observed behavioral events

(Quaresima and Ferrari, 2019). The DTW method causes specific

changes in the timing of events in two different data streams.

These alterations are made in such a way as to allow for the best

possible alignment or matching of the two time-series (Berndt and

Clifford, 1994). DTW then provides a measure called “warping

distance”, which helps us compare and quantify how different

the two sequences are from one another, based on the changes

needed to align them. Smaller warping distance values mean

that the sequences are more similar, while larger values indicate

greater dissimilarity.

To assess the relationship between rapport and IBS, we will

therefore calculate the warping distance between IBS and rapport

values for each dyad across 30-second intervals. In order to assess

the statistical significance of the observed similarity between IBS

and rapport curves post-application of DTW, a permutation test

will be employed. This involves randomizing the time slices of

one of the curves and recalculating the warping distance, repeating

this process through 1,000 iterations. The resulting distribution

of permuted distances facilitates the determination of a p-value,
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TABLE 1 Data sheet.

Level of data type Modality Dyadic status Specific variables Notes

Conversational Behavior Verbal Non-reciprocal Self-disclosure Number of behaviors per 30

second epoch.

Reference to shared experience

Praise

Teasing

Reciprocal Mutual self-disclosure

Mutual reference to shared experience

Mutual teasing

Paraverbal Non-reciprocal Pitch shift

Shift in speed of speaking

Shift in loudness

Reciprocal Mutual pitch shift

Mutual shift in speech rate

Mutual shift in loudness

Nonverbal Non-reciprocal Smile

Head nod

Gaze at other person

Reciprocal Mutual smile

Mutual head nod

Mutual eye gaze

Rapport State Rapport rating (1–7) for each

30 second interval for each

dyad

Educational Performance Every week Task 1–3, week (with x= 1–6) Number of hypotheses per

weekly 8–10min read-out

Number of pieces of

evidence per 8–10min

weekly read-out

IBS Right hemisphere ROIs

which, when the significance level is set, elucidates whether the

observed pattern similarity is statistically significant. Subsequently,

a two-way (2 × 7) repeated measures ANOVA can be conducted

to explore the effect of experimental phases (collaboration and

discussion) and brain regions (left and right PFC, left and right TPJ,

left TPJ, left, and right STS) on the resultant warping values. This

analysis will enable the assessment of overall differences in warping

values attributable to each factor, as well as potential interaction

effects between experimental phases and brain regions, providing

a clearer understanding of the factors shaping the relationship

between rapport and IBS. After having analyzed the relationship

between the temporal dynamics of rapport and IBS, we will also

run a mediation analysis, where we examine rapport as a mediating

factor between reciprocal conversational factors and IBS, to test

how conversational factors may influence the dyadic dynamics at

both neural and psychological levels. This was the case in prior

research where we found that rapport played a mediating role

between conversational behaviors and learning gains (Sinha and

Cassell, 2015b).

6.3 Claim 3: IBS Granger-causes reciprocal
conversational behaviors

While the previous analyses give a sense of the relationship

among time courses, they do not illuminate the direction of

influence between one time course and another. To that end, we

will compute Granger causality (Granger, 1969). Our prior work

already shows that rapport Granger-causes increasing entrainment

in some conversational behaviors, and particularly in speech rate

(Sinha and Cassell, 2015b). It has also been employed to show

that dual brain stimulation improves collaborative learning via the

mechanism of spontaneousmovement synchrony (Pan et al., 2021).

Here we seek to understand whether rapport Granger-causes IBS

or vice-versa and, subsequently, whether conversational behaviors

Granger-cause IBS or vice-versa. Given the slower time scale of

fNIRS signals, a relatively large time window will be used. That

is, we hypothesize that it might take as long as 5 seconds for

one of these phenomena to Granger-cause the other. The Granger

causality approach relies on the accuracy of one time series in
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predicting the future behavior of another time series. In particular,

we determine whether time series A (e.g., IBS) Granger-causes time

series B (e.g., rapport or a relevant behavior feature) by assessing

whether incorporating past observations of time series A in a

linear regression model of time series B and time series A reduces

prediction error compared to a model containing only previous

observations of time series B.

