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This study addresses concerns about reproducibility in scientific research,

focusing on the use of electroencephalography (EEG) and machine learning

to estimate mental workload. We established guidelines for reproducible

machine learning research using EEG and used these to assess the current

state of reproducibility in mental workload modeling. We first started by

summarizing the current state of reproducibility e�orts in machine learning

and in EEG. Next, we performed a systematic literature review on Scopus,

Web of Science, ACM Digital Library, and Pubmed databases to find studies

about reproducibility in mental workload prediction using EEG. All of this

previous work was used to formulate guidelines, which we structured along the

widely recognized Cross-Industry Standard Process for Data Mining (CRISP-DM)

framework. By using these guidelines, researchers can ensure transparency and

comprehensiveness of their methodologies, therewith enhancing collaboration

and knowledge-sharing within the scientific community, and enhancing the

reliability, usability and significance of EEG and machine learning techniques in

general. A second systematic literature review extractedmachine learning studies

that used EEG to estimate mental workload. We evaluated the reproducibility

status of these studies using our guidelines. We highlight areas studied and

overlooked and identify current challenges for reproducibility. Our main findings

include limitations on reporting performance on unseen test data, open

sharing of data and code, and reporting of resources essential for training and

inference processes.

KEYWORDS

neuroergonomics, reproducibility, EEG, physiological measurement, mental workload,
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1 Introduction

Reproducibility is fundamental for research advancement. Reproducing results, not

only by the owners of the original study but also by other researchers, enables establishing a

solid foundation that can be built upon for global research progress. The ability to repeat a

study of others using the exact same methodology and produce the same results facilitates

the verification and validation of study findings, identification or reduction of errors, and

accurate comparison of newly developed methodologies. This process not only increases

the trustworthiness of findings but also bolsters the credibility of the researchers involved

and science in general. Moreover, reproducibility ensures the seamless deployment and

long-term usability of applications.
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However, findings suggest that most research is not

reproducible. A Nature survey, for instance, revealed that

70% of researchers could not reproduce another researcher’s

experiments, while over 50% could not reproduce their own

research (Baker, 2016). Gundersen and Kjensmo (2018)

investigated the reproducibility status of 400 papers from the

IJCAI and AAAI conference series and concluded that only

approximately 25% of the variables required for reproducibility

were adequately documented. A systematic and transparent

reporting is essential to support reproducibility.

In the rapidly evolving field of neuroergonomics and Brain-

Computer Interface (BCI) applications, the need to ensure the

reproducibility of research findings is high. Most neuroergonomic

and BCI applications require artificial intelligence (AI) and

machine learning (ML) technologies to identify patterns in brain

signals with the aim of decoding user’s intentions or distinguishing

mental states. For example, these techniques are used in passive

BCIs to evaluate mental workload in real time and adapt the

tasks using the estimated workload, which could be beneficial

for monitoring and supporting professionals whose work requires

high focus. It can also aid in selecting alternatives for human-

computer interaction (HCI) systems that induce the least amount

of load on the users. Although the evaluation of mental workload

from EEG signals is extensively studied in the literature (Saeidi

et al., 2021), many challenges remain to be addressed toward

developing real-life applications. These challenges include ability

to generalize across subjects (Roy et al., 2013), across sessions

or over time (Millan, 2004; Roy et al., 2022), across tasks and

across contexts (Mühl et al., 2014; Lotte et al., 2018; Hinss et al.,

2023). A systematic and reproducible approach can foster a more

collaborative research environment, enabling more effective and

rapid solutions to these challenges.

Despite increased attention for reproducibility in the literature,

definitions of reproducibility remain unclear and even conflicting

(National Academies of Sciences Engineering and Medicine, 2019).

In this paper, we adopt the definition from (p. 1645) Gundersen

and Kjensmo (2018) as expressed for reproducibility in AI, which

was set forth as “Reproducibility in empirical AI research is the

ability of an independent research team to produce the same results

using the same AI method based on the documentation made by

the original research team.”. Achieving reproducibility necessitates

documenting research at a certain level of detail. Gundersen

and Kjensmo (2018) grouped documentation into method, data,

and experiment categories. They also defined three levels of

reproducibility, namely R1: Experiment Reproducible, R2: Data

Reproducible, and R3: Method Reproducible. R1 reproducibility

necessitates sharing all three documentation categories. In R1, the

results are expected to be the same, except for minor differences

due to hardware changes, as the same implementation is executed

on the same data. R1 corresponds to fully reproducible research

Abbreviations: AI, Artificial Intelligence; BCI, Brain-Computer Interface;

BIDS, Brain Imaging Data Structure; CRISP-DM, Cross-Industry Standard

Process for Data Mining; EEG, Electroencephalography; ICA, Independent

Component Analysis; KDD, Knowledge Discovery in Databases; ML, Machine

Learning; PCA, Principle Component Analysis; TDSP, Team Data Science

Process; SEMMA, Sample, Explore, Modify, Model, Assess.

