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Automatically detecting mental state such as stress from video images of

the face could support evaluating stress responses in applicants for high

risk jobs or contribute to timely stress detection in challenging operational

settings (e.g., aircrew, command center operators). Challenges in automatically

estimating mental state include the generalization of models across contexts

and across participants. We here aim to create robust models by training

them using data from di�erent contexts and including physiological features.

Fifty-one participants were exposed to di�erent types of stressors (cognitive,

social evaluative and startle) and baseline variants of the stressors. Video,

electrocardiogram (ECG), electrodermal activity (EDA) and self-reports (arousal

and valence) were recorded. Logistic regression models aimed to classify

between high and low arousal and valence across participants, where “high”

and “low” were defined relative to the center of the rating scale. Accuracy

scores of di�erent models were evaluated: models trained and tested within

a specific context (either a baseline or stressor variant of a task), intermediate

context (baseline and stressor variant of a task), or general context (all conditions

together). Furthermore, for these di�erent model variants, only the video data

was included, only the physiological data, or both video and physiological

data. We found that all (video, physiological and video-physio) models could

successfully distinguish between high- and low-rated arousal and valence,

though performance tended to be better for (1) arousal than valence, (2) specific

context than intermediate and general contexts, (3) video-physio data than video

or physiological data alone. Automatic feature selection resulted in inclusion of

3–20 features, where the models based on video-physio data usually included

features from video, ECG and EDA. Still, performance of video-only models

approached the performance of video-physio models. Arousal and valence

ratings by three experienced human observers scores based on part of the video

data did not match with self-reports. In sum, we showed that it is possible to

automatically monitor arousal and valence even in relatively general contexts

and better than humans can (in the given circumstances), and that non-contact

video images of faces capture an important part of the information, which has

practical advantages.
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Introduction

Screenings and assessments for high-risk professions (e.g.,
police, military) often include questionnaires and interviews.
However, research has shown that self-assessment questionnaires
and assessments of recruiters or employers are often biased,
unreliable or incorrect (Donaldson and Grant-Vallone, 2002;
Luxen and Van De Vijver, 2006; Huffcutt et al., 2013; Kappen
and Naber, 2021). When filling in self-assessment questionnaires,
candidates tend to bias their responses based on their perception
of the expectations of the assessor, pretending to be better or
different than they really are (Donaldson and Grant-Vallone, 2002).
Similarly, despite training and good intentions, also the evaluations
from Human Resources experts are not immune to biases. In fact,
it has been shown that interviewers can be implicitly biased by the
gender, the ethnicity and the physical appearance of the candidate
(Luxen and Van De Vijver, 2006; Riach and Rich, 2010; Zschirnt
and Ruedin, 2016). Hence, objective measurements are necessary
to remove potential implicit biases from the interview process
when evaluating whether there is a good fit between an individual’s
characteristics and the demand of the offered job. This may be
particularly true when assessing stress resilience in candidates for
high-risk professions. They are frequently exposed to stressful and
challenging circumstances and need to be stress resilient to recover
rapidly from these situations to maintain health (Thayer et al.,
2012).

One development in Human Resources entails a shift toward
the use of game-based performance assessments by recruiters (Bina
et al., 2021). Furthermore, candidates’ behavior (notably, facial
expression) and physiological activity during job interviews may
be used as an objective, reliable measure for candidate selection
(Kappen and Naber, 2021; Kuipers et al., 2023). The two tools could
be combined in that assessment games can offer a variety of stressful
settings during which physiological and behavioral activity can be
recorded. Given that stress is characterized by high arousal and
negative valence (Kuppens et al., 2013), the measurement of arousal
and valence would be useful to investigate individuals’ responses to
potentially stressful situations.

Various physiological systems, including the autonomic
nervous system (ANS), respond to stressors (Kemeny, 2003) in
order to help organisms to maintain homeostasis (i.e., the effort
of an organism to keep its physiological parameters within an
acceptable range despite environmental changes; von Holst, 1998).
Given that the ANS is operating outside individuals’ awareness
and its activation is influenced by individuals’ affective states,
measuring ANS activity provides an unbiased tool to investigate
reaction to and resilience in stressful situations. The ANS has
two major branches: the sympathetic nervous system (SNS),
mainly associated with the “fight-or-flight” response, and the
parasympathetic nervous system (PNS), mainly associated with the
“rest and digest” response. Increased activation of the SNS indicates
higher arousal states. Measures derived from electrocardiogram
(ECG—heart rate and heart rate variability, i.e., variation in the
time interval between heartbeats and the extent to which heart rate
is tuned to respiration), reflect the balance between the regulation
of the SNS and PNS branches of the autonomic nervous system
(McCorry, 2007; Jongyoon et al., 2012). Electrodermal activity

(EDA, also referred to as skin conductance) reflects the activity
of the sweat glands and is solely regulated by the SNS (Posada-
Quintero and Chon, 2020). It is particularly sensitive to high
arousal states (e.g. fear, anger, stress; Lazarus et al., 1963; Dawson
et al., 2007). ECG and EDAmeasures can provide important insight
into how individuals perceive and respond to their environment
and to different stressors. For example, Toet et al. (2017) found
that military personnel showed weaker responses in EDA and heart
rate to a controlled stressor than civilians, suggesting that such
responses are associated to stress resilience in general.

