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multi-modal physiological
sensors

Jingkun Wang1, Christopher Stevens2, Winston Bennett2 and

Denny Yu1*
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Mental workload (MWL) is a crucial area of study due to its significant influence

on task performance and potential for significant operator error. However,

measuring MWL presents challenges, as it is a multi-dimensional construct.

Previous research on MWL models has focused on di�erentiating between two

to three levels. Nonetheless, tasks can vary widely in their complexity, and

little is known about how subtle variations in task di�culty influence workload

indicators. To address this, we conducted an experiment inducing MWL in up to

5 levels, hypothesizing that our multi-modal metrics would be able to distinguish

between each MWL stage. We measured the induced workload using task

performance, subjective assessment, and physiological metrics. Our simulated

task was designed to induce diverse MWL degrees, including five di�erent math

and three di�erent verbal tiers. Our findings indicate that all investigated metrics

successfully di�erentiated between various MWL levels induced by di�erent tiers

of math problems. Notably, performance metrics emerged as the most e�ective

assessment, being the only metric capable of distinguishing all the levels. Some

limitations were observed in the granularity of subjective and physiological

metrics. Specifically, the subjective overall mental workload couldn’t distinguish

lower levels of workload, while all physiological metrics could detect a shift

from lower to higher levels, but did not distinguish between workload tiers

at the higher or lower ends of the scale (e.g., between the easy and the

easy-medium tiers). Despite these limitations, each pair of levels was e�ectively

di�erentiated by one or more metrics. This suggests a promising avenue for

future research, exploring the integration or combination ofmultiplemetrics. The

findings suggest that subtle di�erences in workload levels may be distinguishable

using combinations of subjective and physiological metrics.
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1 Introduction

Teleoperation tasks are often high-stakes, requiring operators to process multi-

dimensional, and multi-channel information (Wickens, 2008; Hockey et al., 2009). Studies

have shown that teleoperation interfaces and technology may increase complexity and

workload for operators compared to non-teleoperated tasks (Dadashi et al., 2013; Yu et al.,

2021; Monfared et al., 2022), such as robotic surgery vs. traditional open surgery. When

these job demands exceed human mental capabilities, it can degrade the capabilities of

teleoperation personnel and the success of the operation. Thus, continuous and reliable

assessment of operators’ MWL across high and low ranges is essential, not only to protect

operators but also to maximize teleoperation task performance.
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While there is no universally accepted definition for MWL

(Schlegel, 1993; Cain, 2007; Young et al., 2015), Longo et al.

(2022) identified that main concepts (such as operator, primary

task, secondary task, environment, situation, time, performance,

system, and decision-making), along with sub-concepts (including

attributes, demands, resources, effort, attention, working memory,

and characteristics), and their interactions, all contribute to the

definitions of Mental Workload (MWL). Furthermore, multiple

theories propose a resource framework to describe MWL, which

characterizes MWL as the extent to which a finite set of cognitive

resources is taxed by a given set of task demands (Young and

Stanton, 2004; Wickens, 2008; Salvucci and Taatgen, 2010). If

task demands are too high with respect to an operator’s available

capacity, the operator’s performance may decline or the operator

could become easily distracted, tense, and frustrated (Norman and

Draper, 1986; Monk et al., 2002; Galy et al., 2012; Pourteimour

et al., 2021). Conversely, excessively lowMWLmay lead to operator

inattentiveness and decreased performance because of the effort

associated with sustained attention (Kantowitz and Casper, 1988;

Hart and Wickens, 1990). Therefore, whether high or low, MWL

can impact task success and the operator’s state. For this reason,

rapid detection of variations in workload state can be important for

preventing errors.

As MWL is a high-level cognitive function that changes

dynamically, reliable measurement of MWL is challenging.

