
TYPE Original Research

PUBLISHED 24 April 2024

DOI 10.3389/fnrgo.2024.1340732

OPEN ACCESS

EDITED BY

Giuseppina Pilloni,

New York University, United States

REVIEWED BY

Ahmet Omurtag,

Nottingham Trent University, United Kingdom

Chenyu Huang,

University of California, Irvine, United States

*CORRESPONDENCE

John Kounios

kounios@drexel.edu

†These authors have contributed equally to

this work and share senior authorship

RECEIVED 18 November 2023

ACCEPTED 26 March 2024

PUBLISHED 24 April 2024

CITATION

Kounios J, Fleck JI, Zhang F and Oh Y (2024)

Brain-age estimation with a low-cost

EEG-headset: e�ectiveness and implications

for large-scale screening and brain

optimization. Front. Neuroergon. 5:1340732.

doi: 10.3389/fnrgo.2024.1340732

COPYRIGHT

© 2024 Kounios, Fleck, Zhang and Oh. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Brain-age estimation with a
low-cost EEG-headset:
e�ectiveness and implications for
large-scale screening and brain
optimization
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Yongtaek Oh1

1Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, United States,
2Department of Psychology, Stockton University, Galloway, NJ, United States

Over time, pathological, genetic, environmental, and lifestyle factors can age

the brain and diminish its functional capabilities. While these factors can lead

to disorders that can be diagnosed and treated once they become symptomatic,

often treatment is di�cult or ine�ective by the time significant overt symptoms

appear. One approach to this problem is to develop a method for assessing

general age-related brain health and function that can be implemented widely

and inexpensively. To this end, we trained a machine-learning algorithm on

resting-state EEG (RS-EEG) recordings obtained from healthy individuals as

the core of a brain-age estimation technique that takes an individual’s RS-

EEG recorded with the low-cost, user-friendly EMOTIV EPOC X headset and

returns that person’s estimated brain age. We tested the current version of our

machine-learning model against an independent test-set of healthy participants

and obtained a correlation coe�cient of 0.582 between the chronological and

estimated brain ages (r = 0.963 after statistical bias-correction). The test-retest

correlation was 0.750 (0.939 after bias-correction) over a period of 1 week. Given

these strong results and the ease and low cost of implementation, this technique

has the potential for widespread adoption in the clinic, workplace, and home as a

method for assessing general brain health and function and for testing the impact

of interventions over time.
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1 Introduction

This report describes an electroencephalogram-basedmachine-learning technology for
assessing whether an individual’s brain is aging more quickly or more slowly than would be
expected relative to healthy individuals of the same age. Our method provides a window on
to the combined effects of physiological, pathological, genetic, environmental, and lifestyle
factors on brain aging. Because we implemented this method with a low-cost, user-friendly
electroencephalogram (EEG) headset, it can be used in the workplace, clinic, or at home
to track an individual’s general neurological health and functioning over time to assess the
impact of factors that can potentially affect brain health and aging.

Measuring and understanding how brain age is important for identifying individuals
at risk for disease or decline and flagging them for examinations to detect and diagnose
disorders that are more difficult to treat if detected later during disease progression. It is
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also important for understanding how neurological disorders,
injuries, and environmental insults may prematurely age a brain
and how particular lifestyles may preserve or enhance it (Cole
et al., 2019). Research has revealed several manifestations of
brain aging, including mitochondrial dysfunction; dysregulated
energy metabolism; impaired DNA repair; inflammation; physical
trauma; infection; and toxins (Mattson and Arumugam, 2018).
In particular, magnetic resonance imaging (MRI) studies have
identified structural biomarkers of aging such as demyelination of
axons and decreases in gray-matter and white-matter volumes that
can contribute toward the estimation of a brain-age index of general
neurological health and function (Cole et al., 2017). As shown
below, a few minutes of resting-state EEG (RS-EEG) recorded with
a low-cost headset can also yield an accurate estimation of a person’s
brain age.