While ECG and EDAmeasures reflect individuals’ arousal level
in response to contextual and environmental changes, the link
between these measures and individuals’ level of valence is less
clear. Facial expression may be a more reliable measure to assess
valence. Various studies showed that facial features, expressions
and motions as recorded via cameras and analyzed using AI
are informative of mental state (Hoque et al., 2012; Sharma and
Gedeon, 2012; Pedrotti et al., 2014; Hoegen et al., 2019; Kappen
and Naber, 2021; Kuipers et al., 2023). Particularly, contrary to the
long-lasting view that facial expressions convey fixed, generalizable
emotion states (Ekman, 1984), it has been proposed that they
serve as indices of individuals’ affective state, indicating points
on the dimensions of valence and arousal as a consequence of
internally or externally changing events (Barrett, 2006). However,
it is still unclear whether video measures are informative on
stress (valence and arousal) in spontaneous behavior displayed in
several contexts of interest. In fact, it seems reasonable that facial
expressions are strongly influenced by the context in which they
are displayed. For example, one would expect quite different facial
expressions during social tasks, where facial expression serves a
communication purpose, and cognitive tasks, where this is not
the case. Additionally, it has been shown that individuals vary
considerably with respect to facial expressiveness. Moreover, only
few studies exploit the dynamic nature of facial expressions, while
it has been demonstrated that motion is an important feature to
identify subtle facial expressions (Ambadar et al., 2005). We think
it is important to use dynamic facial expressions to evaluate arousal
and valence responses that are spontaneously evoked in different
contexts and different individuals.

Given the range of possible measures, it is important to
evaluate to what extent we can use them to detect stress-related
mental state. ECG and EDA measures are associated with stress
in a more straightforward, biologically explainable way than facial
expression. Therefore, physiological measures of arousal can be
expected to be more consistent across participants and contexts
than recorded facial expression (Barrett et al., 2019). However, the
need of using sensors to record such physiological data prohibit or
complicate setups, certainly when usage is envisioned at home. On
the other hand, videomeasures, which would not only include facial
expression, but also head pose and gaze, can be a better measure of
valence, would be convenient, cheap and could be employed also
during online interviews and online game-based assessment.

In the current study, we aim to build models that can detect
stress (operationalized by arousal and valence) across individuals
and across contexts on the basis of video data (facial expression,
head pose and gaze), physiological data (ECG and EDA) and a
combination of the two. Specifically, we induce stress in different
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ways (varying context) and add baseline conditions that were
especially designed to differ only from the stressor conditions in
terms of elicited arousal and valence, in order to obtain a varying
range of experienced mental states. The ground truth that we use
is self-report (high-low arousal, and high-low valence according
to a chosen absolute cut-off, where we choose the middle of the
scale), rather than judgements of experts (as often done before,
e.g., in Dinges et al., 2005; Sutherland et al., 2015). We think
that in the experimental situation that we test, i.e., a situation in
which it is clear that individuals’ answers are confidential and will
not have consequences in their life, introspective judgements are
more reliable than observers’ judgement. Models are trained and
tested within context (i.e., one type of stressor, with or without
accompanying baseline), as well as across contexts (i.e., across
multiple types of stressors and baselines). Model performance and
feature importance are examined.We expect that estimatingmental
state within a certain narrow context may work relatively well for
video measures, but that when it comes to generalization across
contexts, physiological features are especially important. We expect
that physiological features match better with arousal than valence,
whereas video measures may be relatively suitable to estimate
valence. To get an impression of the conspicuity of arousal and
valence information in the face to humans, we roughly compare
results of models to human expert judgements.

Our dataset (available at https://osf.io/ztbek/) adds to previous
datasets that contain affective responses recorded through self-
report, video and physiological sensors (Koelstra et al., 2011;
Soleymani et al., 2011; Miranda-Correa et al., 2018) in that
we did not only use movies to affect valence and arousal in
our participants, but also other tasks. This enables testing for
generalizability of models across contexts.

Materials and methods

Participants

Fifty-one participants (25 male, mean age = 38, SD =

13.49) took part in the experiment. They were recruited from
the participant pool of the research institute where the study
took place (TNO). People with visual and auditory impairments
or psychological problems (for which in treatment within the
previous year) could not participate. All participants signed a
form of informed consent before the start of the experiment and
received monetary compensation after completing the experiment.
The study was approved by the Internal Review Board at TNO
(reference number 2022-093). Two participants were excluded
from the analysis: for one participant the time log data was not
saved correctly, the other participant consistently provided the
same valence and arousal scores for all tasks.

Materials

Video recordings of the participant’s face were captured with
a webcam (Microsoft LifeCam HD-3000) and recorded through
OBS Studio. Electrocardiogram (ECG) and electrodermal activity
(EDA) were recorded using the BioSemi ActiveTwo AD-box. EDA

electrodes were placed on the fingertips of the index and middle
finger of the non-dominant hand. ECG electrodes were placed on
the lowest floating left rib and the right clavicle. In addition, heart
rate and EDA were simultaneously recorded using a Polar H10
chest strap and an EdaMove4 with self-adhesive electrodes on the
palm of the non-dominant hand. Data from these recordings are
not discussed in the present manuscript.