Three categories of techniques have been widely accepted to

assess MWL: subjective measurement, physiological measurement,

and performance (Meshkati et al., 1995). Rubio et al. (2004)

detailed a list of common subjective questionnaires that assesses

MWL, and Hicks and Wierwille (1979) found there were

significant differences between workload conditions on subjective

and performance measures. A systematic review conducted by

Charles and Nixon (2019) detailed 58 journal articles and

demonstrated the empirical basis for using physiological sensors

in quantifying MWL across a variety of domains. Studies in

teleoperation tasks, such as robotics and drone operations,

have also shown that physiological sensors can assess workload

in those domains (Dias et al., 2018; Yu et al., 2019; Zhou

et al., 2020). However, previous studies have primarily focused

on the sensors’ effectiveness in detecting large changes or

classifying high vs. low MWL, limiting the granularity of

existing models (their ability to detect fine, multi-level changes

in workload).

Each measurement method has its advantages and drawbacks.

While subjective measurements can be easier and inexpensive,

the result of subjective ratings can be impacted by respondent

characteristics like bias, response sets, mistakes, and attitudes

(Dyer et al., 1976). Primary task performance-based information

has the ability to distinguish between individual differences

when competing for resources (Longo, 2015), but different

demand levels may be associated with the same level of

performance. Online performance metrics may also not be

available. Physiological measures provide relatively unobtrusive

measurement and lack of subjectivity. However, it requires specific

measurement equipment, and data quality can be compromised by

motion and other artifacts (Dirican andGöktürk, 2011). Integrating

all three methods is crucial for a comprehensive understanding

of MWL.

In past studies, researchers investigated whether MWL

measurement(s) can differentiate between low, medium, and high

MWL levels (May et al., 1990; Miller et al., 2011) and developed

models to distinguish between two or three levels (Ding et al.,

2020; Zhou et al., 2022). For jobs that are susceptible to a wide

range of more granular changes, such as high-stakes tasks and

the environments in search and rescue (SAR), these 2-levels (low

vs. high) or 3-levels models may be insufficient for personalized

and more targeted design of mechanisms for enhancing operator

performance across a range of workloads. More granular models

can potentially track gradual changes in operator MWL before they

reach excessively high or low levels. These sensitive models can also

provide more targeted interventions and potentially improve the

usability of operators’ collaboration with SAR robotic systems.

The objective of the proposed study is to determine the

effectiveness of subjective questionnaire, task performance, and

physiological sensors in modeling gradual changes in MWL.

To achieve our goal, a teleoperated snow arctic SAR gaming

simulation was adapted to systematically modulate user workloads

at multiple levels. SAR tasks were selected for our testbed as human

operators often experience stress, cognitive and physical fatigue,

and disorientation during critical SAR operations. These factors

can lower alertness, impair memory and focus, and result in a loss

of situation awareness (Casper et al., 2000; Murphy, 2001, 2007;

DeJong et al., 2004; Zhao et al., 2017).

2 Material and methods

This research adhered to the American Psychological

Association Code of Ethics and received approval from

the Institutional Review Board at Purdue University (IRB

No.: IRB-2021-1152). Informed consent was obtained from

all participants.

2.1 Participants

Twenty-three participants (12 males and 11 females) were

recruited from the university population. The exclusion criteria

for this study were as follows: (1) age younger than 18 years

old and (2) an inability to play video games without discomfort.

Before conducting the experiment, all participants provided

informed consent.

2.2 Experimental design

In this study, workload is induced experimentally by varying

task demands. In addressing operator capacity, attempts were

undertaken to minimize individual differences by (1) considering

the participant as a random factor in ourmodel and (2) augmenting

the sample size within our capacity. Participant backgrounds, skills,

and learning experiences were surveyed prior to the study.

To distinguish different MWL levels in arithmetic problems,

mathematical operations were decomposed into steps. Steps

were defined as basic (single-digit) arithmetic calculations. Each

step involved retrieving the solution from long-term memory
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(Ashcraft, 1992). However, multi-digits operations and multi-step

problems are more complex as they require working memory

(WM) to store addends and interim results (Hitch, 1978).