(Peng, 2011) and technical reproducibility (McDermott et al.,

2021). As the reproducibility level increases from R1 to R2 and

R3, the generalizability of the models increases, and documentation

requirements decrease at the cost of reduced transparency. The

generalizability of a model is the degree to which the outcomes

of a study are applicable to diverse contexts or populations. R2

reproducibility is attributed when an alternative implementation

of the method is executed on the same data, hence requiring the

openness of method description and data but not the scripts, and

it is generalizable to alternative implementations of the method.

Finally, R3 reproducibility is expected to yield the same results with

alternative implementations on different data, thus necessitating

only the method documentation. Obtaining similar performance in

this case is a step in concluding that the improvement of research

was made possible by the proposed method, and the method is

generalizable. It should be noted that reproducibility does not

necessarily guarantee accuracy. Even if the results are not favorable,

the study can be reproducible. Moreover, there is not a single best

solution for a given problem, which is another reason for detailed

reporting (Pernet et al., 2020).

In this study, we propose guidelines considering full (R1)

reproducibility with the aim of maximum transparency, enabling

the generation of the same results with the same implementation

and on the same data. This level of sharing can be tailored for R2

reproducibility level by leaving out the reporting of the experiment

and for R3 reproducibility level by leaving out the reporting of

both the experiment and data. These approaches reduce the degree

of reproducibility but are steps toward generalizable solutions. In

cases where the scripts or data are not made available, authors need

to be willing to assist other researchers in constructing the baseline

(Collberg and Proebsting, 2016).

While guidelines for the reproducibility of machine learning

and EEG studies exist independently in the literature, there is

a lack of integrated guidance covering both. EEG guidelines

primarily emphasize standardized procedures for data collection,

preprocessing, sharing, and statistical analysis. Recommendations

for machine learning stress best practices in feature engineering,

modeling, and evaluation and highlight code transparency and

dataset availability. The necessity to connect these guidelines

becomes apparent with the rising number of publications

employing machine learning on EEG data, combined with the

already mentioned challenges in the generalizability of EEG-based

mental state estimations across subjects and contexts or over

time. In the current manuscript, we aim to close this gap in

the literature and combine a reproducible and standardized ML

pipeline with EEG guidelines with a focus on the classification of

mental workload. Based on previous work, we establish guidelines

and a checklist for reproducible EEG machine learning. Using this

checklist, we systematically assess to what extent studies currently

adhere to this checklist.

To scope our research, we chose to focus on workload

recognition since it represents a substantial and relatively well-

defined sub-area of mental state monitoring and passive BCI. In

fact, workload and multitasking emerged as the most common

mental state or process, according to the survey conducted by Putze

et al. (2022).

The proposed guidelines and checklist have the potential to be

applicable to most other types of EEG ML mental state assessment
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studies. However, the specific nuances of each domain must be

considered during implementation.

Our manuscript is outlined as follows. In Section 2, we first

introduce the current reproducibility status in machine learning

and explain the CRISP-DM methodology, which is a commonly

used standard for data mining machine learning projects. Then,

we present the reproducibility efforts in EEG studies (Section 3)

and systematically review papers that studied reproducibility in

mental workload prediction using EEG (Section 4). In Section 5,

we combine the findings in the literature with our contributions

and propose guidelines for a reproducible EEG machine learning

pipeline that is incorporated into the CRISP-DM phases. Following

from these guidelines, we then create a compiled checklist of the

requirements for reproducibility. In Section 6, adhering to the

proposed checklist, we assess the current reproducibility status

of machine learning models that utilize EEG to measure mental

workload based on a comprehensive systematic literature review.

We performed both systematic literature reviews following the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) flow diagram (Moher et al., 2010). Finally,

Section 7 is allocated for the discussion.

2 Reproducibility in machine learning

In research fields where machine learning solutions are

applied, the challenge of reproducibility is prominent. Independent

researchers often struggle to replicate the same results solely

based on information provided in publications (Baker, 2016;

Gundersen and Kjensmo, 2018; Hutson, 2018). In light of recent

discussions on the reproducibility crisis, efforts to examine

reproducibility in publications and introduce guidelines or

checklists have expanded. Organizations and academic publishers

have developed reproducibility checklists to ensure that research

incorporates a minimum set of essential information and statistical

checks, promoting openness in order to transparently report

reproducible work (Kenall et al., 2015). Leading journal editors,

funding agencies, and scientific leaders collaboratively established

a comprehensive set of Principles and Guidelines in Reporting

Preclinical Research in June 2014 (McNutt, 2014), and a

considerable number of journals have agreed to support it. These

principles include rigorous statistical analysis and transparency

in reporting together with a proposed set of key information

and data and material sharing. Academic organizations have

also introduced checklists to promote reproducibility in machine

learning studies. For example, Pineau et al. (2021) generated

“The Machine Learning Reproducibility Checklist” which was used

in NeurIPS 2019. This checklist includes items for models and

algorithms, theoretical claims, and figures and tables. Authors

emphasize significant cultural and organizational changes besides

code submission policy or a checklist to achieve reproducibility. As

discussed in the previous section, Gundersen and Kjensmo (2018)

curated a checklist to investigate the status of reproducibility.