Participants filled out the Perceived stress scale (Cohen et al.,
1994), the 10-question Connor-Davidson Resilience Scale (Connor
and Davidson, 2003) and the short Big Five Inventory 2 (Soto and
John, 2017). Two visual analog scales (VAS) running from 0 to 10
were used to capture the experienced valence (marked “unpleasant”
at the left and “pleasant” at the right) and arousal (marked
“calm/relaxed/bored” at the left and “stressed/energetic/excited” at
the right) after each task. All questionnaires were filled out through
Survalyzer, an online survey application.

The experimental tasks were embedded in a browser
application developed by Neurolytics (Utrecht, The Netherlands).
During the experimental tasks, the application collected task-
related data in addition to webcam recordings. The experiment
was run on a 14-inch laptop (Dell Latitude E7250). The laptop was
additionally used to send out markers for aligning all different data
sources. The laptop was connected to a 27 inch monitor (Samsung
Syncmaster) and participants controlled the laptop with the use
of a separate keyboard and a mouse (Dell). A different laptop was
used to record the signals from the BioSemi.

Stimuli and design

Figure 1 shows the schematic overview of the experiment.
Each participant performed successively a relaxingmovie condition
(baseline recording), a cognitive task (baseline and stressor), the
sing-a-song stress test (involving a baseline and stress interval), a
speaking task (baseline and stressor), and a startle movie condition.
The order of these five conditions was fixed; the order of baseline
and stressor parts were varied for the cognitive task and the
speaking task. The resulting four different condition orders were
counterbalanced across participants. Figure 2 shows a participant
in the setup.

Relaxing movie—Baseline recording
To assure all participants were at ease and familiar with

the setup, a 5-min neutral movie consisting of scenes of an
Italian village was watched (“Pietraperzia” validated as neutral in
Maffei and Angrilli, 2019; the spoken Italian text was replaced by
calm music).

Cognitive task
The cognitive stressor task consisted of a mental capacity

test with 40 multiple choice questions, each accompanied by
four answer options. Questions were presented in four blocks
of 10 questions, with each block assessing a different cognitive
skill: general knowledge, logical reasoning, numerical reasoning
and verbal reasoning. Participants were instructed to answer
all questions as good and quickly as possible using the mouse

Frontiers inNeuroergonomics 03 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1338243
https://osf.io/ztbek/
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Bruin et al. 10.3389/fnrgo.2024.1338243

FIGURE 1

Schematic overview of the sequence and duration of experimental conditions conducted by each participant. The order of the di�erent task blocks

was fixed, while the arrangement of baseline and stressor conditions varied for the cognitive and speaking tasks (as indicated by the up and down

pointing arrows). The orderings of conditions were counterbalanced across participants.

FIGURE 2

Participant in the setup, watching the relaxing movie.

within 2.5min per block. Questions were designed such that most
participants would not be able to answer all questions within
2.5min. A conspicuous count-down timer was visible on the
screen and the timer font changed from black to red during
the last 10 s to increase the time pressure. After 2.5min a block
was terminated and a new block started after a 10-s break. The
baseline version consisted of a questionnaire that was matched

for the number of questions, the length of the questions and
the number of answering options. However, the questions were
rewritten such that the cognitive demand was extremely low
and such that answering took about the same time (e.g., “Wait
approximately 15 seconds and select the second answer” or “Hover
over the questions and select answer C”). The count-down timer
was also visible during the baseline measurement but participants
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were explained that it was not the aim to answer as quickly
as possible.

Sing-a-song stress test
In this implementation of the Sing-a-song stress test (SSST;

Brouwer and Hogervorst, 2014), participants were presented with
two neutral sentences followed by a 60-s countdown. The third
sentence that appeared instructed participants to sing a song after
the countdown had reached zero. This last 60-s countdown interval
is the stressor which is compared to the preceding 60-s baseline

countdown interval.

Speaking task
During the stressor version of this task, participants were

instructed to verbally reply over the course of 1min with a
thoughtful moral judgement on a moral dilemma that would
be presented to them, and that their video-recorded response
would be reviewed by an expert. They subsequently viewed a
1-min movie of a sergeant asking the participant how they
would deal with noticed, strictly forbidden drug usage of a
colleague in the military. Participants then responded for about
a minute. In the baseline version, participants were instructed
to verbally respond to a movie, and that their response would
serve as a baseline which would not be reviewed. The 1-
min movie for this baseline recording showed a man telling
about him just having bought a wheelbarrow at a supply
store. At the end of the movie, the man asked the participant
to tell about their day, which participants did during the
minute thereafter.

Startle movie
Participant watched a suspenseful 10-min clip cut from

the TV Mini Series “The Haunting of Hill House” (Episode
9 “Screaming meemies”, 38:10-48:34) in which sounds were
normalized to 60 dB. Loud (95 dB) 50ms white-noise stimuli
were superimposed with 30–50 s intervals between them.
All participants viewed and heard the exact same edited
movie clip.