When you meet someone for the first time, you might try to
estimate their age. You can do this by looking at particular features
of their appearance: Is their hair gray? Do they have wrinkles?
When you learn their actual age, you might be surprised. Based on
their appearance, you might judge that they are aging more quickly
or more slowly than would be expected.

Machine-learning (ML) algorithms can do this, too. For
example, ML algorithms have been trained on large datasets of
features extracted from MRI brain images to identify patterns
of features that enable classification of individual cases (Cole
et al., 2017). The approach is to input a large number of healthy
individual cases (i.e., the training set) along with the chronological
age of each subject. This enables the algorithm to learn which
combinations of MRI features predict chronological age and which
do not. The resulting statistical model is then used to predict the
chronological age of other individuals (i.e., the test set), healthy or
otherwise, based on features of their MRIs.

One important outcome is that for some individuals, predicted
brain age is older than chronological age while for others, predicted
brain age is younger than chronological age. These individuals are
said to have a brain-age gap (BAG), which is the estimated brain age
minus the chronological age.

Differences between chronological and estimated brain ages
can be partly due to statistical noise in the brain-age predictions;
the relationship between chronological age and the neuroimaging
features and modeling techniques used to estimate brain age
includes statistical noise and is therefore not perfectly accurate (see
de Lange et al., 2022). But statistical noise does not completely
explain brain-age gaps because BAGs correlate with independent
measures of cognitive function and risk for dementia onset (e.g.,
Kaufmann et al., 2019; Biondo et al., 2022) and because some
diseases, such as schizophrenia and dementia, are known to be
associated with larger BAGs in affected persons (Cole et al., 2017;
Bijsterbosch, 2019; Hou et al., 2019). Thus, an important goal for
any ML model of brain aging is to minimize noise, for example,
by improving feature selection, sample age range, and so forth
(de Lange et al., 2022) so that a deviation between a person’s
chronological age and predicted brain-age can be attributed to
slower-than-average or quicker-than-average aging rather than
to noise.

Targeted treatment for a disease typically depends on a
specific diagnosis. Unfortunately, precise diagnoses of neurological
disorders of aging such as Alzheimer’s disease are complicated

by the fact that the symptomatology of a disease can vary across
individuals and that more than one disease is often present
in the same patient (Coulthard and Love, 2018). Additionally,
significant physical change can occur in the brain before clinical
symptoms are manifested by the affected person (Sperling et al.,
2014). Thus, a global measure of age-related brain health—
analogous to the idea of IQ as a global measure of cognitive
ability relative to peers—that reflects contributions from multiple
diseases, injuries, etc. can be used to screen individuals at an early
phase of brain deterioration when interventions may be more
effective. Additionally, healthy individuals may repeatedly estimate
their brain age after implementing lifestyle interventions such
as dietary changes, exercise regimens, types of meditation, sleep
adjustments, and cognitive training programs to assess whether
any single intervention or combination of interventions can slow
or reverse brain aging. This may be particularly helpful for people
interested in optimizing performance, such as athletes, executives,
and students.

Due to technical refinements, brain-age estimates based
on structural MRI continue to improve (Wood et al., 2022).
Nevertheless, there are two limitations to the practical use of
structural MRIs to predict brain age. One limitation is that
biomarkers of structural brain aging do not always correlate
well with cognitive function. This is exemplified by the poorly
understood phenomena of cognitive reserve and neural reserve
whereby a brain that exhibits Alzheimer’s-related amyloid
pathology and structural damage can retain a high level of function
(Bennett, 2017; Fleck et al., 2017). Thus, it is not always clear
which structural changes in the brain may impair neural function
in ways that adversely affect cognitive function. For example, a
scratch on a laptop computer is unlikely to affect a computer’s
performance. Moreover, cognitive function is more important
for unencumbered living than is a structurally pristine brain.
This means that estimates of structural brain-age, though useful
and informative, can be an incomplete method for assessing or
predicting decline of brain function.

