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Introduction: The e�ciency and safety of complex high precision human-
machine systems such as in aerospace and robotic surgery are closely related to
the cognitive readiness, ability to manage workload, and situational awareness
of their operators. Accurate assessment of mental workload could help in
preventing operator error and allow for pertinent intervention by predicting
performance declines that can arise from either work overload or under
stimulation. Neuroergonomic approaches based on measures of human body
and brain activity collectively can provide sensitive and reliable assessment of
human mental workload in complex training and work environments.

Methods: In this study, we developed a new six-cognitive-domain task protocol,
coupling it with six biomedical monitoring modalities to concurrently capture
performance and cognitive workload correlates across a longitudinal multi-day
investigation. Utilizing two distinct modalities for each aspect of cardiac activity
(ECG and PPG), ocular activity (EOG and eye-tracking), and brain activity (EEG
and fNIRS), 23 participants engaged in four sessions over 4 weeks, performing
tasks associated with working memory, vigilance, risk assessment, shifting
attention, situation awareness, and inhibitory control.

Results: The results revealed varying levels of sensitivity to workload within
each modality. While certain measures exhibited consistency across tasks,
neuroimaging modalities, in particular, unveiled meaningful di�erences between
task conditions and cognitive domains.

Discussion: This is the first comprehensive comparison of these six brain-
body measures across multiple days and cognitive domains. The findings
underscore the potential of wearable brain and body sensing methods for
evaluating mental workload. Such comprehensive neuroergonomic assessment
can inform development of next generation neuroadaptive interfaces and
training approaches for more e�cient human-machine interaction and operator
skill acquisition.
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1 Introduction

Human performance on any type of goal or task is related to

the amount of cognitive workload that is required to be proficient

at completing it. Each person will have their own unique cognitive

profile, and be more mentally efficient at performing certain types

of tasks (Parasuraman and Jiang, 2012). The amount of effort,

as well as activation and therefore required energy expenditure

in task-related areas in the brain, changes due to both expertise

acquisition and the relative difficulty of the task. While it is possible

to track learning via behavioral performance measures, these only

provide a measure of the external output of a learner’s capabilities

and ignore the internal mechanisms that contribute to the results.

Therefore, in order to fully track the progress and skill of a learner

at any given objective, it is necessary to develop a comprehensive

database of the neural and physiological correlates of mental

workload, which provide objective and non-invasive measures of

the internal state of a learner.

Cognitive workload is a description of the collective external

multidimensional demands necessary for an individual to complete

a task in proportion with their internal skill level (Hancock and

Chignell, 1986; Paas et al., 2003). These external factors place

different levels of physical, mental, temporal, and frustration

demands on the individual, among others. In order to compensate

for these demands and successfully achieve the desired outcome

of task performance, a requisite level of skill must be acquired

through experience and learning. However, the same performance

can potentially be achieved by people of a variety of skill levels.

A lower-skilled individual can achieve similar success by applying

a high amount of effort whereas a higher-skilled individual may

achieve the same result with lower effort. Cognitive workload

reflects the amount of effort exerted due to task demands and is

amplified by task complexity, individual skill, and experience.

Because cognitive workload is distributed throughout the brain

and is an interaction of external and internal factors, there are

multiple methods used to measure it. The simplest is to measure

behavioral performance and grade it on level of success (John et al.,

2002). Although this directly correlates to the output of skill, it is

unable to accurately define internal states. The next method is by

using subjective surveys such as the NASA-TLX (Hart, 2006). This

asks individuals to self-assess their own levels of workload but is

inherently lacking due to difficulties inherent in individual’s ability

to objectively score themselves which may be further marred by

memory because it is always given post-task performance. A third

method is to use secondary-task performance, which inserts an

unrelated task to the primary goal to measure the reserve cognitive

capacity (Solovey et al., 2014). The concept is that any mental

resources not necessary to be proficient in the main goal will be

used by the secondary one, giving a measure of percentage total

mental capacity, but the obvious downside is that this is both

distracting and puts a lot of strain on the performer. The final

method is to use neural and physiological imaging to achieve an

objective measure of the inner levels of workload, without putting

undo strain on the performer, distracting them, or using unreliable

subjective measures.

The assessment of cognitive workload can be applied to any

“task” that requires a certain amount of training or practice

to master and can refer to any mental or physical profession

or hobby, such as flying a plane, performing surgery, operating

machinery, overseeing workplace interactions, doing accounting,

writing a story, playing an instrument, or more. Each of these

real-world tasks may require substantial investment of time, effort,

and money to achieve proficiency thereby making any process

which lowers the required investment or increases the ease of skill

acquisition valuable to both the individual and their workplace. It

is important to note that any realistic task as described above is

often a complex combination of smaller skills (Wickens et al., 2013).

These may involve memory, attention, perceptual motor skills, or

multitasking. And each of these domains of cognition may overlap

in functional regions of interest in the brain, making it difficult to

distinguish which aspects of a complex task are giving a learner

trouble. This underlies our goal of finding objective measures of

workload that can contribute to accurate tracking of expertise

development and be used to optimize personal training. Using a

neuroergonomic approach, we seek to uncover methods that can be

applied in the real world using currently available technology (Ayaz

and Dehais, 2019).

Here we introduce an experimental protocol using a six-

task battery focusing on foundational cognitive domains in order

to develop a multi-domain multi-modal workload assessment

tool. We utilized simple domain-specific cognitive tasks in

order to profile work-load contributions associated with each of

the following domains: Working Memory (Owen et al., 2005;

McKendrick et al., 2014), Vigilance (attention) (Shalev et al., 2011),

Risk Assessment (Aklin et al., 2005; Crowley et al., 2006), Shifting

Attention (multitasking) (Hagen et al., 2014), Situation Awareness

(Endsley, 1988; Wickens, 2002), and Inhibitory Control (Logan

et al., 2014; Rodrigo et al., 2014). Together these six domains cover

a broad range of basic cognitive components necessary in realistic

general task performance.

Within each task, it is also important to assess

neurophysiological correlates of multiple levels of workload,

representing high and low workload conditions, using hard and

easy levels of difficulty respectively. Depending on the current

level of skill of a learner, both versions may be easy for someone

of high skill, hard for someone of low skill, or one each for a

learner of average skill. Over the course of four sessions spanning

1 month, during which each of the six tasks will be presented

during three total sessions, we expect participants to increase their

skill level, resulting in improved performance and a change in

their brain and body workload measures. We also expect to find

potentially differential relationships, or interactions, between the

task difficulty and session. Based on these measures, we will be

able to determine the ideal difficulty of each task to enhance the

speed and ease of learning at each stage of expertise within the

constraints of our task battery.

During each experimental session, participants were outfitted

with a suite of six brain and body sensors to monitor

correlates of cognitive workload (Parasuraman and Wilson,

2008; Ayaz et al., 2010b, 2012, 2013; Mehta and Parasuraman,

2013). For neuroimaging, these included functional near-infrared

spectroscopy (fNIRS) and electroencephalogram (EEG). Two

modalities were used to monitor heart activity, including

electrocardiogram (ECG) and photoplethysmography (PPG), and
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two were used to monitor eye movement activity, electrooculogram

(EOG) and eye-tracking. The combination of neuroimaging

and peripheral measures helps provide a composite perspective

constructed from the central and peripheral nervous systems.

These two systems operate in an interrelated fashion that has been

overlooked in typical studies focusing on one or the other. These

central and peripheral nervous system measures are described in

more detail in the methods section below, but each adds a unique

contribution to neuro and physiological measurements of cognitive

workload correlates.