Procedure

The participants were informed about the experiment without
going into detail of the conditions—they were told they would
be asked to watch short movies, to answer questionnaires and
to perform other small tasks. After the sensors were attached
they filled out the Short Big Five Inventory, Connor-Davidson
Resilience Scale and the Perceived Stress Scale. Then they went
through the conditions as described under stimuli and design.
After each condition (baseline recording movie, cognitive task–
stressor, cognitive task–baseline, SSST, speaking–stressor, speaking-
baseline and startle movie), they filled out the VAS arousal
and the VAS valence. For the SSST they filled these out
twice; once for the baseline- and once for the stressor-interval.
Thus, for each participant, we obtained eight arousal and eight
valence scores.

Analysis

Feature extraction
In total, 65 features were extracted from the video data and 44

from the physiological data. A full overview of these features can be
found in Tables A1, A2.

Camera

The Webcam recordings were cut and saved per task in.avi
format without sound. Features for all videos were extracted
with the FeatureExtraction function from OpenFace 2.2.0.
(Baltrusaitis et al., 2018). This toolbox calculates a range
of features related to gaze, head pose, and 17 facial action
units for each frame. These action units are based on the
Facial Action Coding System (FACS), which was developed
to encode different movements and behaviors of the face and
eyes (Ekman and Friesen, 1978; examples can be viewed at
https://imotions.com/blog/learning/research-fundamentals/
facial-action-coding-system/). Based on recommendations by
the developer of OpenFace (Baltrusaitis, 2017), for all facial
features, intervals with a confidence score (as calculated by
OpenFace) below 70% were not included in further analysis.
Single feature values per participant and per interval of interest
(relaxing movie, startle movie, and the baseline and stress
intervals of each of the three tasks) were obtained using means,
variance over time, and degree of feature presence. All features
were scaled with use of the Python StandardScaler function
from scikit-learn.

ECG

R-peaks were detected in ECG with the use of a detection
algorithm based on Pan and Tompkins (1985). Inter-beat intervals
were determined and converted to heart rate. Heart rates below
30 bpm or above 200 bpm were discarded; deviations from
the mean, greater than three standard deviations were discarded
in an iterative process with three iterations. Mean, minimum,
maximum, standard deviation, area under the curve, kurtosis and
skewness of the IBI values were determined as single values per
participant and per interval of interest (relaxing movie, startle
movie, and the baseline and stress intervals of each of the three
tasks). In addition, we determined different measures of heart rate
variability [power in the very low frequency (VLF, 0–0.04Hz),
low frequency (LF, 0.04–0.15Hz), high frequency (HF, 0.15–
0.40Hz) domains; the ratio between the power in the LF and
HF bands; root mean square of successive differences (RMSSD)].
For spectrum computation inter-beat intervals were interpolated
onto a regularly sampled time series at a frequency of 5Hz
prior to calculating HRV frequency parameters. The length of
the signal used to derive statistical features matched the duration
of the task, as indicated in Figure 1. All features were scaled
with use of the Python StandardScaler function from scikit-
learn.

EDA

EDA signals were decomposed into tonic and phasic
components using the Ledalab toolbox (Benedek and Kaernbach,
2010). Mean, standard deviation, minimal and maximum
amplitude, the area under the curve (AUC), kurtosis and skewness
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were determined for the full signal and the phasic component.
Again, the signal length of the intervals of interest, from which the
statistical features were calculated, matched the duration of the
task, as depicted in Figure 1. All features were scaled with use of
the Python StandardScaler function from scikit-learn.

Data descriptives
Before modeling, we explored the overall effects of the different

conditions on the variables. Wilcoxon signed-rank tests were
performed on the self-reported valence and arousal scores as
well as on all features to determine whether differences between
corresponding baseline and stress tasks were significant. The
number of “high” (>5) and “low” (≤5) arousal and valence
responses was counted for each of the conditions. Modeling is
only possible with a sufficient number of both “high” and “low”
responses to prevent bias to predict a specific task (and thus its
predominant label) rather than the experienced mental state. In
addition, Kruskal-Wallis H tests were used to determine which
features showed significant differences between “low” and “high”
self-reported arousal and valence.

Modeling
In order to explore whether self-reported valence and arousal

could be predicted from video and/or physiological data, logistic
regression models were trained on video features, or physiological
features (EDA and ECG), or both. To examine generalization of
features across contexts, three subsets of conditions were used as
input of different models. In the specific context models, data from
only one condition was included (baseline recording movie, startle
movie, either the baseline or the stressor condition of the cognitive
task, public speaking task or SSST). In the intermediate context
models, both the baseline and stressor condition of one task type
were included. In the general context models, data from multiple
task conditions, were used as input for the models.

For each individual model, 90% of the dataset was used as
training and validation data (44 participants) while the remaining
10% was kept apart completely for testing (five participants),
following recommendations on proportions of training and
validation, and test data (Panicker and Gayathri, 2019; Sharma
et al., 2021). Participants were randomly distributed over the
train and test set. Each instance represented one task for a
specific participant. The model did not have access to the
task and participant identifiers to make the model task and
subject independent. For validation and optimization of the
models, the full training set was used because of the limited
amount of data—the remainder of this section description below
applies to the data without the five participants that were
kept apart.