Another limitation is cost. Although there are currently limited
options for the treatment of age-related neurological disorders such
as Alzheimer’s disease, current and future interventions may be
more effective if nascent neurological disorders could be detected
very early—even presymptomatically—while they may be more
treatable. It would also be helpful to be able to assess brain health at
regular intervals to confirm healthy aging, to detect a deviation in
the trajectory of aging, or tomonitor changes following diagnosis or
intervention. In these scenarios, MRI will not be practical because
widespread early and repeated screening would be very expensive
and unlikely to be covered by insurance companies.

Functional brain-age estimation via EEG is an attractive
alternative to structural brain-age estimation with MRI. EEG
measures the synchronous activity of large populations of neurons
via electrodes placed on the scalp (Biasiucci et al., 2019). Instead of
imaging brain structure, EEG images brain function, and has been
shown to be effective in capturing the contribution of cognitive
reserve to brain health and cognitive function (e.g., Bozzali et al.,
2015; Varela-López et al., 2022). Furthermore, EEG hardware is
now inexpensive and user-friendly enough that its adoption is
economically practical for the purpose of widespread screening and
use in the workplace or at home. For this reason, and because of the
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high cost of MRI, some research groups have begun to direct their
efforts toward brain-age assessment using EEG (e.g., Dimitriadis
and Salis, 2017; Al Zoubi et al., 2018).

These initial efforts have shown encouraging, but mixed,
results. For example, using archival EEG datasets, Dimitriadis and
Salis (2017) obtained good brain-age prediction accuracy within
those datasets (R2 = 0.60 for eyes-open, R2 = 0.48 for eyes-closed),
though they did not provide satisfactory external validation of
their training-set model by applying their model to a separate test-
set of sufficient size. Furthermore, there was no documentation
of the health status of the participants in one of these training
sets to ensure that they were all healthy. Al Zoubi et al. (2018)
used a large dataset of EEGs obtained from participants during
MRI scanning. Their mean absolute error (MAE), a measure
of prediction accuracy, was 6.87 years. However, the practical
usefulness of their findings is limited by the fact that their subjects
were reclining in a noisy and confining MRI scanner during the
EEG recordings which may limit the generalizability of their results
to participants outside of a scanner. Sun et al. (2019) used large
training- and test-sets of EEGs obtained while participants slept
and obtained brain-age estimates that had a MAE of 8.1 years.
Engemann et al. (2022) compared various machine-learning and
deep-learning methods for brain-age estimation based on a large,
combined set of archival EEG recordings (53 EEG channels per
recording) and obtained best cross-validated MAE values from
7–8 years and R2 values up to ∼0.75. Most recently, Banville
et al. (2023) implemented ML-based brain-age prediction using
EEG data collected with a low-cost headset during meditation
and sleep and achieved a cross-validated R2 between 0.3 and
0.5, although with low test-retest reliability over relatively short
intervals (i.e., days).

Our goal was to develop an accurate ML model to predict
individual participants’ brain ages based on data recorded with a
low-cost EEG headset, the EMOTIV EPOC X (referenced as the
headset moving forward; EMOTIV Inc., San Francisco, CA). We
recorded resting-state EEGs (RS-EEGs) from participants using
the low-cost, mobile wireless EEG headset; a subset of these
recordings was used in the training set and the remainder in
the test set (detailed below). These EEGs were recorded from
healthy participants who were at “rest,” that is, awake but without a
task to perform. Additional recordings from healthy participants
completed in several different laboratories using a variety of
recording systems were included in the training set. RS-EEGs
are known to reflect stable, trait-like individual differences in
cognition, personality, and psychopathology (John et al., 1988;
Erickson et al., 2018). We extracted a variety of features from these
EEGs and subjected them to several types of ML algorithms plus
statistical bias-correction. The machine-learning model that we
derived from the training set was then applied to our independent
test set.

2 Methods

2.1 Stockton Bryn Mawr Emotiv dataset

We collected the Stockton Bryn Mawr Emotiv (SBE) dataset
for this project. This dataset includes recordings from 91 healthy

TABLE 1 SBE dataset demographics.