A single neuroimaging measure can provide useful information

on the mental state and inner mechanics of the brain at work, and

as different modalities have different advantages and disadvantages,

multiple imaging modalities combined is expected to deliver

even more detailed information by utilizing the best aspects of

each. Therefore, understanding the complementary and shared

information in biosignals such as fNIRS, EEG, ECG and other

physiological modalities is a long-standing interest (Fazli et al.,

2012; Durantin et al., 2014; Putze et al., 2014; Buccino et al., 2016;

von Lühmann et al., 2016; Ahn and Jun, 2017; Banville et al., 2017;

Chiarelli et al., 2017). In this experiment, we created a new six

cognitive domain task protocol and incorporated six biomedical

monitoring modalities to simultaneously record performance and

correlates of cognitive workload over a longitudinal multi-day

study. Our goal was to elucidate the changes in brain and body

measurements between high and low workload conditions and

over several days/sessions of training as well as directly compare

the explained variance of these changes across modalities. This

comprehensive workload assessment utilizing both neuroimaging

and physiological monitoring can inform the development of

next generation neuroadaptive technologies and new training

approaches for more efficient skill acquisition.

2 Methods

2.1 Participants

Twenty-three participants between the ages of 18–48 (16

females, mean age 23 years) volunteered for the study. All subjects

confirmed via survey given in person that they met the eligibility

requirements of being right-handed with vision correctable to

20/20, did not have a history of brain injury or psychological

disorder, were not on medication affecting brain activity, and were

United States citizens or permanent residents. Prior to the study

all participants signed consent forms approved by the Institutional

Review Board of Drexel University.

2.2 Protocol

The experiment was performed over four sessions, once a week

for 4 weeks, each lasting between 60 and 90min. Participants were

seated upright in front of a computer with a standard mouse and

keyboard one meter away from the monitor. They were fitted with

an fNIR Devices Model 1200 (fNIR Devices, LLC, Potomac, MD)

headband over the forehead, a Cognionics HD-72 dry electrode

cap (Cognionics, Inc, San Diego, CA), and a Cognionics extension

providing sticky electrodes for the ECG (3 electrodes), EOG (4

electrodes), and PPG ear clip (described in more detail in Section

2.4). Eye tracking was calibrated using the Smart Eye Aurora

system (Smart Eye, AB, Gothenburg, Sweden) recording gaze

location and pupil diameter. Time synchronization between each

of the six modalities (over three separate devices) was performed

programmatically with a custom Python script that sent markers to

each data collection system simultaneously via local area network.

Task block markers at the start and end of each block, as well as at

each significant stimuli, were sent simultaneously to all recording

software. The six task protocol was implemented using the Python

based PsychoPy application (Peirce et al., 2019). Task performance

was preceded by instructions and practice trials for each difficulty

condition where subjects could familiarize themselves with the

procedure and ask clarifying questions. Each task was designed to

take 5–8min to complete. During each of the first three sessions,

participants performed four of the six tasks (selected in a counter-

balanced order) and performed all six tasks in the final session, for

a total of three sessions per task (Figure 1A).

2.3 Task battery

2.3.1 Working Memory
The working memory task was a modification of the spatial

working memory task (Owen et al., 2005; McKendrick et al., 2014).

A blank “radar” was displayed for 250ms followed by 1 s stimuli of

either five or seven targets, representing easy and hard conditions,

which were to be memorized. Three seconds of a static noise image

were displayed to prevent ocular “burn-in” memorization, followed

by a 15 second response window where participants clicked as near

as possible to the target locations. This was followed by 750ms

of break. Four trials of each difficulty were presented per block,

and three blocks of each condition were presented per session

(Figure 1B).

2.3.2 Vigilance
Vigilance was evaluated using an adaptation of the conjunctive

continuous performance task (Shalev et al., 2011). A series of shapes

with varying fill patterns were displayed over 5min, with targets

that required a response of clicking a key, and non-targets of

differing shapes and fill patterns. Each stimulus was presented for

100ms with a 750± 250ms variable interstimulus interval. Targets

requiring a response were 1/16 of the total 320 stimuli. The ratio of

targets to nontargets was balanced over eight evenly split segments.

The first four were taken as low workload and the latter four were

taken as high workload conditions (Figure 1C).

2.3.3 Risk Assessment
Decision-making was evaluated using a task based on the

Balloon Analog Risk Task (BART) (Aklin et al., 2005; Crowley et al.,

2006). The goal of this task was to collect as many resources as

possible without “crashing” a virtual search vehicle. Six total targets

were displayed to be clicked in any order with the goal of collecting

as many “points” as possible by the end. In the easy condition, each

block provided one additional point, and there was a low chance of
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FIGURE 1

(A) An example of the pseudo-random and balanced task ordering over 4 days, with four tasks during the first three and all six tasks on the final day.
Each task took 5–8 minutes to complete, with short breaks between. Screenshots and summaries from each task are displayed for (B) Working
Memory, (C) Vigilance, (D) Risk Assessment, (E) Shifting Attention (trail making task), (F) Situation Awareness, and (G) Inhibitory Control.

crashing and losing all of that round’s points. In the hard condition,

each block doubled in value (1, 2, 4, 8, 16), but there was a higher

chance of crashing. Participants were given 5 s to make a decision,

with 1.5 s feedback after a click (current points or if crashed), and

5 s between trials. Three trials of each condition were conducted per

block, with three blocks of each condition per session (Figure 1D).

2.3.4 Shifting Attention
A digitized trail making test (TMT) with three blocks each of

two difficulty conditions (Hagen et al., 2014; Müller et al., 2014).

Participants used the mouse to click randomly placed circles in

numeric (1-2-3-4) order for the easy condition and alternating

alphanumeric (1-A-2-B) in the hard condition. The hard condition

represented shifting attention between the two mental lists of

numbers and letters. Each block was 30 s maximum, and there were

three blocks of each difficulty per session (Figure 1E).

2.3.5 Situation Awareness
Subjects viewed 30 s prerecorded videos of a top-down aircraft

flight simulation of either one plane (easy condition) or three planes

(hard condition) flying various paths (Endsley, 1988; Wickens,

2002). Each plane had a corresponding dashboard visible with

three gauges representing heading, speed, and fuel level. The goal

of this task was to determine which, if any, of these dashboard

levels on the side of the screen did not accurately match the actual

condition of the planes in a series of questions presented after each

recording. Each difficulty was presented for two blocks each per

session (Figure 1F).

2.3.6 Inhibitory Control
A modified go-no go task with the “go” (easy) condition

called “ignore” and the “stop” (hard) condition called “inhibit”

(Logan et al., 2014; Rodrigo et al., 2014). In each block a total of

20 “go” stimuli were presented for 500ms with 1,000 ± 200ms

interstimulus interval, and participants were told to click a key in

response. In half of these trials, after 150ms the go target changed to

a flag in the easy condition, which participants were told to ignore,

or a skull and cross in the hard condition, which participants had

to inhibit their response. Participants were instructed specifically to

start a response as soon as the go signal was visible, and to not “wait
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and see”. Three blocks of each difficulty were presented each session

(Figure 1G).

2.4 Sensors and signal processing

One fNIRS headband and one wireless EEG system with an

extension box allowing for simultaneous ECG, PPG, and EOG

were placed on each participant at the start of each session as

can be seen in Figure 2. The eye-tracking system was installed

below the experimental computer monitor and calibrated prior to

each experiment.