To reduce the chance of overfitting, minimum redundancy—
maximum relevance (MRMR) (Ding and Peng, 2005) was applied
to decrease the number of features from 109 to 40. Next, the optimal
number of features was determined by the average performance on
iterations of randomized 11-folds of the training data (Figure 3).
For each validation iteration, a different fold was selected as the test
set and the algorithms were trained on 10 of these folds, followed by
a test on the remaining fold. All folds were selected randomly based

on participants. This process was repeated 100 times to include all
possible combinations of training and test data from the available
training data. The performance of themodels utilizing 1, 3, 5, 10, 20,
30, 40, and all (109) features were compared and the best option was
selected. The corresponding precision, recall and F1-scores were
checked to make sure the model did not highly favor one specific
category. Based on these outcomes, the optimal number of features
was selected for the final models.

To optimize the models and reduce the chance of overfitting,
hyperparameter tuning was performed on the training set. Here,
the training set was again split into 11-folds (Figure 3) but for
this step, random instances were selected instead of participants
to further reduce the chance of overfitting. Again 100 repetitions
of random fold selection were performed. Grid search was used
to find the optimal hyperparameters for all individual models.
Moreover, before training, the classes were balanced with use of
the SMOTE (synthetic minority oversampling technique) function
from scikit-learn.

Finally, to determine the final model performance, the
optimized number of features and hyperparameters were used.

Analysis of modeling results
For all classification models, performance was assessed by

examining accuracy, precision, recall and F1-scores. Accuracy,
precision, recall and F1-scores were determined per class and
over classes, with the use of macro averaged scores. Both the
performance on the test set and the training set (by averaging
the performance on the training set with the use of the same
cross-validation and averaging approach as described for algorithm
selection and feature selection) were assessed. Because precision,
recall and F1 showed similar results as accuracy scores, and did
not suggest that accuracy scores were strongly affected by the
majority class, we report the more intuitive measure of accuracy.
In traditional machine learning, typically only the performance on
the test set would be considered. However, because of the limited
test set (five individuals), we focus on the cross-validation results
from the training set. Earlier, similar papers did not include a test
set at all, and only evaluated results through cross-validation in the
training data.

Chance performance
To facilitate interpretation of the models’ performance, we

assessed whether the models performed better than would be
expected by chance with the use of permutation testing using the
same settings of the models, the same data and the same class
imbalance, only, the “high” and “low” valence and arousal labels
were shuffled. All models were trained and tested on randomized
labels. This process was repeated 10,000 times to create a chance
distribution. Separate processes were created for the training and
test settings, keeping the basic settings like iterations, splits and
oversampling consistent with the normal modeling approach. For
each model, the model performance was then compared to the
created distribution. A p-value was established by dividing the
number of occurrences in the distribution that outperformed
the true model and dividing this count by the total number
of repetitions (10,000). Note that similar accuracies for different
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FIGURE 3

Schematic overview of optimal hyperparameter, feature amount and model selection. The optimal settings were identified by averaging performance

across multiple iterations of randomized 11-fold cross-validation on the training data. In each validation iteration, a unique fold was chosen as the

test set, while the models were trained on the remaining 10-folds. This process was repeated 100 times to cover all possible combinations of training

and test data splits from the available dataset.

models can render different (significant and non-significant) p-
values because of the difference in data distribution and the
variance in random patterns between sets.

Feature contribution
As described above, and as formulated as one of our main

questions, we examined performance of models as a function of the
type of features used (video, physio, or video-physio). In addition,
we examined more closely which features were selected in the
various models based on video-physio features, and the extent to
which the same features were used in different models.

Expert assessments

To get an impression of the performance of the model in
relation to human observation, performance of expert observers
was determined. Three selection psychologists came to the lab
to rank different webcam recordings from the experiment. For
each recording, the experts were asked to rate the participant’s
experienced valence and arousal on a VAS scale for valence and
arousal. The scales were identical to the scales that were filled out
by participants during the experiment.

The experts watched and rated the videos through PsychoPy
R©
.

Videos were retrieved for the cognitive, public-speaking and SSST
tasks. Because of time limitations, each video was shortened to
10 s, starting 2 s after the start of each of the conditions, therewith
capturing the first reaction to each stressor task, and the equivalent
in the baseline. All videos were muted. Each expert rated videos
from all three tasks and for all participants, such that every
rating of every participant in the cognitive, public-speaking and
SSST baseline and stress tasks was matched with ratings of three
observers. The videos were clustered per participant and per

task (cognitive/public speaking/SSST). The presentation order of
participants and the stressor/baseline variants were randomized.
Since observers could (learn to) guess the task that the participant
was exposed to from watching the video, the name of the task
(cognitive/public speaking/SSST) was displayed to reduce variation
in available information across time and across observers.

Fleiss Kappa scores were calculated to capture the inter-
rater agreement. Furthermore, it was assessed whether the expert
observers performed better rating arousal and valence “high” or
“low” than would be expected by chance. The same analysis was
done as described above for the participants’ ratings: all labels were
shuffled and compared to the true labels. Again, this process was
repeated 10,000 times to establish a chance distribution. P-values
were calculated by summing the number of instances above expert
performance and dividing it by 10,000.