Following specific guidelines facilitates a systematic process for

conducting reproducible research.

The most widely usedmethodology for structuring data mining

machine learning projects is the CRISP-DM. Introduced in 2000,

CRISP-DM is a baseline process model to define and standardize

data science life cycle in industry (Chapman et al., 2000). This

iterative process comprises six phases, each of which is briefly

explained below. We use these phases to structure our checklist

in Section 5.

1. Business Understanding: The initial phase aims to identify

business objectives, metrics, and success criteria for subsequent

model evaluation. Additionally, it involves defining and

planning available resources, as well as establishing strategies to

mitigate potential project risks throughout the project lifecycle.

In addition to these fundamental project management activities,

data mining objectives and corresponding technical success

criteria are determined during the business understanding

phase. Finally, a project plan is devised for each subsequent

phase of the project, ensuring a cohesive and strategic approach.

2. Data Understanding: This phase consists of the tasks of data

collection, data description, data exploration, and data quality

verification. Data collection adheres to established best practices

within the relevant domain, with a clear presentation of data

definitions, types, and additional requirements. This phase also

entails the examination of data for cleanliness, addressing issues

like missing values, noise, outliers, and data imbalance. In this

phase, data is understood, and subject matter knowledge is

acquired so that each member of the project has a common

ground on terminology and domain knowledge. Moreover,

future decisions on data preparation, modeling, evaluation and

deployment can be made informed only if the context specific to

the domain is well understood.

3. Data preparation: This phase involves organizing data for

modeling purposes. Tasks encompass data selection based

on goals and limitations, which may include technical or

quality considerations. Additionally, this phase includes data

cleaning, filtering, and the creation of new attributes or samples

through data transformation, augmentation, and integration

from multiple sources. Feature engineering and selection are

also integral components of this phase.

4. Modeling: The modeling phase starts with the selection of

an appropriate method tailored to the specific problem. The

rationale behind this selection and any underlying modeling

assumptions need to be documented. Reasons to select an

algorithm may be related to data and problem characteristics

or may arise from some constraints such as development time

or hardware limitations. Certain methods incorporate feature

selection, which can be another factor to take into account.

After the selection of the modeling technique, test design is

performed, and model building is initiated. As models are

developed, they are assessed and ranked based on predefined

evaluation criteria, also taking into account the business success

criteria when possible. Model parameters are adjusted iteratively

based on these evaluations until a satisfactory model is achieved.

5. Evaluation: The model’s compliance to predefined business

objectives is assessed in this phase rather than the model

performance that was considered in the previous modeling

phase. Testing the models in deployment environments can

also be anticipated. If the results prove to be insufficient, it may

be necessary to revisit earlier phases. This could entail fine-

tuning the hyperparameters, exploring alternative algorithms,

or reevaluating data preparation and conducting more
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comprehensive data exploration. Upon achieving satisfactory

results in the evaluation phase, a final review of the process

is necessary to address any potential oversights. Favorable

outcomes from this review pave the way for the subsequent

deployment stage.

6. Deployment: At the beginning of this phase, a strategy for

deployment is developed. This phase highlights the significance

of generalization, as the system or solution is implemented

in real-world settings. Here, inference is done on novel data

which was never encountered by the model previously. The

model’s ability to adapt to various scenarios and different

users is put to test. Constructing and thoroughly testing

the deployment environment is a crucial component of this

phase. Furthermore, this phase involves meticulous planning

for the continuous monitoring and maintenance of the system.

Considering the evolving nature of businesses, model drift may

occur, necessitating the retraining of the model with recent data

to capture updated business aspects.

Various other data process models besides CRISP-DM are

available, such as “Knowledge Discovery in Databases (KDD)”

(Fayyad et al., 1996), “Sample, Explore, Modify, Model, Assess

(SEMMA)1” and “Team Data Science Process (TDSP)2” are

available. We chose to use CRISP-DM not only because it is widely

adopted (Schröer et al., 2021), but also because its phases align

well with EEG processing and the machine learning pipeline and

because it covers “Business Understanding” and “Deployment”

phases, which are necessary to build applications. “Business

Understanding” and “Deployment” phases are not included in

KDD or SEMMA models. While phases of CRISP-DM and TDSP

are similar, CRISP-DM incorporates more detailed phases related

to data processing, modeling and evaluation which are fundamental

steps for conducting machine learning studies using EEG.