2.4.1 Functional near-infrared spectroscopy
Functional near-infrared spectroscopy uses light in the

wavelengths of the near-infrared range (in the optical window

of human tissue from 700 nm to 900 nm) to measure changes in

the local concentration levels of oxygenated- and deoxygenated-

hemoglobin in the cortical tissue (Ayaz et al., 2022). This

hemodynamic response correlates with the specific neuronal

activity of the measured brain areas via neurovascular coupling

and provides brain activity change information on the relative

changes of oxygenated blood concentration (Yücel et al., 2021; Ayaz

et al., 2022). Furthermore, fNIRS systems can be built miniaturized

and are suitable for out-of-lab and even ambulatory measurements

(Piper et al., 2014; McKendrick et al., 2016; Quaresima and Ferrari,

2016; Balardin et al., 2017; Curtin and Ayaz, 2018; Pinti et al., 2018;

von Lühmann et al., 2021). In our experiment, the fNIR Devices

Model 1200 was used to record prefrontal cortical hemodynamics

(Ayaz et al., 2013). We recorded from 16 optode locations at a

rate of 2Hz. Raw light intensity taken at 730 and 850 nm was

filtered with a low pass FIR filter (Hamming window, order 20

and cutoff frequency 0.1Hz) and a sliding window motion artifact

rejection (SMAR) algorithm (Ayaz et al., 2010a) inMatlab, and then

processed using the modified Beer-Lambert Law into oxygenated

and deoxygenated hemoglobin values. The oxygenated hemoglobin

(HbO), deoxygenated hemoglobin (HbR), oxygenation (Oxy =

HbO – HbR), and total blood (HbT = HbO + HbR) values were

block processed for the mean, slope, peak value, time-to-peak, and

sum of changes for each task and condition.

2.4.2 Electroencephalogram
EEG measures highly temporally localized electrical activity

of neuron groups in the cortex via electrodes placed over the

scalp. Its strength is in determining the precise timing of brain

reactions to stimuli and thoughts, as well as provide higher order

measures of brain waves in the alpha, beta, delta, and theta

frequency bands of activity, as well as combinations of these

(Gruzelier, 2014). EEG systems have been undergoing decades of

development, and currently many types of systems such as active

vs. passive and dry vs. wet electrodes as well as battery-operated

and high density shielded stationary systems exist (Zander et al.,

2017; Marini et al., 2019). There have been many developments

on EEG methodology toward enabling mobile brain imaging in

more naturalistic settings (De Vos and Debener, 2014; Gramann

et al., 2014; Wascher et al., 2021). In our experiment, the

Cognionics HD-72 dry electrode EEG was used to record full

head neuronal measures. Data was collected from 32 electrodes

at 500Hz after checking for impedance and processed using

a Butterworth order 8 notch filter at 60Hz, followed by a

Butterworth order 7 bandpass filter between 1 and 59Hz. EEGLAB

functions for independent component analysis (ICA) were used

to remove eye movement and muscle motion artifacts, followed

by Automatic Subspace Reconstruction (ASR) to clean noise and

estimate missing segments (Delorme et al., 2011; Mullen et al.,

2013). Continuous band power calculations for each channel were

done using Welch’s power spectral density of the EEG signal with

a moving window of 2 s. Power spectra were divided into delta

(1–4Hz), theta (4–8Hz), alpha (8–13Hz), beta (13–30Hz) and

gamma (>30Hz) bands. In addition, power band combinations

including the engagement ratio beta/(alpha+theta), theta/alpha,

theta/beta, and (theta+alpha)/(beta+alpha) were analyzed for

workload assessment (Cao et al., 2014; Ismail and Karwowski,

2020).

2.4.3 Electrocardiogram
Heart activity is affected by mental effort and environmental

stressors (Shaffer and Ginsberg, 2017). This includes not just heart

rate and heart rate variability, but the shape of the signal and

other temporal measures. In this experiment, heart activity was

recorded from three electrodes via an extension to the Cognionics

headset. The Matlab extension HEPLAB (Perakakis, 2021) with

default settings was used to process ECG data, and was manually

corrected afterwards. Heart rate, heart rate variability (standard

deviation and root mean squared), low frequency power (0.04–

0.15Hz, absolute and relative), high frequency power (0.15–0.4Hz,

absolute and relative), and LF/HF ratio measures of workload were

processed using Matlab (Roscoe, 1992).

2.4.4 Photoplethysmography
Photoplethysmography (PPG) is a versatile modality for

measuring blood flow and can be used to supplement ECG and add

additional factors to heart monitoring. Here, systemic blood flow

was recorded from an optical ear clip extension to the Cognionics

headset. PPG data was processed in Matlab with a Butterworth

bandpass filter (0.1–10Hz, order 7) and the find peaks function

with custom correction for ignoring false peaks, plus manual

correction, was used to extract data (Shaffer and Ginsberg, 2017).

The same measures as ECG were extracted (heart rate, HRV, LF,

HF, LF/HF ratio) in addition to average width and average peak

of pulses.

2.4.5 Electrooculogram
Blinks, saccades, and eye movements correlate with mental

workload (Marquart et al., 2015). Using a distinct EOG system

separate from EEG electrodes allows for cleaner signal that is

not contaminated by other information. In the experiment, eye

movements were recorded from four electrodes via an extension

to the Cognionics headset, two placed above and below the left eye,

and two played on the outside of both eyes, to separately record

vertical and horizontal movement. The raw data was processed
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FIGURE 2

Experimental setup detailing the locations of each modality. Left: EEG, fNIRS, PPG, EOG placement on participant’s head. Right: ECG placement on
participants chest.

using an implementation of Behrens et al.’s (2010) improved

detection of saccades algorithm. This provided workload correlates

of saccade velocity, duration, and amplitude.

2.4.6 Eye-tracking
Saccade velocity, fixations, pupil diameter, and their variations

are known correlates of cognitive workload (Ahlstrom and

Friedman-Berg, 2006). Eye tracking can also provide a more

accurate assessment of precise gaze location, whereas EOG may

be able to measure smaller, subtler movements of the eye. In this

experiment, the Smart Eye Aurora recorded eye gaze and pupil

diameter at 60Hz and was processed using OGAMA (Open Gaze

and Mouse Analyzer) software (Voßkühler et al., 2008). Pupil

diameter, saccade velocity, saccade length, number of fixations,

average fixation duration, fixation rate, and the fixation to saccade

ratio were calculated as correlates of cognitive workload (Ahlstrom

and Friedman-Berg, 2006).

2.5 Statistical processing

Linear mixed models were applied to determine the significant

effects of task session (1, 2, and 3), condition (easy and hard), and

their interaction on each task-specific performance measure and

a comprehensive range of block processed correlates of cognitive

workload for each modality (fNIRS, EEG, ECG, PPG, EOG,

and eye-tracking). These models included subject as a random

effect to account for inter-subject differences, particularly within

the neuroimaging modalities. The diagonal covariance pattern

and restricted maximum likelihood (REML) methods were used.

Significance was assessed by F-values and corresponding p-values

for each measurement. The Benjamini-Hochberg false discovery

rate (FDR) correction was applied to fNIRS and EEG results across

optodes and electrodes respectively for each processed data type

with α = 0.05. Effect sizes were calculated using the partial eta-

squared values.

Principal components analysis (PCA) was used to determine

the percentage of explained variance of all of the data combined

across sessions and conditions. For each task, all principal

components with eigenvalues above 1 were isolated, and the

coefficients and percentage of the total for each modality was

calculated. The procedure was run 30 times with different starting

seeds to achieve a more accurate estimate of the true variance,

as well as the number of components. PCA provides an equal

comparisonmethod betweenmodalities that does not rely on linear

model parameters.

3 Results

Due to the scale of the analyses performed in this study,

only the most significant and relevant results will be presented

in the main body of this publication for each task and modality.

Entire list of results from all modalities, features, task conditions

with significance and effect sizes are listed in Supplementary Table.