In recent neuroscience studies, Granger causality has

demonstrated the ways in which men in elderly couples

Granger-cause competitiveness in their spouses in the first

half of a competitive game, while there is no causality in either

direction in the latter half of the game (Zhang et al., 2023).

In recently-published research, it has been shown that mutual

non-verbal behaviors, particularly mutual smiles, laughter, and

body movement anticipate and Granger-cause IBS, even in the

absence of a specific task (Koul et al., 2023). However, in that

experiment participants were required to look at one another, and

so spontaneous mutual gaze behaviors were not evaluated. In the

current work, we compute the pairwise conditional G-causality in

both directions. If no causality is evident in either direction, our

prior work motivates looking at the causal relationships between

the mutual behaviors previously revealed to be influential in

rapport-building and IBS (described above). Therefore, in this

case, time series A and time series B will refer to the average IBS

value for every 30-second epoch and the rapport values/occurrence

of a relevant behavior for each 30-second slice. The statistical

significance will then be assessed through an F-test under the

null hypothesis that one time series does not Granger-cause the

other. This analysis can reveal both unidirectional influences,

wherein one time series significantly Granger-causes the other

(i.e., one time series tends to lead the other), and bidirectional

influence, indicating that both time series Granger-cause one

another in a reciprocal manner. Indeed, if past values of the

time series A help improve the prediction of time series B, and

at the same time, past values of time series B also help improve

the prediction of time series A, then bidirectional influence

is present.

6.4 Claim 4: not all rapport is productive:
adding in performance data

While rapport is often seen as beneficial in general, and in

particular for collaborative tasks, its impact on task performance is

not uniformly positive. To investigate this, we propose integrating

performance data into our analysis of IBS, conversational

behaviors, and rapport. Methodologically, we will first compute

the specific performance metrics relevant to the tasks undertaken

by dyads in our study, as described above. In order to associate

these metrics to conversational behaviors, rapport level, and

IBS, over time, we count the number of hypotheses, and

evidence statements supporting those hypotheses, in the read-

out session between the children and the experimenter for

each week, and we associate these performance metrics to the

rapport utopy score for that week, and the mean IBS score

for the collaboration phase for that week. Our hypothesis is

that while a moderate level of rapport is likely to be beneficial

for performance, either too little or too much rapport might

hinder task effectiveness. This could be due to an overemphasis

on maintaining harmonious interactions at the expense of

task focus, or conversely, insufficient rapport leading to poor

collaboration.We therefore expect to find a non-linear relationship,

potentially inverted U-shaped, between rapport levels and task

performance. To test this hypothesis we will employ regression

models, including quadratic regression, to test the hypothesized

inverted U-shaped relationship. This will enable us to assess the

impact of varying levels of rapport on performance metrics while

controlling for other variables. Furthermore, we will conduct

subgroup analyses to explore if this relationship varies across

different dyads, tasks, levels of IBS or ages, or over the 6

weeks of the study. This could involve stratifying dyads based

on one of these variables. By integrating performance data,

we aim to provide a more nuanced understanding of the role

of rapport in collaborative tasks. This kind of analysis may

be supplemented by machine learning models such as random

forests, where the model is trained on a portion of the data,

with the random forests constructing multiple decision trees

during the training, and outputting the mean prediction of

these trees. In essence this enables the model to recognize

complex patterns, such as how different variables interact to

affect task performance, thus potentially uncovering intricate

relationships such as the hypothesized non-linear relationship

between conversational behavior, rapport, and task performance.

Techniques of this sort, however, require a significant amount of

data as, after training, the model is validated on a separate dataset to

assess accuracy. If 176 dyads are collected, the amount of data could

be sufficient. The results could have important implications for

how rapport is fostered in team settings, particularly in educational

and organizational contexts, where performance outcomes are

critical. The insights gained from this analysis could contribute

to a more comprehensive model of interpersonal dynamics,

extending beyond the simple premise that more rapport is always

more beneficial.