3 Reproducibility in EEG

Reproduction of EEG studies comes with challenges, some of

which are inherent to scientific research, while others arise from the

nature of EEG data. Variations in data collection settings, such as

the environment, electrode placement, or online filters, can lead to

differences in results. Individuals differ in terms of anatomical and

neurophysiological characteristics. Order of preprocessing steps

and a large number of parameters that are used within different

preprocessing methodologies can cause large differences (Robbins

et al., 2020). These problems can be mitigated through systematic

and transparent reporting. In EEG research, there is a considerable

number of publications that aim to standardize data formats,

data collection methodologies, data analysis (particularly statistical

analysis and preprocessing), and data sharing.

The Brain Imaging Data Structure (BIDS) standard was

developed to standardize MRI datasets by defining file structure,

format, and naming conventions as well as guidelines for presenting

1 https://documentation.sas.com/doc/en/emref/14.3/

n061bzurmej4j3n1jnj8bbjjm1a2.htm

2 https://learn.microsoft.com/en-us/azure/architecture/data-science-

process/lifecycle

FIGURE 1

Search strategy for literature review 1.

metadata (Gorgolewski et al., 2016). Pernet et al. (2019) established

EEG-BIDS to introduce this standard to the EEG domain. Specific

to EEG data, they recommended the European Data Format (EDF)

and the BrainVision Core Data Format, alongside allowing two

unofficial data formats due to their common usage and to ease

adoption of EEG-BIDS: EEGLAB’s format (“.set” and “.fdt” files)

and the Biosemi format (“.bdf”).

In 2014, a committee appointed by the Society for

Psychophysiological Research reported comprehensive guidelines

for studies using EEG and MEG with a detailed checklist for

reporting (Keil et al., 2014). The covered topics are hypotheses,

participants, recording characteristics and instruments, stimulus

and timing parameters, data preprocessing, measurement

procedures, figures, statistical analysis, spectral analysis, source-

estimation procedures, Principle Component Analysis (PCA)

and Independent Component Analysis (ICA), multimodal

imaging, current source density and Laplacian transformations,

and single-trial analyses. The Organization for Human Brain

Mapping (OHBM) neuroimaging community (Committee on

Best Practices in Data Analysis and Sharing (COBIDAS) MEEG

- where MEEG refers to MEG and EEG) compiled best practices

for data gathering, analysis, and sharing (Pernet et al., 2020).

Recommendations encompassed MEEG data acquisition and

data analysis terminologies, definitions, and basic experimental

attributes to include in an article. They also listed MEEG

preprocessing and MEEG connectivity modeling parameters to

be reported and their impact on reproducibility. The authors

also state the importance of a dynamic guideline, which is to be

adapted as new technology and methods arise. Similarly, Kane

et al. (2017) included the most commonly used clinical EEG terms

and proposed a standardized and structured EEG report form.
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Putze et al. (2022) created an overarching experiment model

that provides a formal structure for presenting HCI research

using brain signal data to enhance reproducibility and reusability.

They further conducted statistical analysis to understand reporting

structures and identified reporting gaps for 110 papers from

dedicated HCI conferences or journals. The recommendations and

discussions on future challenges offer valuable insights for the

advancement of HCI practices. While the focus of this publication

was on HCI, the aspects they list are mostly applicable to EEG ML

studies in general.

We refer to these established EEG guidelines to develop a

compiled checklist in Section 5.

4 Reproducibility in mental workload
studies using EEG

In this section, we present the outcomes of our systematic

literature review on reproducibility studies related to EEG

and mental workload. Our aim is to determine to what

extent studies that use EEG to measure mental workload have

focused reproducibility.

4.1 Literature search strategy

Figure 1 shows the search strategy. In phase I, we conducted

a search using specific terms across Scopus, Web of Science,

ACM Digital Library (ACM DL), and Pubmed databases to assess

the current state of reproducibility in this field. We searched in

titles, abstracts, and keywords with the following search term:

(“Reproducibility” OR “Replicability” OR “Generalizability”) AND

“EEG” AND (“Workload” OR “Cognitive Load” OR “Mental Effort”

OR “Mental Load”) in February 2024. The search was constrained

to a publication year up to and including 2023 at the latest.

4.2 Eligibility criteria

In phase II, we considered a publication relevant according to

the following inclusion criteria:

a) has a focus on mental workload

b) has a focus on or uses EEG data

c) has a direct focus on reproducibility or evaluates a method

across different settings, for example, in different tasks or at

different times.

4.3 Analysis of the studies

Search in the databases produced 95 publications in total. The

Scopus search produced 45 articles. Web of Science and ACM

DL search yielded seven and one indifferent results, respectively.