The standardized methodology for selecting data for the following

tables is: Maximum of five points per modality (performance,

fNIRS, EEG, ECG, PPG, EOG, Eye-tracking); EEG and fNIRS must

be significant after FDR correction; begin with the highest effect

size (partial eta-squared); have at least one row for each significant

factor, if available (session, condition, interaction). The remainder

of the full statistics can be found in the Supplementary material.

For the Figures, fNIRS and EEG results are presented for each

main factor and interaction, and performance and physiological

measures are presented in combination. For LMM and PCA

analyses, we used 320 fNIRS measures (160 in PCA), 288 EEG

measures (224 in PCA), 8 ECGmeasures, 10 PPGmeasures, 3 EOG

measures, and 8 eye-tracking measures (number of performance
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measures differed between task from 3 to 6 and were not included

in PCA).

3.1 Working Memory

For the fixed factor of session, significant measures included:

1 performance, 54 fNIRS (29 FDR-corrected), 223 EEG (214

FDR-corrected), 5 ECG, 4 PPG, 3 EOG, and 1 eye-tracking.

For the fixed factor of condition, significant measures included:

4 performance, 41 fNIRS (22 FDR-corrected), and 10 EEG (0

FDR-corrected). For session and condition interaction, significant

measures included: 4 fNIRS (0 FDR-corrected). PCA analysis

revealed an average of 16.7 PCs with eigenvalues greater than

1, explaining 72.4% of the total variance. Of this, the following

percentage of variance explained by each modality is: 48.0%

fNIRS, 47.5% EEG, 1.6% ECG, 2.1% PPG, 0.5% EOG, and

0.3% eye-tracking. Selected results are presented in Figure 3,

Table 1.

3.2 Vigilance

For the fixed factor of session, significant measures included:

1 performance, 72 fNIRS (53 FDR-corrected), 246 EEG (237

FDR-corrected), 6 ECG, 7 PPG, 2 EOG, and 4 eye-tracking.

For the fixed factor of condition, significant measures included:

4 performance, 38 fNIRS (2 FDR-corrected), 44 EEG (1 FDR-

corrected), 1 ECG, 2 PPG, and 7 eye-tracking. For session

and condition interaction, significant measures included: 16

fNIRS (3 FDR-corrected) and 14 EEG (0 FDR-corrected). PCA

analysis revealed an average of 18.6 PCs with eigenvalues >1,

explaining 71.8% of the total variance. Of this, the following

percentage of variance explained by each modality is: 54.4%

fNIRS, 38.8% EEG, 1.7% ECG, 2.0% PPG, 0.7% EOG, and

2.3% eye-tracking. Selected results are presented in Figure 4,

Table 2.

3.3 Risk Assessment

For the main factor of session, significant measures included:

1 performance, 96 fNIRS (58 FDR-corrected), 229 EEG (225 FDR-

corrected), 3 ECG, 9 PPG, 2 EOG, and 4 eye-tracking. For the fixed

factor of condition, significant measures included: 5 performance,

36 fNIRS (31 FDR-corrected), and 1 EEG (0 FDR-corrected). For

session and condition interaction, significantmeasures included: 11

fNIRS (0 FDR-corrected). PCA analysis revealed an average of 16.4

PCs with eigenvalues greater than 1, explaining 71.2% of the total

variance. Of this, the following percentage of variance explained by

each modality is: 47.5% fNIRS, 44.8% EEG, 2.1% ECG, 2.6% PPG,

0.7% EOG, and 2.4% eye-tracking. Selected results are presented in

Figure 5, Table 3.

3.4 Shifting Attention

For the fixed factor of session, significant measures included:

5 performance, 74 fNIRS (52 FDR-corrected), 218 EEG (208 FDR-

corrected), 3 ECG, 3 PPG, 2 EOG, and 2 eye-tracking. For the fixed

factor of condition, significant measures included: 5 performance,

47 fNIRS (32 FDR-corrected), 22 EEG (0 FDR-corrected), and 1

ECG. For session and condition interaction, significant measures

included: 4 performance, 11 fNIRS (0 FDR-corrected), 6 EEG

(0 FDR-corrected), and 1 eye-tracking. PCA analysis revealed an

average of 17.7 PCs with eigenvalues greater than 1, explaining

65.9% of the total variance. Of this, the following percentage of

variance explained by each modality is: 48.4% fNIRS, 46.4% EEG,

1.9% ECG, 2.3% PPG, 0.7% EOG, and 0.2% eye-tracking. Selected

results are presented in Figure 6, Table 4.

3.5 Situation Awareness

For the fixed factor of session, significant measures included:

1 performance, 66 fNIRS (25 FDR-corrected), 129 EEG (95 FDR-

corrected), 3 ECG, 5 PPG, 2 EOG, and 5 eye-tracking. For the fixed

factor of condition, significant measures included: 3 performance,

21 fNIRS (3 FDR-corrected), and 15 EEG (0 FDR-corrected). For

session and condition interaction, significant measures included:

1 performance, 4 fNIRS (0 FDR-corrected), 3 EEG (0 FDR-

corrected), and 1 PPG. PCA analysis revealed an average of 18.7

PCs with eigenvalues >1, explaining 74.0% of the total variance.

Of this, the following percentage of variance explained by each

modality is: 54.2% fNIRS, 40.7% EEG, 1.8% ECG, 2.6% PPG, 0.6%

EOG, and 0.2% eye-tracking. Selected results are presented in

Figure 7, Table 5.

3.6 Inhibitory Control

For the fixed factor of session, significant measures included:

3 performance, 81 fNIRS (58 FDR-corrected), 199 EEG (189

FDR-corrected), 2 ECG, 2 PPG, 3 EOG, and 2 eye-tracking. For

the fixed factor of condition, significant measures included: 3

performance, 21 fNIRS (0 FDR-corrected), 40 EEG (19 FDR-

corrected), and 1 EOG. For session and condition interaction,

significant measures included: 10 fNIRS (0 FDR-corrected) and 6

EEG (0 FDR-corrected). PCA analysis revealed an average of 15.8

PCs with eigenvalues >1, explaining 74.0% of the total variance.

Of this, the following percentage of variance explained by each

modality is: 51.8% fNIRS, 41.9% EEG, 1.4% ECG, 2.2% PPG, 0.8%

EOG, and 1.9% eye-tracking. Selected results are presented in

Figure 8, Table 6.

4 Discussion

The goal of this study was to measure the neural, physiological,

and behavioral correlates of mental workload and learning across

a mid-length (one month) longitudinal experiment in six distinct

cognitive domains. In order to accomplish this, six different

domains (Working Memory, Vigilance, Risk Assessment, Shifting
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FIGURE 3

Selected results for Working Memory task. (A–C) LMM F-values for fNIRS across prefrontal cortex for the fixed factors of Session, Condition, and
Interaction. (D–F) LMM F-values for EEG across whole brain for the fixed factors of Session, Condition, and Interaction. (G) Performance measure
across session and condition. (H) ECG measure. (I) PPG measure. (J) EOG measure. (K) Eye-tracking measure. (L) PCA percentage of explained
variance. *Significant before FDR correction. †Not significant.

Attention, Situational Awareness, and Inhibitory Control) were

selected to be evaluated across four categories (Behavioral, Neural,

Cardiac, Ocular), using six biometric approaches (EEG, fNIRS,

ECG, PPG, EOG, eye-tracking). These composite measures were

selected in part to identify and triage individual measures’

suitability and compatibility for measurement of workload across
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TABLE 1 Selected results of LMM processing for performance and each modality for Working Memory.