Stockton
University
n = 35

Bryn Mawr
College
n = 20

Emotiv
LABS
n = 36

Age

Range 30–64 years 32–85 years 30–63 years

Mean (SD) 45.17 (10.67) 71.10 (13.31) 39.28 (8.49)

Years of education

Mean (SD) 16.63 (1.75) 16.80 (2.78) 16.67 (2.24)

Gender

Female 29 15 17

Male 6 5 18

Other – – 1

Race/Ethnicity

Caucasian 30 20 23

Hispanic 4 – 3

Asian 1 – 10

Handedness

Right 35 19 26

Left – 1 7

Ambidextrous – – 3

Employment

Employed 33 5 36

Unemployed 2 – –

Retired – 15 –

participants, collected at three locations: Stockton University
(New Jersey), Bryn Mawr College (Pennsylvania), and online
via EmotivLABS. A description of the sample from each testing
location is provided in Table 1. Stockton University participants
were recruited using a social media advertisement. Bryn Mawr
College participants were recruited using an older adult participant
database. Online participants were recruited via EmotivLABS,
Emotiv’s online platform for data collection. Registered users on
this platform passed a certification test that ensures they could
collect sufficient quality data (Williams et al., 2023).

2.2 Supplemental training datasets

In addition to the subset of our SBE dataset used in the training
set, ML model training was based on four previously recorded EEG
datasets, totaling 505 participants. Two of the datasets (Stockton
A and B) were recorded in the second author’s lab and two are
publicly available. All participants gave written informed consent.
Two sessions of data were available for 91 participants, and both
session 1 and session 2 recordings for these participants were
included as separate points in the training set for a total of 596
recordings. Gender and handedness were noted but not used as
features for training or testing the machine-learning model. A brief
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TABLE 2 Supplemental training datasets.

Dataset N Age Gender Handedness

Stockton A

Session 1 163 46–93 years Female: 109 Right: 163

63.57 (8.61) Male: 54

Session 2 57 55–85 years Female: 37 Right: 57

68.86 (8.08) Male: 20

Stockton B

123 35–83 years Female: 89 Right: 109

56.64 (7.53) Male: 34 Left: 14

CHBM

143 30–68 years Female: 56 Right: 122

37.87 (7.32) Male: 87 Left: 13

Mixed: 5

Unavailable: 2

SRM

Session 1 76 30–71 years Female: 45 Unavailable

44.43 (11.36) Male: 31

Session 2 34 30–65 years Female: 21 Unavailable

45.54 (9.76) Male: 13

Total

596 30–93 years Female: 357 Right: 451

53.03 (14.06) Male: 239 Left: 27

Mixed: 5

Unavailable: 113

description of each dataset is provided below and summarized in
Table 2.

2.2.1 Stockton A
This dataset contains EEG recordings from 163 healthy adults,

ages 46–93 years, recorded at Stockton University; 57 subjects
participated in a second recording session ∼1 year after the first
session. Both sessions used a 128-channel sensor net with a Cz
reference. Session 1 data were recorded with an EGI Net Amps
300 amplifier (Electrical Geodesics, Inc.) with a 250-Hz sampling
rate; session 2 data were recorded with an EGI Net Amps 400
amplifier (Electrical Geodesics, Inc.) and 500-Hz sampling rate.
Each recording included 3min of eyes-open and 3min of eyes-
closed resting-state EEG.

2.2.2 Stockton B
This dataset contains EEG recordings from 123 healthy

adults, ages 35–83 years, recorded at an urban satellite campus
of Stockton University. The EEG data were recorded using a
128-channel Geodesic Sensor Net with Cz reference. The data
were recorded with an EGI Net Amps 400 amplifier (Electrical
Geodesics, Inc.) and 500-Hz sampling rate. Each recording
included 3min of eyes-open and 3min of eyes-closed resting
state data.