PubMed search produced 42 publications, six of which were

distinct from the ones already found. As a result, we had 51

unique articles from these four databases. Only 13 of these 51 were

considered relevant according to the eligibility criteria. This is an

indication that few studies focus on reproducibility in the domain

of mental workload classification from EEG signals.

Among the relevant thirteen studies, reproducibility

was demonstrated for different electrode configurations and

preprocessing pipelines (Mastropietro et al., 2023), for different

settings of 2D and 3D environments (Kakkos et al., 2019), for a

larger number of participants (Radüntz et al., 2020), for different

tasks (Parekh et al., 2018; Boring et al., 2020; Sciaraffa et al., 2022),

and over time (Gevins et al., 1998; Putze et al., 2013; Aricò et al.,

2015, 2016b; Ortiz et al., 2020; Fox et al., 2022; Roy et al., 2022).

Gevins et al. (1998) also tested their findings on separate tasks

to check cross-task performance and finally on data from a new

participant to observe cross-subject performance.

5 Establishing reproducible EEG
machine learning pipelines: guidelines
and checklist compilation

The objective of this section is to establish guidelines

for constructing reproducible EEG machine learning pipelines.

We compiled and tailored established guidelines from the

reproducibility literature in both the EEG and machine learning

research domains, supplemented these by our own contributions

and structured the guidelines following CRISP-DM phases. Below,

we discuss the guidelines per CRISP-DM phase. Table 1 outlines the

finally resulting, complete list of checklist items and related research

steps. Items on the checklist marked with a “†” rather reflect best

practices or are related to generalizability, while those that are not

marked directly affect reproducibility.

Researchers intending to use these guidelines should adapt

them according to their specific methods if they are not covered.

Moreover, applied methods should adhere to best practices and

guidelines outlined in the relevant literature. Considering how

an independent researcher can replicate the analysis or develop

the same models by using only the content provided in the

publications and supplementary materials is important. This

requires a systematic approach during both the research process

and the publication phase. As the field evolves and new methods

emerge, any new essential information should be incorporated to

align with the aforementioned focus on reproducibility. To achieve

a comprehensive understanding necessary for replicating the

results, a thorough comprehension of the methodologies employed

is needed rather than relying solely on the direct execution of

open-source code.

As a general approach for all phases, sharing of scripts

and properties of the computation environment is required

for complete reproducibility (Eglen et al., 2017). Text in code

is expected to be human-readable, with necessary explanations

provided in the comments. Reproducible code practices such as

PEP-8 (Van Rossum et al., 2001) are suggested to use. Additionally,

open-sourcing raw or at least preprocessed data with the definition

of data and data structure should be ensured for full reproducibility.

Shared resources ought to be easily accessible, and permanent

access should be preferred.
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TABLE 1 Compiled checklist in relation to CRISP-DM phases: items on the

checklist marked with a † reflect best practices or are related to

generalizability while those that are not marked directly a�ect

reproducibility.

CRISP-DM
phase

Research
step

Compiled checklist

Business
Understanding

Problem
definition

Problem/Scope statement

Related literature†

Data
Understanding

General Dataset (name if public or private)

Participant
selection

Number of participants

Participant recruitment method†

(e.g., direct mailing, advertisements)

Participant sampling strategy
(that constrain inclusion to a
particular group/including
population from which the
participants were sampled)

Age of participants

Gender of participants

Education level of participants

Medications taken by the
participants

Prior/Current illness of participants

Information on sleep deprivation

Handedness of participants

Consent of participants†

Experimental
setup

Type of EEG sensor/device
(including make and model)

Number of sensors

Sensor locations

Sampling rate

Online filters
(Type of filter and parameters)

Electrode impedance

Amplifier characteristics

Measurement procedures

Recording environment

Participant seated or lying down
status

Experimental
task
information

Task description

Characteristics of stimuli

Instructions for the task

Number of runs and sessions

Clear timeline including
- Timing of all stimuli/events
- Intertrial intervals

(Continued)

TABLE 1 (Continued)

CRISP-DM
phase

Research
step

Compiled checklist

Software and hardware used for
stimulus presentation

Task-free
recordings

Definition

Timing

Eyes open vs closed status

If eyes open, fixation point usage

Behavioral
measures

Nature of the response

Acquisition device and parameters

Interface with EEG data and
calibration procedures

Errors and outliers handling

Subjective
measures

Subjective assessments recorded
- Timing
- Method

Labeling Definition

Analysis Recording length

Statistical analysis to justify the
number of trials and number of
participants†

Statistical analysis for descriptives of
the collected measurements†

Open sourcing Open-sourced raw data with version
control

Open-sourced code for data
collection with version control

Open-sourced code/software for
task execution with version control

Data Preparation General Flow of algorithms for preprocessing
and transforming data