Modality Measure Factor F-ratio p-value Partial η2

Performance

Reaction time Session 39.59 2/380.4 0.000001 0.172

Reaction time Condition 7.81 1/380 0.005468 0.020

Accuracy Condition 125.63 1/374.9 0.000001 0.251

fNIRS

HbO 02 peak Session 5.54 2/381.2 0.004245 0.028

HbO 16 peak Session 5.73 2/378.1 0.003529 0.029

HbT 02 slope Session 12.38 2/368.4 0.000006 0.063

HbT 11 time-to-peak Condition 12.02 1/379.7 0.000588 0.031

HbT 13 time-to-peak Condition 25.41 1/380.1 0.000001 0.063

EEG

Theta CPP3h Session 6.30 2/34.6 0.004635 0.267

Alpha PO1 Session 47.70 2/203.8 0.000001 0.319

Engagement CPPz Session 52.16 2/138.3 0.000001 0.430

Theta/Alpha FFC5h Session 20.49 2/206.1 0.000001 0.166

Theta+ Alpha/Beta+ Alpha FCC6h Session 20.26 2/209.3 0.000001 0.162

ECG

Heartrate Session 14.28 2/324 0.000001 0.081

HRV (rms) Session 15.29 2/321.7 0.000001 0.087

Low frequency (abs) Session 10.25 2/322.8 0.000048 0.060

PPG

Low frequency (rel) Session 15.14 2/4 0.013614 0.883

High frequency (rel) Session 15.14 2/4 0.013614 0.883

Low/high ratio Session 8.97 2/325.9 0.000161 0.052

EOG

Peak saccade velocity Session 7.61 2/4 0.043346 0.792

Saccade duration Session 4.36 2/326.9 0.013575 0.026

Saccade amplitude Session 3.57 2/331.1 0.029288 0.021

Eye-tracking

Pupil diameter Session 12.83 2/4 0.018185 0.865

fNIRS and EEG have been FDR-corrected. A lack of results for a factor (i.e., Condition, Interaction) indicates no significant results.

and within different domains as well as the respective overlap

between modalities.

Neurophysiological measurements in operational settings can

be used to better understand and characterize the individual’s

experience, opening opportunities to enhance the overall approach.

The aviation industry has particularly been at the forefront of

investigating the neurophysiological measurements consistent with

the neuroergonomic approach (Borghini et al., 2017; Callan and

Dehais, 2019; van Weelden et al., 2022). In this study, we utilized

real-world relevant adaptations of aviation related tasks for the

cognitive domains.

Overall, we found that neural, ocular, and cardiac physiological

measures showed consistent general sensitivity to participant

experience and workload across tasks. The PCA analyses showed

that over 90% of significant variation across all measures (corrected

between subjects but not sessions or condition) were found in the

fNIRS and EEG modalities. fNIRS measures, despite being fewer in

number than EEG, accounted for a higher proportion of variability

in every task. Looking at the results in Tables 1–6, it can be observed

that although the F-values for EEG measures in the main factor of

session were often higher than the corresponding fNIRS results,

fNIRS provided significant information about the difference in

brain activity relative to hard and easy task conditions, as well as

some interactions. This outcome suggests that fNIRS and EEG in

combination can provide a stronger picture of workload demands

and the effects of task experience when used together.

This work was not the first time it was observed that

fNIRS and EEG could provide useful measures of workload
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FIGURE 4

Selected results for Vigilance task. (A–C) LMM F-values for fNIRS across prefrontal cortex for the fixed factors of Session, Condition, and Interaction.
(D–F) LMM F-values for EEG across whole brain for the fixed factors of Session, Condition, and Interaction. (G) Performance measure across session
and condition. (H) ECG measure. (I) PPG measure. (J) EOG measure. (K) Eye-tracking measure. (L) PCA percentage of explained variance. *Significant
before FDR correction.

performance. In a series of multimodal studies, we tested

that and incorporated multiple measures to potentially improve

accuracy/performance of brain computer interfaces (Liu et al.,

2013, 2015, 2017a,b; Sun et al., 2020). During an N-back working

memory task with fNIRS, EEG, and cardiovascular measures,

linear discriminant analysis was used to classify workload for
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TABLE 2 Selected results of LMM processing for performance and each modality for Vigilance.

Modality Measure Factor F-ratio p-value Partial η2

Performance

Reaction time Session 12.45 2/524 0.000005 0.045

Reaction time Condition 22.51 1/524 0.000003 0.041

Accuracy Condition 6.39 1/524 0.011789 0.012

True positive Condition 11.97 1/524 0.000586 0.022

fNIRS

HbO 01 peak Session 19.42 2/524 0.000001 0.069

HbO 15 peak Session 18.07 2/523 0.000001 0.065

HbO 12 mean Condition 11.25 1/523 0.000854 0.021

HbT 10 peak Session∗Condition 4.94 2/498.9 0.007503 0.019

HbT 12 peak Session∗Condition 4.87 2/515 0.008064 0.019

EEG

Theta CPP3h Session 33.76 1/27 0.000004 0.556

Alpha CPPz Session 18.15 2/208.4 0.000001 0.148

Engagement FCC5h Session 45.09 2/321.8 0.000001 0.219

Theta+ Alpha/Beta+ Alpha CPP3h Session 54.29 1/26.9 0.000001 0.669

Delta FCC6h Condition 10.24 1/309.1 0.001515 0.032

ECG

Heartrate Session 6.54 2/448.1 0.001583 0.028

Low frequency (rel) Session 10.13 2/4 0.027182 0.835

High frequency (rel) Session 10.13 2/4 0.027182 0.835

Low/High ratio Session 9.12 2/450.3 0.000132 0.039

HRV (rms) Condition 6.28 1/444 0.012573 0.014

PPG

Heartrate Session 7.20 2/439.1 0.000842 0.032

Mean width Session 4.09 2/438.9 0.017382 0.018

HRV (rms) Session 5.82 2/439.8 0.003215 0.026

Heartrate Condition 4.43 1/436 0.035813 0.010

Mean width Condition 7.32 1/436 0.007087 0.017

EOG

Peak saccade velocity Session 15.46 2/433.5 0.000001 0.067

Saccade amplitude Session 16.88 2/432.6 0.000001 0.072

Eye-tracking

Pupil diameter Session 13.89 2/4 0.015843 0.874

Saccade velocity Session 3.70 2/264.3 0.025965 0.027

Fixation count Session 4.96 2/256.5 0.007693 0.037

Pupil diameter Condition 15.35 1/4 0.017287 0.793

Mean fixation duration Condition 29.82 1/248.9 0.000001 0.107

fNIRS and EEG have been FDR-corrected. A lack of results for a factor (i.e., Condition, Interaction) indicates no significant results.

each combination of fNIRS, EEG, and physiological signals

(Liu et al., 2017b). While all three modalities showed the

ability to classify workload levels, the fNIRS+EEG combination

provided the best results, but the addition of heart rate and

respiratory measures did not significantly improve classification in

that study.

In this study, a similar marginal role was found for

non-neural physiological measures. When examining the
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FIGURE 5

Selected results for Risk Assessment task. (A–C) LMM F-values for fNIRS across prefrontal cortex for the fixed factors of Session, Condition, and
Interaction. (D–F) LMM F-values for EEG across whole brain for the fixed factors of Session, Condition, and Interaction. (G) Performance measure
across session and condition. (H) ECG measure. (I) PPG measure. (J) EOG measure. (K) Eye-tracking measure. (L) PCA percentage of explained
variance. †Not significant.

domains (Cardiac and Ocular), ∼7% of remaining significant

explained variance was accounted for by ECG and PPG

measures of heart activity while Ocular measures of EOG

and eye-tracking accounted for the remainder (∼3%). For

our chosen tasks and workload correlates, this suggests that

heart activity is a better measure of monitoring expertise
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TABLE 3 Selected results of LMM processing for performance and each modality for Risk Assessment.