Increasing the number of addends and interim values that need

to be stored demands more WM resources, leading to a higher

MWL. Additionally, larger numbers with more digits tend to

require more retrievals of number facts from memory to compute

intermediate sums, resulting in increased MWL (Ryu and Myung,

2005). Following this rule, we defined five different math demand

levels, referred to as “question demand levels” throughout this

manuscript. These levels include easy (e.g., 8∗2 + 5 or 4∗6 – 7);

easy-medium (e.g., 75 + 48); medium (e.g., 5∗5 + 3∗6 or 8∗8 +
9∗2); medium-hard (e.g., 14∗3 – 16); and hard [e.g., 2∗(26 + 48 –

14 – 32)].

The cognitive basis for varying MWL levels with analogy

questions differed from the working memory demand of arithmetic

problems. In this case, the difficulty comes from the complexity

of inference rules associated with the question and the availability

of verbal knowledge associated with the terms (Bejar et al.,

1987). Problem difficulty was defined normatively, drawing from

data obtained from a sample of SAT I practice tests. Analogy

questions were selected from a chart of example SAT questions with

corresponding categories based on a reference group of high school

seniors planning to attend college.1 The verbal questions in these

practice tests were categorized into 5 demand levels. However, we

retained only 3 levels of demand (MWL levels) in the study, as

our pilot testing revealed that the demands of analogy tasks were

challenging and not consistently clear among individuals. All verbal

analogy questions were presented in a multiple-choice format.

This study employed an incomplete block design. Initially, a

complete block design was planned, with each participant expected

to answer 8 (5 math and 3 verbal) different levels of the questions

for each round, two rounds in total. However, due to a game

programming error, each participant only answered 7 questions per

round, resulting in an incomplete block design. Nevertheless, since

our study was comprised of two rounds per subject, all but one

subject experienced all 8 treatment levels at least once. Additionally,

we conducted separate analyses for math and verbal questions.

Specifically, 5 different math demand levels (3 different analogy

demand levels) were employed as the treatment factors in math

(verbal) models.

2.3 Simulation description

A series of gaming simulations developed by Air Force

Research Laboratory (AFRL) Gaming Research Integration for

Learning Laboratory (GRILL) was employed in this study. The

1 https://cdn2.hubspot.net/hubfs/360031/o�cial_SAT_practice_test_2002.

pdf;

https://cdn2.hubspot.net/hubfs/360031/o�cial_SAT_practice_test_2001.

pdf;

https://cdn2.hubspot.net/hubfs/360031/o�cial_SAT_practice_test_2003-

04.pdf;

https://cdn2.hubspot.net/hubfs/360031/o�cial_SAT_practice_test_2004-

05.pdf

game simulated Antarctic Search and Rescue operations with a

teleoperated snowcat (Coovert et al., 2017a,b). In this simulation

scenario, two scientists embarked on a helicopter mission to gather

research data. However, the helicopter suddenly malfunctioned and

crashed during an emergency landing on snowy terrain.

Participants were tasked with operating a snowcat to perform

a search and rescue operation, aiming to locate parts at various

milestones to repair the helicopter. As participants advanced

in the simulation and answered questions correctly, they could

obtain these parts at each milestone. To achieve this, participants

teleoperated a snowcat across a vast arctic terrain, with a total of 16

milestones to be reached within a 15-min timeframe.

At each milestone, participants encountered an arithmetic or

analogy question with a randomized MWL demand, as depicted

in Figure 1. Correct answers caused the total score to go up,

while the wrong answer caused the total score to go down. Only

when a correct answer was provided did a new question appear,

maintaining the same demand level and question type at that

milestone. A wrong answer required participants to answer the

question again until they answered it correctly. Participants were

given 30 seconds to answer as many questions as possible at

each milestone, with Countdown Timer 2 (Figure 1) displaying the

time remaining.

To ensure that participants engaged with at least one set of

seven demand levels of problems (randomly selected from five

levels of arithmetic and three levels of analogy), the demand

levels and/or problem types for the first seven milestones differed.

Subsequently, problems were fully randomized and excluded from

further analysis.

2.4 Experimental procedure

The experimental procedure is shown in Figure 2. Prior

to commencing the experiment, participants were required to

complete a background questionnaire, which collected general

information, including sex, age, and whether they were native

English speakers (see Appendix A). We included the native

English speaker question based on insights from pilot studies, as

performance on analogy problems might differ between native and

non-native English speakers.