Results

Descriptives

Figure 4 shows self-reported arousal and valence for each of the
eight conditions. Wilcoxon signed ranks tests were performed to
compare the self-reported arousal and valence between the baseline
and stress conditions for each of the three tasks. For arousal, all of
these tests were significant, indicating higher arousal in the stressor
compared to the baseline task (cognitive task: W = 4.0, p < 0.001;
SSST: W = 101.5, p < 0.001; public speaking: W = 174.0, p <

0.001). For valence, baselines were judged to be more pleasant than
stressors for SSST (W = 200.0, p < 0.001) and public speaking:
W = 311.5, p = 0.004) but there was no effect for the cognitive
task (W = 492.5, p = 0.449). The box plots show a large variation
between participants, spanning almost the entire scale for many of
the conditions, in particular for valence.
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FIGURE 4

Self-reported arousal (top) and valence (bottom) per condition, as

self-reported on a VAS scale running from 0 (low) to 10 (high).

Results of Wilcoxon signed ranks tests, comparing between the

baseline (BL) and stress (ST) conditions for each of the three tasks

are indicated; ** and *** indicate significance levels of 0.01 and

0.001, respectively, ns refers to not significant.

We examined the number of “low” and “high” arousal and
valence values (i.e., lower or higher than 5, representing the center
of the VAS scale) in the different conditions. Except for the arousal
labels of the baseline recording and the baseline of the cognitive
task, all classes contain at least 10 instances of each “low” and “high”
label, enablingmodeling. Table A3 shows the exact number of “low”
and “high” instances for arousal and valence per condition.

For an impression of which features vary with arousal and
valence, and in what way, Table A4 displays the results of the
Kruskal-Wallis tests, testing for differences between the “low” and
“high” arousal and valence, for each of the features and separately
per task. Out of 109 features, 59 show one or more significant
effects. Effects are found in all categories, video- facial expression,
gaze, head posture; and physiology- ECG and EDA. Across the
various tasks, 42 features differentiated between low and high

arousal levels. Of these, 32 (27 unique) are associated with camera
data, while 10 are linked to physiological data. In contrast, for
valence, 38 features are identified, with 14 originating from camera
data and 24 (18 unique) from physiological data. Most effects are
not consistent across tasks. The majority of features that differed
between low and high arousal and valence levels were found within
the the SSSTarousal.

Modeling: specific-general context

Using logistic regression, we examined the possibility to
distinguish between high and low self-reported arousal, and high
and low self-reported valence on a single-trial level (data from
one participant in one condition), in a specific context (models
trained and tested within data originating from one condition),
an intermediate context (combinations of conditions from the
same setting), and a general context (including data from all
conditions). In the first step, we used data from both the camera and
physiological sensors (video-physio; first columns of Tables 1, 2).

Table 1 shows the modeling performance for classifying high
and low arousal per condition and combination of conditions (see
Figure 5 for a bar graph of data in Table 1). As mentioned in the
previous section, models could not be created for the baseline
recording condition and the baseline cognitive task given the low
number of reported “high” arousal. As expected, context specific
models (i.e., models trained and tested on data from one quite
specific task) tended to produce better results, but all models
performed higher than chance as indicated by the permutation
tests, except for the context specific model “public-speaking:
baseline”. Model performance ranged from 61% accuracy for the
model combining the baseline and stress conditions of the three
tasks, to 84% accuracy for the model on the SSST stress condition.

Table 2 shows modeling performance for classifying high and
low valence (see Figure 6 for a bar graph of data in Table 2). Again,
as expected, context specific models tended to produce better
results, but all models performed higher than chance as indicated
by the permutation tests. Performance ranged from 60% for all data,
and baseline and stress conditions of the three tasks, to 82% for the
baseline recording. Arousal models seem to perform slightly better
than valence models.

Applying the models to the data of the five participants
in the test set resulted in significant accuracies for the general
models “cognitive and SSST tasks” (80% accuracy), “stress
conditions from all tasks” (85%) and “all data” (68%). Other
arousal models did not perform above chance. For valence,
only the “stress conditions from all tasks” performed above
chance (85%). Note that for the general context models we have
more data points so that for these models, evaluation makes
more sense.

Modeling: modality

Tables 1, 2 present the accuracy results from the video-
physio models (first columns) next to accuracy results of models
that only used features from video data (second columns),
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TABLE 1 Accuracy for arousal models trained on physio-video, models trained on video data only, models trained on physiological data only, and expert

performance for estimating arousal from various conditions as indicated in the left column, comprising specific contexts (green), intermediate contexts

(yellow), and general context (red).

Arousal—accuracy

Condition All features Video features Physiological features Experts

Baseline recording movie x x x x

Cognitive task: baseline x x x 42%

Cognitive task: stress 81% 72% 52% 63%

Sing-a-song: baseline 76% 65% 65% 55%

Sing-a-song: stress 84% 77% 70% 46%

Public-speaking: baseline 62% 65% 69% 33%

Public-speaking: stress 81% 75% 49% 48%

Startle movie 71% 68% 64% x

Cognitive task (baseline & stress) 72% 67% 53% 53%

Sing-a-song (baseline & stress) 74% 67% 70% 50%

Public-speaking (baseline & stress) 64% 61% 51% 41%

Cognitive and sing-a-song tasks 69% 62% 65% 51%

Cognitive, sing-a-song and public
speaking tasks

61% 58% 59% 48%

Stress conditions from all tasks 70% 68% 55% x

All data (all tasks including baseline
recording)

64% 61% 62% x

Crosses depict combinations for which no models could be created. Values above chance level are indicated in bold.

or only from physiological data (third columns). In almost
all context cases, video-physio models tend to perform best.
Still, for general contexts, the advantage over video-only data
is small.