Modality Measure Factor F-ratio p-value Partial η2

Performance

Reaction time Session 17.57 2/380.5 0.000001 0.085

Reaction time Condition 10.31 1/379.6 0.001437 0.026

Successful clicks Condition 332.33 1/380.3 0.000001 0.466

fNIRS

HbO 08 mean Session 16.16 2/379.5 0.000001 0.078

Oxy 08 mean Session 12.84 2/379.4 0.000004 0.063

HbT 01 peak Session 13.94 2/381.1 0.000001 0.068

HbT 03 time-to-peak Session 6.36 2/382.1 0.001917 0.032

HbT 03 time-to-peak Condition 17.10 1/379.8 0.000044 0.043

EEG

Theta CPPz Session 16.47 2/144.2 0.000001 0.186

Alpha PO3 Session 18.40 2/212.3 0.000001 0.148

Engagement FCC3 Session 32.21 2/197.4 0.000001 0.246

Theta/Alpha CPPz Session 13.62 2/141.8 0.000004 0.161

Theta+ Alpha/Beta+ Alpha PO1 Session 23.57 2/227.9 0.000001 0.171

ECG

Heartrate Session 4.50 2/316.7 0.011857 0.028

Low frequency (abs) Session 9.29 2/315.7 0.00012 0.056

High frequency (abs) Session 7.47 2/4 0.044626 0.789

PPG

Mean peak Session 17.72 2/317.2 0.000001 0.101

Low frequency (rel) Session 8.55 2/4 0.035938 0.810

High frequency (rel) Session 8.55 2/4 0.035938 0.810

EOG

Peak saccade velocity Session 9.25 2/4 0.031605 0.822

Saccade amplitude Session 3.86 2/315.2 0.022135 0.024

Eye-tracking

Pupil diameter Session 37.10 2/4 0.002617 0.949

Mean fixation duration Session 6.48 2/200.6 0.001874 0.061

fNIRS and EEG have been FDR-corrected. A lack of results for a factor (i.e. Condition, Interaction) indicates no significant results.

acquisition over training than Ocular measures. While

this proves the strength of multimodal imaging, it does

not dismiss the concept of incorporating measures of

peripheral-physiological measures during real-time workload

monitoring. While neural measures may be more sensitive

to changes in task performance and conditions, peripheral

measures are usually much more easily acquired and

often at minimal cost. In addition, peripheral measures

may often be used to contextualize and improve the

sensitivity of neural measures and this topic is the subject of

substantial research.

4.1 Behavioral measures

Across all tasks, we noted significant changes across task session

and condition. In general, task performance improved across

sessions and was decreased during harder conditions, as expected.

In particular, the reaction time was the performance measure most

likely to improve across sessions and across tasks. As the specific

focus of this paper was on the contributions of neuro/physiological

measures, we devote the rest of the discussion section to the

biomedical modalities. A more detailed discussion of behavioral

performance can be viewed in Supplementary material.
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FIGURE 6

Selected results for Shifting Attention task. (A–C) LMM F-values for fNIRS across prefrontal cortex for the fixed factors of Session, Condition, and
Interaction. (D–F) LMM F-values for EEG across whole brain for the fixed factors of Session, Condition, and Interaction. (G) Performance measure
across session and condition. (H) ECG measure. (I) PPG measure. (J) EOG measure. (K) Eye-tracking measure. (L) PCA percentage of explained
variance. *Significant before FDR correction.

Frontiers inNeuroergonomics 14 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1345507
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Mark et al. 10.3389/fnrgo.2024.1345507

TABLE 4 Selected results of LMM processing for performance and each modality for Shifting Attention.

Modality Measure Factor F-ratio p-value Partial η2

Performance

Accuracy Session 6.33 2/386 0.00197 0.032

Accuracy Condition 57.52 1/386 0.000001 0.130

Accuracy Session∗Condition 3.57 2/386 0.029004 0.018

Reaction time Session 15.38 2/386 0.000001 0.074

Reaction time Condition 96.14 1/386 0.000001 0.199

Reaction time Session∗Condition 3.10 2/386 0.046174 0.016

fNIRS

HbO 05 peak Session 8.44 2/381.6 0.00026 0.042

Oxy 14 peak Session 13.15 2/379.5 0.000003 0.065

Oxy 16 peak Session 6.56 2/374.9 0.001581 0.034

HbT 08 time-to-peak Condition 26.61 1/375.5 0.000001 0.066

HbT 09 time-to-peak Condition 24.97 1/386 0.000001 0.061

EEG

Theta CCP1 Session 21.97 2/214.6 0.000001 0.170

Theta PO3 Session 34.28 2/216 0.000001 0.241

Alpha CPP3h Session 9.64 2/15.6 0.001882 0.553

Engagement PO3 Session 43.48 2/214.9 0.000001 0.288

Theta/Alpha FFC6h Session 24.66 2/244.3 0.000001 0.168

ECG

Low frequency (abs) Session 27.11 2/356.8 0.000001 0.132

High frequency (abs) Session 7.62 2/4 0.043232 0.792

Low/High ratio Session 4.20 2/361.3 0.015767 0.023

Heartrate Condition 5.21 1/356.1 0.023079 0.014

PPG

Average width Session 8.27 2/346.3 0.00031 0.046

Average peak Session 5.03 2/346.7 0.006997 0.028

HRV (sd) Session 3.55 2/347.1 0.029858 0.020

EOG

Peak saccade velocity Session 10.88 2/4 0.024103 0.845

Saccade amplitude Session 6.19 2/348.7 0.002288 0.034

Eye-tracking

Pupil diameter Session 10.11 2/4 0.027267 0.835

Fixation/saccade ratio Session 3.97 2/185.9 0.02053 0.041

Fixation/saccade ratio Session∗Condition 3.32 2/174.2 0.038615 0.037

fNIRS and EEG have been FDR-corrected. A lack of results for a factor (i.e., Condition, Interaction) indicates no significant results.

4.2 fNIRS measures

The Working Memory task displayed bilateral activation in

the ventrolateral prefrontal cortex (vlPFC optodes 2 and 16)

for the main effect of Session as well as a significant response

to Condition in the right dlPFC (optode 15). This partially

overlapped with a similar response for the Shifting Attention

task in the right vlPFC. The Shifting Attention task in particular

engaged memory of the locations of future targets to click on

while focusing primary attention on the current target, explaining

the potential overlap. Although Shifting Attention also showed

differences between Condition, these differences were also observed

broadly across the PFC. Working memory has been widely studied

with functional neuroimaging, and has been shown induce task

Frontiers inNeuroergonomics 15 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1345507
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Mark et al. 10.3389/fnrgo.2024.1345507

FIGURE 7

Selected results for Situation Awareness task. (A–C) LMM F-values for fNIRS across prefrontal cortex for the fixed factors of Session, Condition, and
Interaction. (D–F) LMM F-values for EEG across whole brain for the fixed factors of Session, Condition, and Interaction. (G) Performance measure
across session and condition. (H) ECG measure. (I) PPG measure. (J) EOG measure. (K) Eye-tracking measure. (L) PCA percentage of explained
variance. *Significant before FDR correction.

load related prefrontal activity with fNIRS (Ayaz et al., 2007,

2012; Fishburn et al., 2014; Herff et al., 2014; McKendrick et al.,

2014; Fairclough et al., 2018; Chen et al., 2021) as well fMRI

studies (Owen et al., 2005). Shifting Attention is also known to be

correlated with activation in the dlPFC and vlPFC (Müller et al.,

2014).
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TABLE 5 Selected results of LMM processing for performance and each modality for Situation Awareness.