6.5 Claim 5: rapport-building is a process
that takes time

We will employ Dynamic Network Analysis (DNA) as the

simplest way to address Claim 5′s exploration of the longitudinal

interplay between IBS and rapport over the course of 6 weeks. In

this analysis, each dyad will be represented as a network, with nodes

denoting sensors and edges indicating the strength of IBS. The

temporal alignment of these networks will ensure uniformity across

different time points, enabling a consistent examination of changes

in connectivity. Employing dynamic network metrics, including

variations in edge weights, will facilitate a comprehensive capture of

evolving patterns in dyadic interactions. Visualization techniques,

such as animations, will be employed to enhance the intuitive

comprehension of temporal dynamics within these networks.

Rigorous statistical analyses will involve comparing metrics across

different time points and identifying relationships between those

changes in network patterns and the evolution of rapport.
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6.6 Claim 6: brain regions evolve with age

We hypothesize that with age we will find more reciprocal

conversational behaviors, as children become more able to

participate in interpersonal synchrony, and increasingly able to

develop abstract shared mental representations with others, leading

to greater IBS. We expect to find IBS particularly in the TPJ for

the younger age groups and in the PFC in the older age groups

(Dumas et al., 2020). In the absence of prior research concerning

the development across middle childhood of the neural correlates

of social bond formation, we propose to study IBS across the 4

age groups in relationship to the task (solo vs. collaboration vs.

discussion). To that end, following Wang et al. (2022), a GLM

model will be used to estimate changes in IBS values across

ROIs, pairs, and distinct experimental phases. To ensure robust

statistical inference, False Discovery Rate (FDR) correction will be

implemented. We believe that the identification of developmental

dynamics in IBS will provide valuable insights into the critical

cognitive processes at play in rapport, and will thus potentially play

a role in guiding the design of interventions.

7 Modeling productive conversational
behaviors in virtual peers

With advances in end-to-end machine learning models of

conversation, the promise of usable virtual reality solutions for

work and play in the Metaverse, and the introduction of large

language model (LLM) chatbots, there has been a renewed

focus on building embodied conversational agents (ECAs), i.e.,

conversational agents with computer-generated animated bodies

that are displayed on a screen and that can both recognize and

display language and non-verbal behavior to communicate with

their human interlocutors. These systems are targeting challenges

as varied as adherence to medical treatment (Bickmore et al., 2010;

Tudor Car et al., 2020), lifestyle changes (Kramer et al., 2020),

education (Lane and Schroeder, 2022), and even daily home tasks

where individuals could benefit from the support of a personal

assistant (Pham et al., 2018). However, a stumbling block in

the implementation of systems that can engage with their users

for more than a minute or two is the implementation of the

kind of appropriate rapport-building social interaction strategies

that in human interaction underlie successful collaborative task

performance, and that are more sophisticated than simple

meaningless chit-chat. Such strategies are particularly important

for educational interactions where children in the classroom and

in informal learning contexts constantly intersperse task and social

talk, and where, as we described above, reasonable amounts of

apparently off-task social talk has been demonstrated to improve

collaborative learning (Madaio et al., 2017a). The study proposed

here therefore has both basic science goals, identified above, and a

translational motivation, which is to build more effective Embodied

Conversational Agents (ECAs) for education. The design of ECAs

and specifically of virtual peers (ECAs that look and behave like

children) has relied on studies of real children, including our own

work on peer collaborative learning (inter alia; Madaio et al., 2017a;