2.2.3 Cuban human brain mapping project
This dataset contains EEG recordings from 282 healthy adults,

ages 18–68 years, recorded in La Habana, Cuba (Valdes-Sosa
et al., 2021). The recording task included baseline (eyes-open and
eyes-closed resting state), reactivity, hyperventilation, and recovery
states. We selected recordings from participants 30 years of age or
older for our training set (N = 143). Recordings weremade using 64
or 120 electrodes with a linked-earlobes reference. EEG data were
recorded using a MEDICID 5 system with a 200-Hz sampling rate.
The data were filtered with 0.5–50Hz band-pass and 60-Hz notch
filters. Each recording included 5min of eyes-open and 15min of
eyes-closed data.

2.2.4 Stimulus-selective response modulation
project

This dataset contains resting-state EEG recordings from 111
healthy adults, ages 17–71 years, collected in conjunction with
the Stimulus-Selective Response Modulation (SRM) Project at the
University of Oslo, Norway (Hatlestad-Hall et al., 2022). A subset of
the subjects participated in a second recording session 2–3 months
after the first session. We selected participants who were 30 years
of age or older (N = 76); 34 of these participants completed a
second recording session. EEGs were recorded with 64 electrodes
placed according to the International 10–10 System. The EEG
data were recorded using the BioSemi ActiveTwo system (Biosemi
B.V., Amsterdam), with the system’s zero-reference, and a 1,024-
Hz sampling rate. The data were re-referenced to average reference.
Each recording included 4min of eyes-closed resting-state data.

2.3 Materials

Session 1 and Session 2 scripts were prepared and deployed
using the EmotivPRO v. 3.0 (https://emotiv.gitbook.io/emotivpro-
v3/) software. The EPOC X headset (https://emotiv.gitbook.io/
epoc-x-user-manual/) was used for all recordings in the SBE
dataset. The headset uses 14 saline-soaked felt sensors (electrode
sites AF3/4, F3/4, F7/8, FC5/6, T7/8, P7/8, and O1/2) and reference
sensors at P3/P4 (Figure 1). The data were recorded with a 0.2–
45.0Hz bandpass filter and either a 50-Hz or a 60-Hz notch filter
(depending on the country in which the data were recorded).

2.4 Recording procedure

The data collection procedure was approved by the Bryn Mawr
College, Stockton University, and Drexel University Institutional
Review Boards. Participants completed 2 sessions, scheduled ∼1
week apart. The EEG recording procedure was the same for sessions
1 and 2.

After providing informed consent, participants completed
demographics and handedness questionnaires. Next, the headset
was positioned, and contact quality (i.e., impedance) and EEG
quality (a combination of contact quality, signal quality over
time, and signal magnitude quality) checks were performed (see
EmotivPRO user manual). The EEG data were recorded at Stockton
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FIGURE 1

EPOC X Electrode Montage (adapted from Williams et al., 2023).

University and Bryn Mawr College via a USB receiver dongle with
16-bits and 128-Hz resolution and a 60-Hz notch filter.

All instructions were presented on the computer screen and
read aloud by the experimenter. Participants completed three
identical blocks of resting-state EEG recordings. Recordings
alternated between eyes-open and eyes-closed in 1-min intervals
for a total of two eyes-open and two eyes-closed recordings per
block. Each block concluded with an arousal rating during which
participants were asked, “On a scale of 1 to 5, 1 being very tired
and struggling to stay awake and 5 being very alert, how would
you rate your arousal level at the end of this block?” There was
a brief break between blocks to reduce drowsiness. Across blocks,
participants completed 12min of resting-state EEG, 6min with eyes
open and 6min with eyes closed. Participants were compensated
$50 per session.

All procedures involving human participants adhered to the
ethical standards delineated by the institutional and/or national
research committee and in compliance with the 1964 Helsinki
declaration and its later amendments or comparable ethical
standards. Informed consent was obtained from all participants.

2.5 Online data collection procedure

The experiment protocols for sessions 1 and 2 were published
on EmotivLABS on the Citizen Science page (see https://labs.
emotiv.com/) and were visible between June 15 and August

31, 2023. The protocol for online data collection was identical
to the laboratory protocol described above. Participants were
compensated $20 after the completion of each session.

2.6 Automated EEG processing pipeline

An automated processing pipeline was implemented
within the MATLAB environment, utilizing a custom
script that included the EEGLAB toolbox (Delorme
and Makeig, 2004). The same script was applied to
each recording.