Modality Measure Factor F-ratio p-value Partial η2

Performance

Accuracy Condition 6.17 1/248 0.013638 0.024

Reaction time Session 5.91 2/248 0.003107 0.045

Reaction time Condition 5.30 1/248 0.022133 0.021

Reaction time Session∗Condition 3.64 2/248 0.027555 0.029

fNIRS

Oxy 08 peak Session 9.22 2/245.2 0.000138 0.070

HbR 15 peak Session 11.00 2/246.1 0.000027 0.082

HbT 11 peak Session 13.44 2/248 0.000003 0.098

HbT 14 slope Condition 12.44 1/205.2 0.000517 0.057

HbT 14 sum Condition 9.15 1/202.5 0.002816 0.043

EEG

Theta FCC5h Session 11.64 2/142.7 0.000021 0.140

Theta FCC3 Session 12.93 2/134.5 0.000007 0.161

Engagement FCC3 Session 19.52 2/129.6 0.000001 0.231

Gamma FCC3 Session 26.58 2/133.3 0.000001 0.285

Theta+ Alpha/Beta+ Alpha FCC3 Session 15.87 2/136 0.000001 0.189

ECG

HRV (rms) Session 3.77 2/224.7 0.024524 0.032

Low/High ratio Session 3.80 2/226.7 0.023909 0.032

PPG

Heartrate Session 4.47 2/219.2 0.01248 0.039

Mean width Session 5.69 2/220.7 0.0039 0.049

Mean peak Session 7.31 2/221.8 0.000845 0.062

HRV (rms) Session 4.85 2/220.5 0.008652 0.042

HRV (sd) Session∗Condition 3.58 2/218.1 0.029594 0.032

EOG

Saccade peak velocity Session 9.51 2/4 0.030176 0.826

Saccade amplitude Session 3.53 2/222.4 0.031049 0.031

Eye-tracking

Fixation count Session 3.78 2/135.6 0.025296 0.053

Mean fixation duration Session 3.11 2/138.7 0.047501 0.043

Saccade length Session 3.17 2/131.2 0.045042 0.046

fNIRS and EEG have been FDR-corrected. A lack of results for a factor (i.e., Condition, Interaction) indicates no significant results.

The Vigilance and Inhibitory Control tasks showed a similar

pattern in results. The Vigilance task had the strongest sensitivity to

session change in activation in the bilateral dorsolateral prefrontal

cortex (dlPFC), as well as significant responses to Condition in the

right ventromedial prefrontal cortex (vmPFC). Additionally, the

Vigilance task showed a significant interaction in medial anterior

PFC. The Inhibitory Control task showed overlap in the right

dlPFC condition for the Session factor. The similarity in activation

may both be due to the effects of learning to mitigate fatigue as

both require high reflex reactions and hand-eye coordination over

time. Vigilance, and its inversely related domain of fatigue, are

well studied in neuroscience, as they are particularly important in

sustained focus tasks such as driving and piloting (Paxion et al.,

2014; Dehais et al., 2018). Inhibitory Control as well requires similar

levels of continuous, sustained focus and the ability to react in time

to specific targets (Rodrigo et al., 2014).

Both the Risk Assessment and Situation Awareness tasks had

activation changes in the left ventromedial prefrontal cortex, which

makes sense as both are using high level assessments of an

entire situation as it changes over time, requiring the updating of
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FIGURE 8

Selected results for Inhibitory Control task. (A–C) LMM F-values for fNIRS across prefrontal cortex for the fixed factors of Session, Condition, and
Interaction. (D–F) LMM F-values for EEG across whole brain for the fixed factors of Session, Condition, and Interaction. (G) Performance measure
across session and condition. (H) ECG measure. (I) PPG measure. (J) EOG measure. (K) Eye-tracking measure. (L) PCA percentage of explained
variance. *Significant before FDR correction.

mental models in response to an evolving environment. The Risk

Assessment task was also sensitive to Condition in the left dlPFC,

whereas the Situation Awareness task was sensitive to Condition

in the right vlPFC. These categories of tasks may be able to be

distinguished over time using fNIRS. Numerous previous studies

into risk taking attitudes have used fNIRS, EEG, PET, and fMRI
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TABLE 6 Selected results of LMM processing for performance and each modality for Inhibitory Control.

Modality Measure Factor F-ratio p-value Partial η2

Performance

Reaction time Session 4.33 2/383.2 0.013845 0.022

Reaction time Condition 160.49 1/383.2 0.000001 0.295

Accuracy Condition 236.44 1/386 0.000001 0.380

fNIRS

HbO 13 peak Session 13.77 2/384.3 0.000002 0.067

HbO 13 time-to-peak Session 13.85 2/384.1 0.000002 0.067

Oxy 03 time-to-peak Session 13.94 2/385 0.000001 0.068

Oxy 13 time-to-peak Session 13.13 2/384.1 0.000003 0.064

Oxy 15 time-to-peak Session 14.89 2/385 0.000001 0.072

EEG

Alpha CCCP6h Session 19.73 2/179.1 0.000001 0.181

Engagement FFC6h Session 27.21 2/180.2 0.000001 0.232

Theta/Alpha FCC1h Session 17.57 2/199.1 0.000001 0.150

Alpha FFCz Condition 20.34 1/206.6 0.000011 0.090

Alpha CPP3h Condition 12.66 1/27 0.001409 0.319

ECG

Heartrate Session 4.67 2/357.3 0.009962 0.025

HRV (sd) Session 5.49 2/358.8 0.004485 0.030

PPG

Average width Session 4.04 2/352.3 0.018457 0.022

High frequency (abs) Session 7.48 2/4 0.044553 0.789

EOG

Peak saccade velocity Session 6.84 2/339.6 0.001227 0.039

Saccade amplitude Session 4.26 2/341.1 0.01482 0.024

Saccade duration Session 7.04 2/348.8 0.001005 0.039

Saccade duration Condition 7.65 1/340.1 0.005971 0.022

Eye-tracking

Pupil diameter Session 12.27 2/4 0.019648 0.860

Saccade velocity Session 3.45 2/205.3 0.033705 0.032

fNIRS and EEG have been FDR-corrected. A lack of results for a factor (i.e. Condition, Interaction) indicates no significant results.

to distinguish not just between skill levels, but entirely different

strategies that may utilize different brain areas and networks

(Compagne et al., 2023). Situation awareness of the environment

and periphery, both in the lab and outside of it in the real world, can

benefit from knowing specific brain areas to target, thus lowering

the amount of potentially impeding equipment (McKendrick et al.,

2016; Ismail and Karwowski, 2020).

Overall, the fNIRS models showed the strongest sensitivity to

Session for all tasks with a preference for the bilateral PFC for

Working Memory and Vigilance tasks, and specifically the right-

lateral PFC for Shifting Attention and Inhibitory Control tasks.

Risk Assessment and Situation Awareness tasks instead engaged the

left medial PFC. These regions partially overlapped with significant

regions for Condition, however it is the differences between the

main factors of Session and Condition that allow researchers to

distinguish between skill acquisition over time and the reaction to

different difficulty levels. In the future, it would be best to include

more than two conditions for each task to better understand

the brain’s reaction over a range instead of just binary high and

low workload. Similarly, using more graded performance factors

would allow for a more realistic and nuanced understanding of

cognitive workload, which can then be applied in the field with

operators at work or in training to actively monitor workload in

real time.
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4.3 EEG measures

The Working Memory task, Shifting Attention task, and

Situation Awareness tasks all showed broad significant responses in

the theta band in response to the main effect of Session. Changes

in both the alpha and theta bands are inherent to memory and

cognition, usually being inversely related to one another, but task-

specific demands may cause one to change more than the other,

leading to significance in either one band or the ratio between

them (Klimesch, 1999). On the other hand, Condition for Working

Memory task was predominantly responsive in the alpha band in

the central parietal and right parietal occipital lobes, whereas both

Shifting Attention and Situation Awareness showed a response to

Condition in the right central and central parietal regions. Shifting

Attention also showed more widespread changes in the theta/alpha

band ratio whereas the Situational Awareness task localized these

changes primarily in the right hemisphere. In general, these power

band changes are known to occur in the parietal regions of the

cortex in response to difficulty and changes over time in tasks

involving the memory (Sauseng et al., 2005; Gulbinaite et al., 2014).