Seeds for random number
generators

Sensor/Segment
removal

For sensor/segment removal
- Detection method and criteria
- Interpolation parameters
- Removed sensors/segments

Artifact
removal

For artifact removal/correction
- Method
- Range of parameters
- Types of artifacts identified
- Criteria to identify
- Number/proportion of removed
artifacts
- Position of removed artifacts

For signal–noise separation methods
- Method
- Parameters
- Number of ICs
- How non-brain ICs were identified
- How back-projection was
performed

(Continued)
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TABLE 1 (Continued)

CRISP-DM
phase

Research
step

Compiled checklist

Downsampling For downsampling
- Method
- Parameters

Detrending For detrending
- Method
- Parameters

Filtering For filtering
- Filter type
- Parameters

Segmentation For segmentation
- Method
- Parameters

Baseline
correction

For baseline correction
- Method
- Parameters

Re-referencing For re-referencing
- Method

Dimensionality
Reduction

For dimensionality reduction
- Method
- Parameters

Feature
generation

For feature generation
- Definition of features
- Number of features
- Method
- Parameters

Descriptive / Inferential statistics†

- The statistical method
- Parameters

Feature
selection

Feature selection
- Method
- Number of selected features
- Parameters
- Selected features

Data split For data split (as training, validation
and test)
- Method
- Parameters

Separate test set†

Feature
transformation

Feature transformation
(Normalization, Standardization,. . . )
- Method
- Parameters

Feature transformations applied
using training data?†

Data
augmentation

Data augmentation
- Method
- Parameters

Data augmentation applied using
training data?†

Environment Computing infrastructure

Dependencies

Open sourcing Open-sourced preprocessed data
with version control

Open-sourced code for data
preparation with version control

Modeling General ML problem (n-class MWL
classification)

(Continued)

TABLE 1 (Continued)

CRISP-DM
phase

Research
step

Compiled checklist

Seeds for random number
generators to prevent randomness in
results

Model Algorithm name

Explanation in detail, motivation
and intended behavior†

Loss function and parameters

Regularization method and
parameters

Model structure

Training
strategy

Hyperparameters of the model

Method for hyperparameter tuning

Hyperparameter ranges for tuning

Number of trials for hyperparameter
tuning

Selected hyperparameters

Model training Optimization method and
parameters

Number of training
epochs/iterations

Additional methods used during
training and their parameters if any
(e.g. early stopping, ..)

Metrics Metrics for model evaluation

Chance-level values of metrics†

Data split that the metrics are
calculated on

When the dataset is imbalanced,
metrics other than accuracy†

Confusion matrix†

Environment Computing infrastructure

Dependencies

Open sourcing Open-sourced trained models with
version control

Open-sourced code for model
training with version control

Evaluation Statistical
analysis

Statistical analysis for significance of
results†

- Method
- Parameters

Metrics Performance on independent test
set†

Computational resources for
training† (e.g. Model size, Training
time, Power consumption, Carbon
emissions)

Conclusion Relation of results to the problem
statement

Open sourcing Open-sourced code for evaluation
with version control

(Continued)
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TABLE 1 (Continued)

CRISP-DM
phase

Research
step

Compiled checklist

Deployment Deployment
Technique

Deployment techniques for limited
resources
(e.g. quantization of the model, . . . )
- Method
- Parameters

Metrics Computational resources for
inference† (e.g. Model size,
Inference time, Power consumption,
Carbon emissions)

Environment Deployment infrastructure

Dependencies

Interfaces

Schematic or sample view

Deployment
Test

Performance check† (to see both
development and production
environments yield sufficiently
similar results given identical input
data)

Performance monitoring method
after deployment†

5.1 Business understanding

In the context of machine learning research utilizing EEG

data, stating the problem, including specific research questions

or hypotheses and corresponding predictions (Keil et al., 2014),

along with the related assumptions and literature provides a clear

foundation and facilitates choosing the proper methodologies.

A full grasp of the research problem, as well as the associated

terminologies, is required to accomplish this phase. For this aspect,

the following items are included in the checklist: “Problem/Scope

statement” and “Related literature”.

5.2 Data understanding

This phase encompasses data collection, data description,

data exploration, and data quality verification. Data collection

and experiment design constitute a huge component of machine

learning research with EEG data. Therefore, to better capture

this important and multi-faceted process, we divide the “Data

Collection” task of this phase into multiple research steps,

namely, “General”, “Participant Selection”, “Experimental Setup”,

“Experimental Task Information”, “Task-free Recordings”,

“Behavioral Measures”, “Subjective Measures” and “Labeling”.

Tables 2, 3 show the items of the checklist grouped by data

collection research step together with their main reference. We

mostly used items from Keil et al. (2014); Pernet et al. (2020) and

Putze et al. (2022).