Following the background questionnaire, participants were

introduced to a single 20-step bipolar scaled Overall Workload

(OW) questionnaire (Hill et al., 1992; Miller, 2001). Then, we asked

participants to self-report their MWL levels on a scale ranging

from 1 to 21. The OW score was then calculated as OW =
(reported scale − 1)∗5, resulting in a score between 0 and 100 (Hill

et al., 1992).

A training session was conducted for all participants.

During this session, research personnel explained the objectives

and interfaces of the simulation and allowed participants to

practice the snowcat simulation. Following the training session,

participants were equipped with the Emotiv EPOC X and

Tobii Pro Glasses 2. Eye tracker calibration was performed to

optimize the eye tracking algorithm.2 Each participant engaged

2 https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
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FIGURE 1

Interface of the snowcat simulation. The area map in the upper-left corner indicated the milestone locations and the current snowcat vehicle

location. The countdown timer 1 indicated how much time is left out of 15min. Milestone status in the lower-left corner indicated how many

milestones were found.

FIGURE 2

Sensors (EEG and Eye Tracker) and experimental procedure.

in two rounds of the snowcat simulation, each round lasted

15min. While the snowcat simulation itself remained consistent

across both rounds, the milestone questions differed due to

randomization. After completing questions at each milestone

within the snowcat simulation, participants reported their OW for

that specific milestone.
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2.5 Subjective data and performance
metrics

Participants self-reported OWquestionnaire was recorded after

they completed questions at a milestone. The OW score ranged

from 0 (indicating a very light workload) to 100 (representing a very

high workload) (Hill et al., 1992).

Task performance metrics for the snowcat simulation were

defined as the total number of questions answered and the

percentage of correct questions answered.

2.6 Physiological data analysis

2.6.1 Eye tracking data analysis
Tobii Pro Glasses 2 served as the eye-tracking device in

this study. Eye-tracking data was recorded using the Tobii Pro

Controller, and ocular measurements were extracted using the

Tobii Pro Lab. The I-VT attention filter was set as the default value

of 100,3 following the manufacturer’s recommendations (Bahill,

1975; Bahill et al., 1975; Collewijn et al., 1988).

Previous research has demonstrated correlations between

multiple metrics and MWL, including fixation duration, the

number of fixations, saccadic velocity, saccade amplitude,

maximum saccade duration, number of saccades, and pupil size

(Ahmadi et al., 2022). Consequently, metrics associated with these

parameters were extracted for each 30-s milestone.

2.6.2 Electroencephalography data analysis
We used Emotiv EPOC X as our EEG device. We determined

the EEG metrics to be the extracted alpha, beta, and theta

bandpowers from the 14 EEG channels (AF3, F7, F3, FC5, T7,

P7, O1, O2, P8, T8, FC6, F4, F8, and AF4). Following the export

of raw data from Emotiv Pro, we pre-processed the EEG data

using EEGLab. Event markers were imported to identify the time

periods corresponding to each demand level. For each time period,

the following steps were completed. (1) a high pass filter at

0.5Hz was applied; (2) the clean_rawdata algorithm was applied

to automatically reject bad segments and channels (Delorme and

Makeig, 2004); (3) researchers manually reviewed the data to

identify and reject any remaining bad segments and channels;

(4) the runica algorithm was utilized to decompose data using

independent components analysis (ICA) (Brunner et al., 2013);

(5) the ICLabel algorithm was employed to classify each ICA

component into categories such as brain, eye, muscle, heart rate,

line noise, or others, quantifying their probability on a percentage

scale (Pion-Tonachini et al., 2019); (6) ICA components with a

probability of belonging to the brain of <0.4 were rejected; and (7)

MATLAB scripts were used to calculate alpha, beta, and theta value

for each channel based on the method provided by previous study

(Wang et al., 2015).