The data do not suggest a clear advantage for either video
features or physiological features. We see that in the general
contexts (shaded in red) physiological models tend to perform
better than video models in three out of four cases for arousal,
while the opposite is true for valence. However, differences are
small. In contrast to what we expected, we do not observe that
physiological data have a special advantage over video features
in general contexts. We also do not see an advantage for video
features for valence, and an advantage for physiological features
for arousal.

Modeling: features

Exploring the features that were used in the different video-
physio models indicates that the numbers of features used
range between 3 and 30, where most models use 10 features
or less. For arousal, 12 out of 13 models selected features
of both video and physiological data; 10 out of 13 selected
data from video, EDA and heart rate. For valence, 13 out
of 15 models use data from video and physiological data; 11
out of 13 used data from video, EDA and heart rate. This
suggests that each of the data sources provide complementary

information. This is consistent with the advantage of the video-
physio models as presented in the previous section. There are
no specific features that stand out as particularly important for
all conditions, neither for arousal, nor for valence, suggesting
redundancy and context specificity. A complete overview of
selected features per model is in Table A5 (arousal) and
Table A6 (valence).

Experts

The ratings as given by the three expert raters were divided
into “low” and “high” valence and arousal just as the self-reported
scores. To determine the interrater agreement between the different
experts, Fleiss’ Kappa scores were calculated. For arousal, the score
was 0.27; for valence this was 0.24. Such values are regarded
“fair” interrater agreement (Landis and Koch, 1977). The last
columns in Tables 1, 2 show classification performance of experts
for, respectively, arousal and valence. For none of the task-
condition combinations, estimating arousal exceeded chance as
determined by the permutation tests. For valence, performance
only exceeded chance with 56% accuracy for the combined
conditions from the three tasks. In all cases, the accuracy scores
obtained by the models (left columns in Tables 1, 2) exceeded
average expert scores, though the difference seems smaller for
valence. Examining the results for the three experts individually
did not change this pattern of results. The confusion matrices
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TABLE 2 Accuracy for valence models trained on physio-video, models trained on video data only, models trained on physiological data only, and expert

performance for estimating arousal from various conditions as indicated in the left column, comprising specific contexts (green), intermediate contexts

(yellow), and general context (red).

Valence—accuracy

Condition All features Video features Physiological features Experts

Baseline recording movie 82% 57% 71% x

Cognitive task: baseline 70% 67% 66% 49%

Cognitive task: stress 78% 62% 73% 47%

Sing-a-song: baseline 71% 69% 66% 50%

Sing-a-song: stress 79% 53% 78% 62%

Public-speaking: baseline 71% 64% 66% 64%

Public-speaking: stress 74% 62% 64% 64%

Startle movie 70% 58% 70% x

Cognitive task (baseline & stress) 65% 62% 60% 48%

Sing-a-song (baseline & stress) 74% 61% 66% 56%

Public-speaking (baseline & stress) 66% 68% 60% 64%

Cognitive and sing-a-song tasks 65% 60% 61% 52%

Cognitive, sing-a-song and public
speaking tasks

60% 59% 56% 56%

Stress conditions from all tasks 63% 60% 54% x

All data (all tasks including baseline
recording)

60% 59% 55% x

Crosses depict combinations for which no models could be created. Values above chance level are indicated in bold.

for each of the experts are shown in Table A7 (arousal) and
Table A8 (valence).

Discussion

In our study, participants performed various tasks (watching
movies, public speaking, preparing to sing a song and cognitive
tasks), aimed at eliciting varying levels of arousal and valence.
Using models trained over participants, we showed that we could
reliably estimate mental state using one to a few minutes’ dynamic
information from videos that captured their spontaneous behavior
(facial action unit activity, head pose, and gaze) and physiological
data (ECG and EDA). Up to 84% accuracy could be reached
for classifying low vs. high arousal, and 82% for low vs. high
valence. These values were reached using all features and staying
within context, in these cases, respectively, preparing to sing a song
and watching a neutral movie. Importantly, while performance
dropped to 61–74% accuracy for arousal and 60–74% for valence,
generalizing across contexts appeared to be possible by training
models using data from combined contexts. This allows models
to base themselves on features that behave relatively consistently
across contexts. The multi-modal (video-physio) models tended
to perform best, and indeed, almost all of these models are
based on features from both video and physiological data, and
usually features from both EDA and ECG. This is the case even
though the number of used features is not exceptionally high
(most models using 3–10 features). This indicates that the different
modalities contain complementary information. Still, and good

news for applied settings, the drop in performance when only using
video data is modest. The arguably most difficult, but for some
applications most valuable case, evaluating mental state across all
conditions based on video data only, reaches an accuracy of about
60% for both arousal and valence, which is well-above chance.