Files were initially converted to a single EEGLAB data
format. A 1–50Hz bandpass filter was applied to isolate the
frequency bands of interest while mitigating the influence
of slow drifts and high-frequency noise. A 50- or 60-Hz
notch filter was also applied (depending on the geographical
location in which each dataset was recorded) to eliminate
power-line interference. Files were re-sampled to 125Hz to
reduce the computational demands in downstream analyses.
To assure standardization across datasets and correspondence
with the test recordings’ electrode montage, channels were
omitted to match the 16-channel EPOC X configuration (see
Figure 1). Data were re-referenced to P3–P4. Channel omission
and re-referencing were not applied to the test data. Artifact
Subspace Reconstruction (ASR) was then performed utilizing
the clean_rawdata plugin (Kothe and Makeig, 2013; Mullen
et al., 2015) with the burst criterion parameter set at 5,
facilitating the identification and attenuation of artifact-related
subspace and enhancing the overall quality of the signal. ASR
identifies high-variance segments of data, which are subsequently
reconstructed or omitted based on the defined burst criterion.
The other functionalities available in the clean_rawdata plugin,
including bad-channel rejection and segment rejection were set
as “off.”

3 Machine learning

3.1 Model training

A machine learning model was developed with the R
programming language to predict subjects’ chronological ages
based on EEG features. The model was trained using a total of
1,215 features including measures of EEG power, connectivity,
noise, and variability for nine frequency bands at the 14 electrodes
of the EMOTIV EPOC X headset. The dataset was divided
based on the recording device: EPOC X (SBE dataset) and non-
EPOC X (supplemental training datasets). A stratified 10-fold
train-test split based on age was performed for the SBE dataset,
ensuring a balanced representation of all age categories in each
fold (Figure 2). Conversely, all datasets recorded using non-EPOC
X systems were included in the training set. For each fold of
the 10-fold split for the SBE dataset, the training set was merged
with the non-EPOC X dataset to formulate a comprehensive
training dataset. This approach facilitated the incorporation of
diverse data while maintaining a structured evaluation strategy for
age prediction.
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FIGURE 2

Cross-validation split. Non-EPOC X datasets (supplemental training datasets) were included in the training set for all folds. The EPOC X dataset (SBE

dataset) was split into 10-folds based on age. The 10-fold train-test split was repeated 10 iterations using di�erent random seeds.

3.2 Model development

An ensemble model was trained using three distinct algorithms:
[1] Support Vector Regression (SVR) with a radial basis kernel
(svmRadial), [2] Elastic net regression (glmnet), and [3] Gaussian
Process with Radial Basis Function Kernel (gaussprRadial). This
ensemble model aimed to harness the predictive capabilities of each
algorithm, ensuring a comprehensive and potentiallymore accurate
brain-age prediction. The model was trained to predict the subject’s
chronological age using the EEG-derived features extracted in the
preceding steps.

3.3 Bias correction

Following model training, residuals were computed as the
difference between the observed and predicted chronological age
for each subject in the training set. A linear model for bias
correction was then fitted using these residuals and the actual
chronological age, aiming to enhance the prediction accuracy by
mitigating any systematic bias in the initial predictions.

As noted in the brain-age prediction literature, brain age is
typically underestimated for older subjects and overestimated for
younger subjects (Cole et al., 2017; Liang et al., 2019; Smith et al.,
2019), and the estimated brain-age gap therefore tends to be
negatively correlated with chronological age. Several studies have
investigated the possible underlying reasons for this systematic
bias and found that it is likely due to regression toward the
mean (Liang et al., 2019; Smith et al., 2019; Niu et al., 2020,
2022).