3 https://connect.tobii.com/s/article/Gaze-Filter-functions-and-e�ects?

language=en_US#:∼:text=Gaze%20Filter%20%2D%20I%2DVT%20(,pursuit

%20and%20VOR%20eye%20movements

2.7 Statistical analysis

Nested models were used as round was nested within

participant. Specifically, the fixed effect consisted of 5 different

demand levels for math and 3 different demand levels for verbal

models. The random effects include the participant and the round

completed by each participant, with MWL measurement metrics

serving as the responses. Separate models were built for each

subjective, task performance, eye tracking, and EEG metrics. Each

model expression was: Yijkt = µ + αi + βj(k) + ǫijkt , where

Yijkt represents the metric measurement on the tth observation on

demand Level i, observed in participant k and round j; µ denotes

the constant (or the intercept of the model); αi signifies the effect

of the demand Level i; βj(k) represents the nested effect of the jth

round of the kth participant; and ǫijkt represents the associated

random error.

We initiated the analysis by checking statistical model

assumptions, including the examination of outliers, independence,

constant variance, and normality. Outliers were identified as

values exceeding Q3 + 1.5∗IQR or falling below Q1 − 1.5∗IQR,

where Q3 and Q1 represent the third and first quartiles; and the

interquartile range (IQR) is defined asQ3−Q1. After quantitatively

identifying outliers, each data point was visually inspected. It

was determined that outliers occurred due to some participants

employing different strategies when solving math problems. For

example, one participant typed partial sums as typed answers in

the answer option box when responding to math questions (if

the question is 8∗8 + 9∗2, he would type 64 and 18). We opted

to remove the milestone data points when they were identified

as outliers, typically totaling 2 to 3 data points for each metric

across the entire dataset. Next, studentized residual plots were

generated to assess the independence and constant variance. Lastly,

we produced normal residual plots (standardized residuals plotted

against their normal scores). If non-normality or non-constant

variables were detected, we applied Box-Cox transformations. As

the relationship between performance metrics and the demand

levels is unknown, we also attempted to apply square root,

exponential, and logarithmic transformations.

After confirming the model assumptions were met, we utilized

PROC MIXED4 to conduct nested model analysis, considering

both random and fixed factors. For variables with significant fixed

effects, pairwise comparisons were conducted with the Tukey

correction using the LSMEANS command under PROC MIXED.

P-values of the differences of the least squares indicated the various

levels of significance for each metric.

3 Results

3.1 Background questionnaire result

Twenty-three participants were recruited. Only twenty

participants (11 males and 9 females) data were collected and

analyzed in this study. EEG failed to work for three of the

participants. The means (standard deviations) of the age of male

4 https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/statug/

statug_mixed_syntax01.htm
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TABLE 1 Average and standard deviation values of two performance metrics for each demand level.

Demand level # of questions
answered (average)

# of questions
answered (Std.)

Average % of
correct answer

(average)

Average % of
correct answer

(Std.)

Math 1 7.56 3.65 88.86 19.51

Math 2 5.88 2.34 89.31 12.84

Math 3 3.40 2.14 74.65 36.65

Math 4 2.42 1.30 63.89 41.13

Math 5 1.15 1.21 37.84 46.43

Verbal 1 2.85 1.37 54.35 33.48

Verbal 2 2.91 1.20 46.77 33.79

Verbal 3 2.63 1.50 24.12 34.72

FIGURE 3

Box plots of task performance (A–D) and subjective questionnaire (E, F) by demand levels where significant di�erences between pairs indicated by *

when p < 0.05.

and female participants were 28.18 (12.42) and 24.89 (5.98),

respectively. The means (standard deviations) for familiarity with,

frequency of, and confidence in playing video games were 3.00

(1.45), 2.32 (1.36), and 3.09 (1.23), respectively.

3.2 Task performance result

Both the number of questions answered (p < 0.0001) and the

percentage of correct answers (p < 0.0001) decreased when math
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TABLE 2 Transformation and ANOVA result for each eye tracking metric.