Cassell, 2022). The use of neuroscientific data to enhance the

learning properties of ECAs has not been studied, however. In fact,

the majority of studies that look at neural activation in the context

of virtual agents has been restricted to people viewing agents and

not interacting with them. Exceptions are our lab’s early work

comparing brain activation in individuals interacting with a human

MRI technician vs. an ECA MRI technician, in two conditions:

where the technician (human or ECA) simply explained the MRI,

or also engaged in social interaction. In the task-only condition,

increased superior temporal gyrus activation was found for the

virtual human technician over the real technician. For the social

interaction condition, on the other hand, interaction with both the

real and virtual technicians resulted in increased activation in areas

associated with social cognition, but there was greater activation for

the human technician (Gayda et al., 2008). More recently, work by

Chaminade et al. (2018a,b) has compared interaction with a virtual

head to interaction with a person, and shown increased activation

in the TPJ for the interaction with a human. However, the virtual

head used in the experiment was quite limited in its expressiveness

and was piloted by a “wizard” rather than being driven by human-

human data. We have also found increased involvement of the

rTPJ during social coordination between individuals and a virtual

partner represented by the human dynamic clamp (Dumas et al.,

2020).

The study outlined here is designed to better understand the

relationship among conversational behaviors, rapport and IBS in

pairs of children, in the context of an education-oriented task. In

so doing it may thus show us the path to implementing a more

effective VP, an AI system that looks (see Figure 3) and acts like a

child, and that engages children in a set of conversational behaviors

that can be shown to lead to productive rapport, and hence to

learning gains. Implementing these behaviors in a VP gives us a

way of evaluating our basic science results: do the behaviors that

seem most effective in analysis turn out to be the most effective in

synthesis? In the past our ECAs and VPs have always served this

double role: a system that can play positive role in children’s lives,

and serve as a tool for better understanding the use of multimodal

behaviors in interaction. In this sense, as described above, our work

is tightly aligned with the goal of social neuroergonomics, that also

proposes bringing together cognitive science, computer science and

neuroscience in order to better understand how people engage in

social interaction with one another, and how to build machines that

better understand and support this interaction (Dehais et al., 2020).

As emphasized by Cross and Ramsey (2021), then, the

incorporation of human-like attributes into a non-human entity,

followed by the assessment of similarity using behavioral and

neural measures of human interaction, offers an important way of

investigating how to improve current AI systems. In our evaluation

of the resultant virtual peer, we will therefore once again collect

fNIRS data. Clearly, we will not collect IBS data in this context,

however we will investigate the neural correlates of interaction with

VPs, and compare it to that of child-child interaction for each

age group.

While a full description of how to implement such VPs is

beyond the scope of this article, it is important to emphasize that

new techniques in artificial intelligence make this goal significantly

more attainable. In particular, we have demonstrated that we can

fine-tune LLMs such as DialoGPT (Zhang Y. et al., 2020) or

ChatGPT3.5 (OpenAI, 2022)—that is, feed themmany instances of

a particular way of talking—and that the resultant machine learning
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FIGURE 3

Child working with a virtual peer on a math problem (for illustration purposes).

model is able to then generate appropriate social language, such as

hedges in the style of teenage peer tutors (Abulimiti et al., 2023).

The complete methodology is depicted in Figure 4.

8 Feasibility study

In order to evaluate the feasibility of fNIRS hyperscanning over

Zoom with dyads of children in this age group, and to assess the

quality of the data collected in this manner, we ran a feasibility

study. As we did not intend to look at performance metrics in

the feasibility study, nor to gather data across multiple weeks,

we chose to use a task that was familiar to children in this age

range. We therefore developed a single-session paradigm based

on a digital adaptation of the Guess Who game. Guess Who is

a two-player board game that involves inferring an answer from

a set of clues. The game has 24 possible characters with various

distinguishing attributes (e.g., gender, facial hair, glasses, etc.). In

the original board game, players randomly select a character card

whose identity the player’s opponent must guess by asking a series

of yes or no questions. The children alternate between choosing a

card, and asking questions of the other player to eliminate incorrect

character possibilities on their game boards. In the experimental

version, we adapted the game to be presented on a screen, with

familiar characters from popular animated television and film that

target this age group in France.

In addition to developing a digital version, we also adapted the

game to allow both solo and collaborative modes. Thus, instead

of asking the original game’s yes-no questions about features

pertaining to the character, children were given clues that were

displayed one by one above the game board on the child’s screen.