Following the recommendation in the literature, we
implemented a general linear model to regress the estimated
brain-age gap on chronological age (Beheshti et al., 2019; Liang
et al., 2019; Smith et al., 2019; Niu et al., 2020). The linear model
for bias correction was fitted using a cross-validation approach
using both the training and testing EPOC X datasets to ensure
generalizability of the model to the test examples. Each data point
of the combined EPOC X data was assigned a binary “Group”
variable (training-−0 and testing-−1) based on its origin to
facilitate the segregation of training and test sets. Then this merged
dataset was two-fold split into training and validation sets while
maintaining the ratio of the original training and test examples.
During each iteration of the CV, the bias-correction adjustment
was modeled as Offset ∼ Age∗Group, and adjusted brain age
(Estimated brain age-Offset) and adjusted BAG (adjusted brain
age-chronological age) were computed for the validation set.

The estimated parameters were then used for bias correction
and the calculation of an adjusted BAG. When evaluating the
BAG as a potential biomarker for health outcomes, it is essential
to account for such systematic bias by either calculating the
adjusted BAG or controlling for chronological age. Otherwise,
the effect of the BAG can be confounded with chronological age.
It is also important to note that the bias-correction step takes
chronological age as an input to the general linear model, making
it circular for evaluating model prediction accuracy (Butler et al.,
2021). Thus, while bias-corrected brain-age gaps may be used for
individual brain-age estimation to avoid underestimating brain
ages for older subjects and overestimating brain ages for younger
subjects, conservative assessment of model accuracy should rely on
the pre-corrected model.
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FIGURE 3

Scatterplots of brain-age estimation outcomes (chronological ages vs. estimated brain ages) of iterations. All regression lines depict linear best fits.

(A) Uncorrected test-set estimation. (B) Bias-corrected test-set estimation. (C) Uncorrected brain-age gap (BAG). (D) Bias-corrected BAG.

3.4 Model evaluation

The test set, comprised exclusively of EPOC X data, was
employed to evaluate the model. Mean Absolute Error (MAE),
R-squared (R2), and the correlation coefficient, were computed
to assess the model’s predictive accuracy and goodness of fit.
Subsequently, bias correction derived from the training set was
applied to the predictions on the test set, and the three measures
were recalculated to evaluate the efficacy of the bias correction
in enhancing predictive accuracy. The entire 10-fold training
and testing procedure was repeated using 10 different seed
values, ensuring variability and robustness in the training and
evaluation processes.

4 Results

The model evaluation performance is reported using
correlation coefficient (r), R2, and mean absolute error (MAE). To

ensure generalizability and consistency of the results, the train-test
split and model training-testing were repeated 10 times using
different random seeds. Here, performance was computed based
on the average of 10 iterations.

4.1 Training-set performance

The correlation coefficient (r) between predicted and
chronological brain age based on the training set was
0.912 (±0.002 SD, range: 0.909–0.916), suggesting a strong
linear relationship. This was affirmed by a coefficient of
determination (R2) of 0.830 (±0.004 SD, range: 0.824–
0.837), indicating that 83.0% of the variance in the true
brain age was explained by our model’s predictions based
on the training data. The machine-learning model exhibited
a mean absolute error (MAE) of 5.209 years (±0.109 SD,
range: 5.051–5.346).
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FIGURE 4

Bar plot of raw and bias-corrected brain ages from Sessions 1 and 2 for Seed 1 which is representative of the results from all 10 seeds.

4.2 Test-set performance

When assessing the model’s performance on the test set without
bias correction, the correlation coefficient between the predicted
and chronological brain age was 0.582 (±0.002 SD, range: 0.579–
0.585), and the R2 value was 0.292 (±0.002 SD, range: 0.349–0.358).
Thus, 35.2% of the variance in the chronological brain age was
explained by the model’s predictions on the test data. TheMAE was
11.08 years (±0.043 SD, range: 10.99–11.14).

4.3 Bias-corrected test-set performance

After bias correction was applied to the test-set predictions,
there was a substantial improvement in the model’s performance
(see Figure 3 for results from Seed 1 which is representative of the
results from all 10 seeds). The correlation coefficient between the
bias-corrected predictions and chronological brain age increased
to 0.965 (±0.001 SD, range: 0.964–0.966). The bias-corrected R2

value was 0.927 (±0.001 SD, range: 0.925–0.929), indicating that

the model, after correction, was able to explain ∼92.7% of the
variance in the true brain age on the test data. The bias-corrected
MAE was reduced to 3.681 years (±0.031 SD, range: 3.629–
3.729).