Extracted eye tracking metrics Math-based
models

transformation

P-value of the
math fixed

factor

Verbal-based
models

transformation

P-value of
the verbal
fixed factor

Total fixation duration - 0.0029∗ - 0.6381

Average fixation duration - <0.0001∗ 1√
Y

0.2381

Number of fixations - <0.0001∗ log(Y) 0.1992

Average fixation pupil diameter - 0.3315 Y−2 0.3579

Number of saccades - <0.0001∗ - 0.1219

Average peak velocity of saccade - 0.1503 Y−2 0.0399

Average amplitude of saccades - 0.0053∗ 1√
Y

0.2271

Total amplitude of saccades - <0.0001∗ - 0.3417

Significance marked as ∗ when p < 0.05.

FIGURE 4

Box plots and significance among math levels for eye tracking metrics (A–F) (Significant di�erences between pairs indicated by * when p < 0005).

demands increased (Table 1). For the verbal problems, the number

of questions answered was similar between demand levels, but the

percentage of correct answers decreased (p = 0.0010) when verbal

question demands increased.

Figures 3A–D shows the box plots and pairwise comparisons

between demand levels and task performance. The number of math

questions answered differed between all pairs of math demand

levels (Figure 3A). The percentage of correct answers was less

sensitive to math demand levels, with only select pairs significantly

different (1&4, 1&5, 2&4, 2&5, 3&5, and 4&5). The percentage of

correct answers for verbal problems distinguished verbal Levels

1&3 and 2&3, but not 1&2 (Figure 3D). Appendixes B.I, B.II
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show more details of the significant task performance pairwise

comparison results of math-based and verbal-based models.

The transformed performance metrics did not contribute

significantly to improving the model fit, except for the square root

transformation of the percentage of correct answers for the math

levels. This transformation indeed facilitated the significance of one

additional pair (2&3). Appendixes B.I.2-4, B.II.2-3 provide more

details of the significant pairwise comparisons of task performance

for math-based and verbal-based models after transformations.

3.3 Subjective questionnaire result

Self-reported OW score (Figure 3E, F) increased when the

demand levels increased for math problems (p < 0.0001) but

not verbal problems (p = 0.2752). From pairwise comparisons

(Figure 3E), all pairs of math demands were significantly different

except for 1&2. Appendix B.III shows additional details of the

pairwise comparison results.

3.4 Eye tracking

The results of the eye-tracking models are shown in Table 2.

If Box-Cox transformation was applied due to non-normality

and/or a non-constant variable, the corresponding type of the

transformation is also shown in Table 2. For math-based models,

no metric needed to be transformed. For verbal-based models, all

metrics except total fixation duration, number of saccades, and total

amplitude of saccades were transformed.

Testing for multiple comparisons among the significant metrics

(Table 2) showed that some, but not all, demand level pairs differed

in math-based models (Figure 4). The metrics, including total

fixation duration, number of fixations, number of saccades, average

amplitude of saccades, and total amplitude of saccades, generally

decreased with increasing demand levels (Figure 4). In contrast, the

average fixation duration tended to increase with higher demand

levels. Specifically, at Level 1, the duration was 148ms and 342ms

shorter than at Levels 3 and 5, respectively, while Levels 2–4 were

195–261ms shorter than Level 5. For additional details on the

pairwise comparison results, see Appendix B.IV.

For verbal questions, only the average peak velocity of saccades

was significant. Specifically, verbal Level 3 was significantly lower

than Level 1 (Figure 5). Appendix B.V shows additional details on

the pairwise comparison results.

3.5 EEG

For math-based models, the following EEG metrics

distinguished MWL levels: log(alpha) of channel F8 (p =
0.0056); log(beta) of channel T7 (p = 0.0496) and channel F8 (p =
0.0031); log(theta) of channel T7 (p = 0.0483), T8 (p = 0.0374),

and F8 (p= 0.0049).

None of the EEG metrics can distinguish all pairs of math

levels (Figure 6). For log(alpha) of F8, log(beta) of T7, log(theta)

of T7, and F8, the bandpowers showed inverse relationships with

FIGURE 5

Box plots and significance among verbal levels for eye tracking

metrics (Significant di�erences between pairs indicated by * when p

< 0.05).

the demand levels. For example, log(alpha) of F8 metric math Level

1 was 0.89, 0.48, and 0.45 higher than Levels 3, 4, and 5; Level 2

was 0.61 higher than Level 3. Note that the log transformations

and original metrics have positive relationships, the same tendency

could be applied to the original alpha, beta, and theta metrics in the

above interpretations.