In order to be suitable for pre-literate younger children as well as

older, each clue was represented with a short one- or two-word

label and a picture. In total, each character round consisted of four

clues. Children were instructed to remove the characters that did

not correspond to the clue by clicking on the character’s image.

In response, a red “X” appeared over the image of the character

indicating that the character was eliminated. For example, if the

clue was “garçon” (“boy”), the child saw a blue silhouette of a male

human figure and should have eliminated all female characters. For

the solo phase, this process was repeated for each of the four clues

until only one final character was left un-eliminated. After only one

final character remained on the board, the correct answer appeared

in the middle of the screen. If the correct character was chosen, the

character’s image appeared outlined in green while if an incorrect

character was chosen, the image was outlined in red. The game

board then reinitialized, beginning again with a new set of clues

leading to another character.

During the collaborative phase, on the other hand, each

member of the dyad received different clues, which they had to

compare and discuss with their partner, with whom they interacted

via videoconference. For instance, one child may have received the

clue “sourire” (“smile”) while the other child may have received

“garçon” (“boy”). By sharing their clues, both children knew to

eliminate all characters who were not male and not smiling. The

game was designed to induce collaboration by making it impossible

to correctly guess the final character without sharing clues.

After training and capping, the feasibility experiment was

composed of four 7-min phases: solo task, first discussion,

collaborative task, and second discussion. In order to allow for

the capture of baseline neural activity, each experiment began with

a 75-second baseline period, and there were 30-second baseline

periods between each phase. Children were not in the same

location and did not meet except by videoconference during the

collaborative task and the two discussion phases. We note that

while we had 5 baselines in the feasibility study, the time to

Frontiers inNeuroergonomics 15 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1290256
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Bonnaire et al. 10.3389/fnrgo.2024.1290256

FIGURE 4

Recapitulation of the methodology.
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explain them, set them up and focus the children added significant

time to the experiment, and sitting still and staring fixedly was

uncomfortable for the majority, and so we have reduced the

number of baselines for the proposed study.

For the first discussion phase, the children were introduced

over videoconference and it was suggested that they chat to get to

know one another, and to discuss potential game strategies while

the experimenters set up the next part of the experiment. The

collaborative phase of the game was then played with the child

peer partner, also for 7min. During this phase the game board was

presented on the left half of the screen and the videoconference

featuring the other child was presented on the right half of the

screen (see Figure 2A). The children’s webcams were adjusted to

capture their entire face and shoulders. A high-fidelity microphone

captured the children’s speech. Subsequently the children were

instructed to chat freely while the experimenters set up the last part

of the experiment. PsychoPy (Peirce et al., 2019) was responsible

for maintaining the synchronization of the audio, video and

fNIRS equipment.

9 What can we conclude from the
feasibility study?

Five dyads of children participated, based on recruitment

among local researchers and the social media accounts of a local

babylab. The children in one dyad turned out to know one another

beforehand, however they and the other four dyads were able to

complete the task, and the data of all five are of high quality, and

are included in the feasibility study analyses reported here. The five

dyads are composed of 2 dyads of boys and 3 dyads of girls. The

children had an average age of 10.2 years, with a standard deviation

of 1.4 years.

As described in the Supplementary material, analyses

conducted on HbO values showed that IBS was significantly

greater during the two interactive phases (collaboration and social)

than during the solo phase, specifically in the right TPJ (Figure 5A).

As evidence that the presence of IBS is due to social interaction

and not to looking at the same stimulus materials, during the

initial discussion period, IBS for the rTPJ was significantly higher

for the authentic dyads than for the random pairing of children

(Figure 5B). These results resemble those found in parent-child

pairs, for example in Nguyen et al. (2020), as well as for adults

in similar situations (Jiang et al., 2012). The fact that the STS

did not demonstrate significantly higher IBS in the collaboration

or discussion phases than in the solo phase, as has been found

in a number of studies looking at perception of faces (e.g., Lee

Masson and Isik, 2021), may result from the videoconference

set-up where, for example, it is more difficult to assess whether

the other person is meeting one’s gaze. This suggests that data

collected in a face-to-face condition with fewer children should

also be included during the proposed study in order to ensure that

data collected via videoconference is substantially similar to that

collected face-to-face.