4.4 Test-retest reliability

Eighty-four out of 91 subjects in our SBE dataset participated
in two sessions, 1 week apart. This provided a robust dataset
that allowed the assessment of test-retest reliability or consistency
in brain-age estimations at two close time points. To evaluate
this, the correlation coefficient and MAE between the brain-
age predictions from Session 1 and Session 2 were calculated.
This was achieved by utilizing the left-out test-set from a 10-
fold cross-validation procedure and replicating the computation
of correlation coefficients and MAEs across 10 different random
seeds to ensure the reliability and stability of our results. The
average correlation coefficient across these 10 iterations was 0.771
± 0.003 for raw estimations. When implementing bias-correction,
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the correlation coefficient was 0.943± 0.001, indicating strong test-
retest reliability of brain-age prediction. TheMAE, which measures
the average magnitude of differences between brain-age estimates
for Sessions 1 and 2, was calculated to evaluate the absolute
accuracy and consistency of the brain-age predictions across the
two sessions. The MAE between Session 1 and Session 2 was 3.839
(4.621 after bias correction). Overall, these findings underscore the
strong reliability and stability of our brain-age estimates across two
separate sessions that were near in time when using the EMOTIV
EPOC X recording system (Figure 4).

5 Discussion

The current version of our ML-based brain-age estimation
technique based on the low-cost EMOTIV EPOC X EEG recording
system yields accurate, reliable estimates of a person’s brain age
from only 12min of resting-state EEG. Aside from this report,
we are aware of only one other study utilizing EEG recordings
from a low-cost device for brain-age prediction. Banville et al.
(2023) used extended EEG recordings obtained during sleep and
meditation, in contrast to our recordings which were obtained
during the conscious resting-state. Nevertheless, both studies
achieved strong prediction performance suggesting the feasibility of
using low-cost EEG devices formonitoring general brain health and
aging. However, in contrast to Banville et al., our study achieved
high short-term test-retest reliability and stability, suggesting the
potential of our approach for reliably assessing changes in brain
health via repeated testing. However, the observed strong test-retest
reliability was primarily centered on 2-week time span which could
be considered short-term, and it was due to the constraints in the
study period and estimates. We acknowledge that it is critical to
evaluate the stability of the model over extended period of time,
and future research should be directed toward longitudinal studies
which would provide a deeper insight into the temporal stability
of our brain-age estimation model. In addition, future research is
needed to validate our findings using a larger and more diverse
sample. Dimension reduction techniques such as recursive feature
elimination and principal component analysis hold the potential to
further increase the accuracy of brain age prediction. Future studies
can explore additional EEG features to further improve the model
prediction performance.

Our approach to EEG brain-age estimation has several
promising applications. It can be used as a relatively inexpensive
screening tool to identify individuals whose brain-age gap suggests
the possibility of underlying age-related pathology that can be
followed up with specific diagnostic tests. Furthermore, because of
the relatively low cost of the EMOTIV EPOCX headset, EEG brain-
age estimation can be performed repeatedly to verify results and
detect changes over time. This means that it may become practical
to begin screening people in early middle age (or younger) rather
than waiting for late middle age, or older, when symptoms become
apparent; implementation of the model for large-scale assessment
will require the enactment of appropriate ethical and privacy
protections. This raises the possibility of large-scale detection
and treatment of the earliest phases of age-related neurological
disorders rather than waiting for the overt symptomatology
characteristic of advanced—and currently untreatable—pathology.

It may also be a useful tool for researchers, medical professionals,
and others who wish to test potential interventions for slowing or
reversing neurological aging. The current availability of inexpensive
EEG systems such as the EPOC X also makes brain-age estimation
possible at home or in the workplace, thereby raising the possibility
of crowd-sourced research into causes and potential treatments for
age-related neurocognitive decline and lifestyle interventions that
may preserve neurocognitive health.
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