Bandpowers of log(beta) of F8 and log(theta) of T8 metrics

tended to decrease and then increase when the demand levels

increased. Appendix B.VI shows additional details on the math-

based significant EEG metrics pairwise comparison results.

For models of the verbal task (Figure 7), only log(theta) of T7

decreased (p = 0.0370) when the verbal levels increased in T7

(Level 1 was 1.45 higher than Level 2) (Figure 7). Appendix B.VII

shows additional details on the verbal-based EEG metrics pairwise

comparison results.

4 Discussion

For MWL induced by varying math levels, the performance

metric number of questions answered emerged as the most

effective. It was the only metric capable of distinguishing all MWL

levels. However, another performance metric, the percentage of

correct answers, was less effective, distinguishing only six out

of ten level pairs. Notably, regardless of the models’ granularity

in detection, the levels identified as significantly different by

performance metrics consistently showed a trend of decreasing

performance asMWL levels increased. This observation aligns with

findings reported in previous literature (Young et al., 2015). The

self-reported OW scores effectively distinguished all math levels,

with the exception of Levels 1&2. Similar to performance metrics,

our findings corroborate earlier studies indicating that higher self-

reported MWL levels are associated with increased MWL (Fallahi

et al., 2016; Muñoz-de-Escalona et al., 2020).

With respect to eye movements, we found a longer average

fixation duration, a fewer number of fixations and number

of saccades, and a shorter average amplitude of saccades with
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FIGURE 6

The topographical plots of the significant metric (after applying log transformation) among di�erent math levels with channels that di�ered between

pairwise comparisons circled. The topographical plots were made based on the value di�erence between two levels of log(metric).
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FIGURE 7

The topographical plots of the significant metric (after applying log transformation) among di�erent verbal levels with channels that di�ered between

pairwise comparisons circled. The topographical plots were made based on the value di�erence between two levels of log(metric).

higher MWL. This finding is reasonable, as high MWL would

require more time to process complex information (Mahanama

et al., 2022) and elicit greater engagement (Geisen, 2017), leading

participants’ attention to be more focused on task-relevant stimuli.

The increased focus duringmore demanding tasks reduces the need

for extensive visual search and exploration, limiting gaze shifts to a

relatively small area relevant to the task. This results in fewer but

more focused eye movements.

Another physiological sensor used in the study, the EEG, found

that alpha bandpower decreased when MWL increased, a trend

that aligns with findings from previous studies (Brookings et al.,

1996; Fairclough and Venables, 2006; Jaquess et al., 2018). For

example, memory retrieval and arithmetic tasks were shown to

decrease alpha bandpower (Harmony et al., 1999). In contrast,

previous studies observed that theta bandpower had a positive

relationship with MWL, where high theta amplitude suggests

sustained attention (Sasaki et al., 1996; Gevins et al., 1997).

However, our present study indicates that theta bandpower was

the highest at both Levels 1&2. In contrast, Level 3 had the lowest

theta, while Levels 4&5 were in the middle. This contrasting finding

may be partially explained by our simulation design. Specifically,

participants were tasked to answer as many problems as possible

continuously for 30 s at each milestone, regardless of the MWL

level of the milestone. Therefore, participants’ attention should

have been sustained for the entire 30 s for all the MWL levels.

While the overall tendency was for theta to decrease while MWL

increased. This, combined with the behavioral results, suggests

some disengagement may have occurred at the higher levels of

difficulty. Disengagement at lower or higher demand levels is a

common finding in previous literature (Dehais et al., 2020).