Analyses of conversational behaviors showed more smiles than

other non-verbal behavior throughout the experiment, however

the smiles were differentially distributed. For dyad 1 for example

(two 10-year-old girls), while smiles were present throughout,

smile frequency was higher during the two discussion phases than

during the collaborative phase (see Figure 5C). Looking at the

interaction between conversational behaviors and IBS, the smiles

during the initial discussion phase coincided with heightened

levels of IBS. Consequently, to investigate this association, a

DTW analysis was conducted to assess the similarity in temporal

dynamics between smile occurrences and IBS levels during this

phase. This demonstrated evocative results, as the warping distance

was small during the initial 8 epochs, that is, during the first 4min

(Figure 5D). In terms of paraverbal behaviors, laughter was found

in all phases.

10 Limitations

The study proposed here is ambitious in its goals, but we

believe that the results obtained justify the paradigm. Nevertheless,

a number of limitations need to be addressed. The number

of participants in the feasibility study is too small to draw

conclusions about child-child interaction from these data. They

do however indicate the feasibility of carrying out hyperscanning

of child-child dyads, over videoconference (for more details

about the preliminary findings, see the Supplementary material).

Longitudinal studies sometimes lose participants for subsequent

sessions. We mitigate this risk by collecting more data than

recommended by the power analysis, by working with schools,

rather than bringing participants into the lab, and by conducting

subsequent sessions during a range of dates, rather than insisting

on one single date. However, in cases where children drop out,

we rely on the statistical methods described above to account for

missing data and smaller samples. The study must be carried out by

videoconference, both to allow thematching of unfamiliar children,

and to allow commonality in screen presence between the child-

child and child-VP studies. Among other reasons, this allows us

to take into account in both studies the influence of blue light

emitted by screens, which may cause an increase in saccadic eye

movements (Lee Masson and Isik, 2021). However, we recognize

that data collected by videoconference may demonstrate attenuated

IBS, and issues with the localization of eye gaze. Both of these

limitations are addressed above, but must be kept in mind. Finally,

in this study, we have focused on spatial rather than temporal

resolution, by using fNIRS, but some short-term phenomena may

not be captured. To address this, a future study might couple fNIRS

to EEG for improved temporal resolution.

11 Discussion

By integrating the four types of data described above, we

aim to gain a deeper understanding of how pairs of children

deploy conversational behaviors to establish bonds during middle

childhood, a developmental stage characterized by a heightened

focus on peer interaction. This integrated approach can also shed

light on the neural processes involved in the development of

interpersonal rapport over the course of a budding relationship,

and the development of rapport-building over the course of

middle childhood, as well as the role of rapport in educational

performance. We also argue that a better understanding of these
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FIGURE 5

(A) IBS across di�erent experimental phases and ROIs was investigated for the five dyads. The Kruskal-Wallis test, a non-parametric analysis, revealed

significantly elevated IBS in the right hemisphere and the left STS. Additionally, when comparing to the solo phase as reference, the non-parametric

t-test identified significantly higher IBS levels specifically in the right TPJ during the collaboration and both discussion phases. (B) Analysis of authentic

vs. random dyads for the right TPJ for each experimental phase. (C) IBS evolution in the rTPJ during the social phases for a representative dyad. Red

points represent the occurrence of smiles for the associated 30-second epoch. (D) Dynamic Time Warping (DTW) was carried out on the same dyad

to assess pattern similarities between the occurrences of smiles (blue line) and IBS in the rTPJ (magenta line) during the initial discussion. The x-axis

reflects normalized values, while the y-axis corresponds to epochs, with each epoch equivalent to 30 seconds of the initial discussion phase.
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mechanisms can play a translational role in improving technologies