For recordings during real-life applications, such as driving or

flying an airplane, marking recordings with respect to events would

be more appropriate than using stimuli. In these cases, intertrial

TABLE 2 Checklist items related to data collection-1.

Research
step

Compiled checklist References

General Dataset (name if public or private)

Participant
selection

Number of participants

Participant recruitment method
(e.g., direct mailing, advertisements)

Pernet et al., 2020;
Putze et al., 2022

Participant sampling strategy
(that constrain inclusion to a
particular group/including
population from which the
participants were sampled)

Pernet et al., 2020;
Putze et al., 2022

Age of participants Keil et al., 2014;
Pernet et al., 2020;
Putze et al., 2022

Gender of participants Keil et al., 2014;
Pernet et al., 2020;
Putze et al., 2022

Education level of participants Keil et al., 2014

Medications taken by the
participants

Pernet et al., 2020

Prior/Current illness of participants

Information on sleep deprivation Kane et al., 2017

Handedness of participants

Consent of participants Pernet et al., 2020

Experimental
setup

Type of EEG sensor/device
(including make and model)

Keil et al., 2014;
Putze et al., 2022

Number of sensors Keil et al., 2014

Sensor locations Keil et al., 2014;
Putze et al., 2022

Sampling rate Keil et al., 2014;
Putze et al., 2022

Online filters
(Type of filter and parameters)

Keil et al., 2014

Electrode impedance Keil et al., 2014;
Putze et al., 2022

Amplifier characteristics Keil et al., 2014

Measurement procedures Keil et al., 2014

Recording environment Pernet et al., 2020;
Putze et al., 2022

Participant seated or lying down
status

Pernet et al., 2020

Experimental
task

Task description

information Characteristics of stimuli Keil et al., 2014;
Pernet et al., 2020

Instructions for the task Pernet et al., 2020;
Putze et al., 2022

Number of runs and sessions Pernet et al., 2020

Clear timeline including
-Timing of all stimuli/events
-Intertrial intervals

Keil et al., 2014;
Putze et al., 2022

Software and hardware used for
stimulus presentation

Pernet et al., 2020;
Putze et al., 2022
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TABLE 3 Checklist items related to data collection-2.

Research
step

Compiled checklist References

Task-free
recordings

Definition

Timing

Eyes open vs closed status Pernet et al., 2020

If eyes open, fixation point usage Pernet et al., 2020

Behavioral
measures

Nature of the response Pernet et al., 2020

Acquisition device and parameters Pernet et al., 2020

Interface with EEG data and
calibration procedures

Pernet et al., 2020;
Putze et al., 2022

Errors and outliers handling Pernet et al., 2020

Subjective
measures

Subjective assessments recorded
-timing
-method

Labeling Definition Putze et al., 2022

intervals or stimulus properties would not be applicable, and the

checklist needs to be tailored to reflect such nuances.

EEG data is heavily dependent on the experimental settings

and also the user’s state of mind. Collecting additional data, such

as subjective assessments and behavioral data, would be beneficial

to mitigate the effects of these dependencies. These additional

data can be instrumental during the evaluation of results, can be

directly integrated into the models to normalize the data, or serve

as separate input.

Labels should be clearly defined—e.g., whether workload labels

are derived from task difficulty, subjective measures, or judgments

by subject matter experts.

We consider data description, data exploration, and data

quality verification tasks of CRISP-DM “Data Understanding”

phase under the “Analysis” research step. For this step, we include

in the checklist “Recording length”, “Statistical analyses to justify

the number of trials and the number of participants” (Pernet et al.,

2020), and “Statistical Analysis for descriptives of the collected

measurements” (Keil et al., 2014). Exploratory data analysis to

check for quality and descriptive analysis to better understand the

data is advised tomake informed decisions in the upcoming phases.

Furthermore, we also encourage the sharing of data to

facilitate reproduction studies, along with the disclosure of source

code/software used for data collection and task execution (Putze

et al., 2022) under “Open-sourcing” step. An experiment cannot

be reproduced to gather new data if the details of execution and

data collection are left out. To prevent having to report every

detail, standardized data collection methodologies and experiment

software are required. This transparency enables independent labs

to conduct the same experiment and replicate the results using their

own data. Storing data in a standardized structure, such as EEG-

BIDS (Pernet et al., 2019), is essential. Sharing of physiological data

raises ethical considerations and informed consent of participants

for the study, and usage or sharing of their data is obligatory during

data collection (Hendriks et al., 2019).

5.3 Data preparation

This phase entails the tasks of selecting, cleaning, constructing,

integrating, and formatting data in accordance with CRISP-DM.