All of the metrics we investigated were able to discriminate

between math demand levels, consistent with past work showing

the utility of these metrics for detecting MWL. However, as

with previous works, there appear to be some limitations in the

granularity of the metrics (Zhou et al., 2022). Specifically, we found

only one metric (number of questions answered) can distinguish

five math levels completely. Although performance metrics are

strongly associated with incremental changes in workload, there are

significant limitations to the practical application of performance-

based models in safety-critical jobs like SAR, where assistance or

support should be provided prior to operators showing impaired

performance. In addition, performance metrics in real-world

settings may not be as easily measured or defined as the math

and verbal tasks in this study. Instead, as the physiologically based

models can be collected in real-time and physiological responses

to workload are indirect and not task specific (Zhang et al.,

2023), they may be more generalizable outside of a lab setting

and may provide more opportunities for informing work and

machine designs. Thus, relying solely on performance metrics

is insufficient to represent MWL. The inclusion of subjective

questionnaires and physiological data is also necessary for a more

comprehensive understanding.

For all the other subjective and physiological metrics, math

Levels 1&2 and math Levels 3&4 are the two most unlikely

distinguishable level sets by all the metrics. This might be because

the differences in demand required from math Levels 1&2 and

3&4 are less than the other level sets (for example, Levels 2&3),

which makes these two sets harder to distinguish. Despite these

challenges, we believe our presented models are a step toward our

goal of predicting more granular levels of workload. Specifically,

each pair was distinguished by one or more metrics, suggesting

future work integrating or combining multiple metrics together

can lead to the stated goal of a comprehensive granular workload

prediction model.

Contrary to math models, only a limited number of metrics

succeeded in differentiating between levels of verbal MWL.

Specifically, no metrics distinguished verbal Level 2 from Level

1. A likely explanation for this observation was the required

cognitive functions demanded by the verbal questions. Specifically,

the verbal questions were hard for most participants regardless of
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MWL workload as they required deep reasoning on vocabulary

pairings that many participants may not be familiar with (these

questions were removed in United States SAT standardized

testing in 2005). Except for the most challenging level, where

participants struggled to answer questions correctly, the other levels

may have seemed similar to them. In these levels, participants

knew some answers and made educated guesses for the rest.

This challenge may also be amplified by familiarity with the

English language. However, although our sensing approach was

not capable of distinguishing granular (high, medium, and

low) levels of verbal MWL, several metrics did distinguish

between Levels 1&3 and 2&3, which likely represent the large

differences in MWL from surface to deep reasoning of the

verbal questions.

Several opportunities for further research emerge from this

study. Firstly, the effects of gender and other demographic

variables were not considered, though some studies suggest that

different genders may yield varying results in MWL measurement

metrics (Hancock, 1988; Zeng et al., 2020). Furthermore, our

participant pool was limited to a university population, potentially

differing in psychological cognition from other societal groups.

Expanding the participant demographic in future studies could

provide more generalized insights. Another future work is the

scope of the study in modulating MWL. The MWL demands

were not tailored to specific scenarios like Search and Rescue

(SAR) or human-robotic interaction. While this approach was

intentional to understand MWL’s fundamental mechanisms,

future research should aim to replicate more complex, real-

world demands. Moreover, in this study, we employed single-

channel EEG analysis to observe bandpower trends in specific

brain regions, as measured by 14 channels, despite the small

sample size. However, multi-channel EEG analysis, which can

provide deeper insights into complex cognitive tasks (like mental

math and verbal tasks) that involve multiple brain regions,

indicates the need for future studies to explore aggregate

effects across channels. Additionally, the study’s controlled

laboratory setting limits the applicability of findings to real-

world scenarios. Future research should investigate factors affecting

sensor performance in naturalistic settings, such as motion

artifacts impacting EEG readings (Kappel et al., 2017). Moreover,

as has been demonstrated in past literature (Brookings et al.,

1996; Jaquess et al., 2018), the relationship between MWL and

physiological metrics is complex. Some metrics have a linear

relationship, while others have a non-linear relationship. Our

exploration of both linear and non-linear models indicates a

context-dependent preference, highlighting the need for further

research to clarify the nature of this relationship and its

implications for MWLmodels in varied applications. Despite these

limitations, our work demonstrates the potential of multi-modal

sensing to distinguish granular levels of MWL in a simulated

gaming environment.
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