for education, in particular the development of virtual peers,

artificial intelligence partners in learning. To achieve the goals

laid out above, we propose a novel multimodal approach using

hyperscanning via functional near-infrared spectroscopy to study

the neural, behavioral, psychological and performance correlates

of rapport in middle childhood, during remote social and task

exchanges in an ecologically-valid context of collaboration. While

literature directly addressing our topic is limited, an extensive

review of literature in social neuroscience and concerning children’s

multimodal conversational behavior, and interpersonal bond

formation allows us to formulate guiding hypotheses. Additionally,

a feasibility study demonstrates our ability to collect high-quality

hyperscanning data from children engaged in videoconference

collaboration and conversation, and to analyze its relationship to

these other types of data.

The specific methodology proposed here is designed to

address the paucity of literature concerning how children in

middle childhood build social bonds with their peers, and the

nature of those peer relationships. It is further motivated by

the need to develop new kinds of educational tools, based on

AI techniques, but that are optimized for the way children

naturally learn, by including a social infrastructure for learning.We

choose to pair children across videoconferencing, an increasingly

researched communication modality (Bodur et al., 2023) that

became commonplace even among young children during the

pandemic. To achieve these goals, we proposed a fNIRS

paradigm that includes an engaging and ecologically valid task,

aiming to evoke naturalistic conversations between unfamiliar

children. We also propose a novel analysis pipeline to examine

the relationship among conversational behaviors, interpersonal

rapport, educational performance, and IBS. We argue that this

multimodal, multilevel, and multidisciplinary design offers a more

well-rounded approach to studying the development of social

bonds between peers during a crucial period of children’s lives.

Other methods, drawn from machine learning, could improve

the assessment of interpersonal coordination of conversational

behavior, and its relationship with task performance, rapport, and

neural synchrony. Multimodal learning with transformers is one

place to look for these analytic tools, and their development is

currently a major focus of attention, as is their application to

important fields of inquiry such as clinical diagnostics (Zhou

et al., 2023). Other methods, too, may provide a more informative

analysis of the temporal dynamics of each of these behavior streams,

and the relationships among them, such as the relationship between

rapport and IBS over the course of the 6 weeks. TITARL (Guillame-

Bert and Crowley, 2012) is one such option, that we have used

before (Zhao et al., 2016; Madaio et al., 2017b) and that produces a

series of rules to predict an outcome event (such as high rapport)

based on a series of prior events (such as laughter followed by

mutual gaze, but in the absence of praise). Such methods are

particularly important for fNIRS studies where temporal resolution

is on the level of seconds rather thanmilliseconds, and investigating

task components is both possible and necessary.

The initial experiment will take place in France, with French-

speaking children, but a subsequent study, not addressed in the

current article, may add an American English-speaking sample,

as social bond-building behavior differs in interesting ways

between the two cultures, which are usually seen as quite similar

(Béal, 2010). This first instance of the experiment will focus on

neurotypical individuals and questions addressing neurotype will

therefore be included in the parent questionnaire. We envision

subsequent iterations of the study to include neurodivergent

individuals, in line with our prior work with that population

(Tartaro et al., 2014).

Nevertheless, the methodology and study proposed here do

hold the promise of demonstrating the range of socio-cognitive

factors that impact children’s ability to build rapport with their

peers, and the neural signature of that ability. We hope, as

well, to better understand the brain networks implicated in these

processes at each stage of middle childhood, as there is a dearth

of ecologically-valid prior work on the neuroscience of social

interaction among peers in this age group. Our feasibility study

already provides tentative neural correlates of rapport among pairs

of children.We hope future studies will validate those correlates but

also uncover the neural mechanisms of rapport at both intra- and

inter-personal levels.
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Nguyen, T., Hoehl, S., and Vrtička, P. A. (2021a). Guide to Parent-child fNIRS
hyperscanning data processing and analysis. Sensors 21:4075. doi: 10.3390/s21124075

Nguyen, T., Schleihauf, H., Kayhan, E., Matthes, D., Vrtička, P., Hoehl,
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