The Vigilance task was broadly responsive to the main effect of

Session and Condition in the alpha band as well as the delta band

for Condition. In addition to the focus for the task normally being

seen in the alpha band, the delta band is correlated with fatigue over

time, especially in driver studies (Lal and Craig, 2001, 2002; Stikic

et al., 2011).

The engagement ratio showed a broad sensitivity to Session

for the Risk Assessment and Inhibitory Control tasks. In addition,

Inhibitory Control also showed a particularly strong response to

Condition in the bilateral central alpha band from the frontal

to occipital regions, as the ability to inhibit a natural response

is related to risk-related decision making. The engagement ratio

takes into account the alpha, theta, and beta band powers together,

providing correlates both related to fatigue (as is important in

Inhibitory Control) and attention needed to correctly assess the

changing risk levels of a task with both short term and long term

goals (Prinzel et al., 2000; Berka et al., 2007).

While EEG measures were widely significant across the brain

for changes in the main effect of Session, not every task elicited a

significant main effect of Condition with the EEG data after FDR

correction (only Vigilance and Inhibitory Control). Overall, the

alpha band was the most sensitive to changes in difficulty, and real

world applications may focus on this and the theta band, over the

central and parietal regions of the cortex, to try and use a limited

number of electrodes that are faster and easier to set up as compared

to whole brain recordings for more neuroergonomic applications

(Mehta and Parasuraman, 2013; Ismail and Karwowski, 2020;

Longo et al., 2022).

4.4 Cardiac measures

In both ECG and PPG based cardiac monitoring modalities,

we found the primary significant factor to be Session, with very

few measures found to have a significant effect on Condition

and Interaction. Across all six tasks, ECG measures of heartrate

variability and low frequency components were found to have a

linear relationship with session, decreasing over time as expertise

was gained. This matches well with previous studies making

use of ECG in workload (Shaffer and Ginsberg, 2017; Marchand

et al., 2021). With PPG, pulse width was most commonly the

highest significant measure with respect to sessions and displayed

an inverse linear relationship with time. Interestingly, we also

observed an inverted-U shape curve for the pulse peak measure in

the hard condition of the Shifting Attention task, reminiscent of the

Yerkes-Dodson performance-workload curve (Yerkes and Dodson,

1908; Sibi et al., 2016). Overall, heart rate variability was found to be

the most consistent workload correlate. Cardiac measures are the

most commonly used physiological measure for mental workload

from the literature (Charles and Nixon, 2019), and thus are a good

candidate to investigate for learning/adaptation over time.

4.5 Ocular measures

The primary significant factor was Session in both EOG

and Eye-tracking based ocular measures. Saccade measurements

calculated using EOG over all tasks revealed that the mean duration

and amplitude while on task generally show an inverse linear

relationship with workload, increasing as workload over time

decreases, similar to previous findings (Di Stasi et al., 2010). The

timing of the increases seen in Inhibitory Control, with a larger

increase early on in the hard condition and an increase later for

easy, may also provide more information about the level of skill

and how learning on different difficulties may result in alternate

patterns. More interestingly, the peak saccade velocity showed an

inverse-U shape over the three sessions in several tasks, aligning

with the shape of moving from one learning plateau to the next.

Eye-tracking measures showed a consistent response for saccade

velocity as well as an increase in fixation count, both of which are

known workload correlates (Ahlstrom and Friedman-Berg, 2006;

Faller et al., 2019).

Of all the ocular measures, pupil diameter appeared to provide

the most information about workload over time with nearly every

task showing significance for Session over time with a smaller

diameter indicating increased skill. Using wearable eye-tracking

devices, this ocular measure can be taken anywhere, especially since

eye gaze is not directly involved in pupillometry (Marchand et al.,

2021). Caution must be taken, however, because the environment,

particularly the amount of light, can have a big effect on pupil size.

Relative measurements taken over a task would provide the most

useful information about workload changes within a given period

of time.

4.6 Limitations and future directions

A key finding from this study was that physiological measures

and neural measures in particular show a strong and generalizable

responsiveness to task demand and participant task experience.

However, these measures were not necessarily able to effectively

distinguish between performance demands due to different

cognitive domains. Some sensitive measures showed an inverse

relationship between workload and task experience, suggesting that
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physiological measures are good trackers of overall learning over

time, but they are less sensitive to specific difficulties associated with

individual cognitive domains. However, some of this variability

may be due to the usage of fixed difficulty levels instead of

more continuous measures of task demand which are better

representative of real-word task performance.

Sensitivity to individual cognitive domains could be improved

with increased participant pool size and increased repetition of

specific tasks. Another limitation of the task battery format was

the relatively short length of each individual task. The choice to

examine participants across multiple cognitive domains necessarily

reduced the number of trials each participant could perform. As a

result, this reduced the experimental power within each cognitive

domain. Future work may include the use of multi-domain tasks

with overlapping cognitive requirements as ameans of compressing

task battery performance or the use of multi-tasking for individual

tasks across different domains.

Some additional variation in the results may be due to the

non-uniform sampling of task performance. During protocol

development, we had to account for the ability of participants

to maintain focus throughout the entire experimental session

and encourage them to return once each week for a month.

Setting up six different neuroimaging and physiological monitoring

modalities can put significant physical strain on participants, and

so we were limited in how long each session could be. Accordingly,

the protocol was developed so that not every task was performed

during every experimental session. Although the randomized task

assignment was non-uniform, it may however be more realistic

and representative of typical task practice as individuals do

not necessarily train under entirely fixed intervals. Furthermore,

this did not appear to result in worsened task performance as

participants reliably improved across sessions.

We found some overlap in the active brain areas in our

neuroimaging analyses, but for this publication we have only

analyzed the sensitivity of neural measures within each separate

task. In future analyses, we plan to not just look across modalities

but across tasks as well to search for both unique and shared

markers of different types of induced workload. We can also

use this dataset to search for predictors of future performance,

similarly to our previously published results for the Inhibitory

Control task (Ayaz et al., 2019). This may allow for training to be

further optimized by determining learners who may require more

or less attention on various tasks. Future studies can also apply this

approach to other domains such as clinical studies for neurological

and psychiatric conditions as a tool for triage and diagnosis.

5 Conclusion

We developed a highly multimodal non-invasive framework

of neuroimaging and physiological monitoring modalities to

assess the effect of training and expertise development during

a longitudinal task battery targeting six fundamental cognitive

domains. Six different cognitive domains (Working Memory,

Vigilance, Risk Assessment, Shifting Attention, Situational

Awareness, and Inhibitory Control) were selected to be evaluated

across four categories (Behavioral, Neural, Cardiac, Ocular)

using six biometric approaches (fNIRS, EEG, ECG, PPG, EOG,

Eye-tracking). This novel, comprehensive study revealed the most

sensitive measures to workload and skill across both time and task

difficulty effects for prefrontal fNIRS, whole head EEG, two heart

activity measures, and two eye activity measures. Several measures

within modalities were found to be consistent across tasks, but the

neuroimaging modalities in particular revealed useful differences

between cognitive domains as well. This study lays the groundwork

for future multimodal studies in addition to the analysis of more

complex experiments in the neuroergonomic domain of studying

the brain and body at work in the real world.
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