The mentioned accuracies are based on the validation sets.
Performance of the models on a completely independent testing
set, consisting of data of five participants, reached above chance
accuracies for some general context models. While results on an
independent test set are the gold standard of evaluating models,
given scarcity of data it is common in this type of research to only
base results on validation sets. Our test set of five participants is
not enough to make for a representative sample, but it prevented
reducing the validation sets further, and it gives a very first
impression of the generalizability of our models to completely new
participants. Our finding that accuracies for models applied to
the test set seem to be better when task conditions are combined
compared to when not hint at an increasing robustness of models
trained using a large variation of data.

Our models estimate self-reported arousal and valence
better than human expert observers do, also models that do
not take into account information that humans do not have
access to (namely, physiological information) and are based
only on visual (video) information. In fact, in our study,
humans did not perform better than chance in all but one
context cases.

One may argue that expert observers might estimate
individuals’ mental state better than individuals do themselves,
and that that is the reason of the mismatch. We tried to gain
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FIGURE 5

Accuracy for arousal models trained on all physio-video data, models trained on video data only, models trained on physiological data only and

expert performance for estimating arousal from various conditions as indicated on the x-axis, comprising specific contexts (green background),

intermediate contexts (yellow background), and general context (red background). Bars are missing for combinations for which no models could be

created. Performance below chance level is indicated with a striped bar pattern.

support for this possibility by correlating individuals’ scores on
traits (perceived stress as obtained from the PSS; resilience scale,
neuroticism) to the individuals’ average self-reported arousal score
on the six task conditions; and correlating these trait scores to the
average expert-judged arousal score on the six task conditions.
The premise is that if experts judge individuals better on their
momentary experienced arousal than the individuals themselves,
they should show more or better relations to trait as obtained
from validated questionnaire tools. However, results showed no
correlations between trait scores and expert-judgements, whereas
there was a positive, significant association between PSS score and
average self-reported arousal.

Another possible reason for the mismatch is that experts
based their judgement on less data (10 s per condition), and
did not have access to an example of distribution VAS scores.
On the other hand, experts had knowledge that the model did
not have, namely knowledge of (the meaning of) the task at
hand, knowledge of the meaning of VAS scores and knowledge
on the identity of the participants (i.e., they could compare
responses within participants). In sum, models and humans have
different information to base their judgement on, which may
have contributed to the mismatch. This is hard or impossible to
equalize. It is also important to realize that in almost all real life
situations, selection psychologists would not judge mental state
from facial expression in a way that is comparable to the study.
They would communicate with individuals and check how they
respond to certain questions. Still, our rough comparison between

performance of humans and models indicates that the models’
performance is not trivial, and that models may be of added
value to expert judgement, especially in innovative, automized
applicant screening methods, or very different applications where
we would want to complement and/or reduce effort of human
expert observers.

Our study provided positive results for monitoring mental
state (arousal and valence) across individuals and across tasks
using video measures in desktop situations. This may be helpful
in selection procedures, where individuals are prone to show
reporting bias, and where one may wish to examine whether an
individual scores low on arousal and high in valence during a
certain, potentially stressful task. This might be one of the tasks
described in this study, or a certain serious gaming task. Similar
models may also be used for adapting the stress level in a serious
gaming task to the individual so that individuals are assessed, or
trainees trained, while performing a certain task under similarly
high levels of stress. This would allow comparing performance
under stress between individuals. Another application may be in
specific forms of biofeedback, e.g., adapting anxiety-evoking stimuli
in virtual reality to appropriate levels in exposure therapy (Repetto
et al., 2009; Brouwer et al., 2011; Rahman et al., 2023). While
our study showed that we can generalize models across tasks by
training models using data from different tasks, it is advisable to,
whenever possible, stay within context, since this will result in
better performance. This would be possible for certain applications.
In addition, context (e.g., a certain element of a serious game that is
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FIGURE 6

Accuracy for valence models trained on all physio-video data, models trained on video data only, models trained on physiological data only and

expert performance for estimating arousal from various conditions as indicated on the x-axis, comprising specific contexts (green background),

intermediate contexts (yellow background), and general context (red background). Bars are missing for combinations for which no models could be

created. Performance below chance level is indicated with a striped bar pattern.

being performed) may simply be identified using knowledge of the
content of the user’s display or task at hand, and used to apply the
proper model.

In this study, we focused on self-rated arousal and valence,
anticipating that arousal might be better captured by physiology,
and valence by video data. Also, we expected that physiology may
be relatively valuable for general context models. Results did not
support these expectations. At least under the circumstances tested,
information on both arousal and valence can be quite well-captured
using video data only.

While a state of (undesirable) stress can be operationalized
by low valence and high arousal, future studies may focus on
a single item, arguably more intuitive measure of self-reported
stress. This may improve self-reported labels and therewith
improve model results. Depending on the application in mind,
future analyses and future studies can study more or continuous
estimates rather than discrete high and low categorization.
Most importantly, for better validation of the models, and
better estimate of what they can do in applications, we need
to collect more data and include validation with independent
test sets.

However, accurate a model performs in estimating the mental
state of an individual, in terms of matching self-report or even
in other terms, for applications the ultimate question remains
whether exploiting these estimates in one way or the other improves
individuals’ or organizational performance and wellbeing. Such
longitudinal research, comparing methods that involve automatic

mental state monitoring to current practice, is important to
definitely show the added value of mental state monitoring using
video and physiological data.
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