These tasks correspond to a large portion of the overall research

process, from data preprocessing and feature generation to feature

selection and feature transformation. The flow of steps used for

preprocessing, feature generation, selection, and transformation

should be well-defined (Keil et al., 2014) as well as themethods used

and their related parameters. Seeds for random number generators

need to be used and reported to prevent randomness in results

(Azad et al., 2021).

We put special emphasis on data preprocessing steps, keeping

in mind that there is not a common single pipeline and applications

vary as well as the implementations and tools (Delorme et al., 2011;

Bigdely-Shamlo et al., 2015; Robbins et al., 2020; Pernet et al., 2021;

Delorme, 2023). Therefore, we aim to list the most commonly used

techniques in our checklist (Table 1), in no particular order, leaving

it to interested parties to tailor the same detailed approach for

their own research. We took into account (Keil et al., 2014; Pernet

et al., 2020; Putze et al., 2022) to list the most used preprocessing

methods. More than one preprocessing pipeline can be used, yet

consistency in feature generation, selection, and transformation

steps is important throughout the study. All algorithms and
corresponding parameters should be explicitly defined, and best

practices for the applied methods should be followed. For example,

de Cheveignè and Nelken (2019) reviewed filtering and explained

how to choose the right filter. Keeping track of input and output
data, data types, and data size at each research step supports

coherence throughout the project.

Feature generation and feature selection are the next steps
after preprocessing to prepare data for machine learning (Putze

et al., 2022). Features are expected to be defined together with the

method and parameters used to construct and select them. The
total number of features, as well as the selected features and their

number, should be stated. If descriptive or inferential statistics were

analyzed, their method and parameters need to be reported (Keil

et al., 2014).

Cross-validation is a widely employed technique to enhance
model performance and generalizability. While cross-validation

is typically performed during the modeling or evaluation phases,

the initial step of splitting the data and setting aside a test set
to prevent data leakage falls under the data preparation phase.

In cases involving models that necessitate hyperparameter tuning,

such as deep learning models or other parametric models, the

hyperparameters are fine-tuned based on the performance metrics

of validation sets. Consequently, an independent, unseen dataset

for reporting the model’s performance is required since the

utilization of the validation set for hyperparameter optimization

inherently introduces bias to the outcomes from the validation set.

For these cases, it is common practice to divide the dataset into

train, validation, and test sets. To ensure an unbiased estimate of

the model’s performance, the unseen test data should be set aside,

excluding it from bothmodel development and assessment until the

final reporting stage to demonstrate themodel’s generalizability and

avoid wrongly optimistic performance. Data split needs to return

independent sets according to the task at hand to prevent leakage.

For example, cross-subject estimation requires a subject-wise split,
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while cross-session models necessitate a session-specific split.

Finding that models’ performance cannot be reproduced from one

individual to another, or from one session to another, will lead the

research community to use other features or develop other types of

models that can be generalized or to the conclusion that individual

models are required. After the data is split into train, validation, and

test sets, any data augmentation, transformation, or normalization

should be executed using only the training set parameters to

avoid potential data leakage. Brouwer et al. (2015) emphasizes the

importance of selecting such parameters separately from the test set

and using independent training and test sets as good classification

practice. This approach establishes an unbiased common ground

for the comparison of different algorithms. As a result, we add

“Data split (Method, Parameters)” (Pineau et al., 2021), “Separate

test set”, “Feature transformation (Method, Parameters)”, “Feature

transformations applied using training data?”, “Data Augmentation

(Method, Parameters)”, and “Data Augmentation applied using

training data?” items to our checklist.

Overall, the process to obtain the feature sets should be

provided in detail to prevent any gaps when generating them from

scratch. Additionally, open-sourcing the scripts or providing the

processed data would also mitigate these concerns (Gundersen and

Kjensmo, 2018; Pineau et al., 2021; Putze et al., 2022).

5.4 Modeling

This phase consists of selecting the model, generating the test

design, and building and assessing the model. Best practices in

the literature need to be followed for these tasks. For example,

Bengio (2012) provides practical recommendations for training

deep neural networks.

When selecting a model, one should provide a detailed

explanation of the rationale behind the choice and its intended

behavior (Gundersen and Kjensmo, 2018). In the case of opting for

an existing validated method, the report should reference relevant

packages, functions, or repositories. Additionally, one should

explicitly state model parameters, including the loss function,

regularization, other internal settings, and model structure, if

applicable. Similar to data preparation, the use and reporting of

random number generator seeds for reproducibility and obtaining

deterministic results should also be ensured.

Generating the test design is inherent to the training strategy.

For parametric methods, hyperparameters of the model and the

method for tuning them together with their ranges and number of

trials should be reported, including the selected hyperparameters

(Pineau et al., 2021; Putze et al., 2022). After the test design, the

upcoming step in the project is model training. The optimization

method and its parameters as well as the number of training

epochs or iterations (Pineau et al., 2021) should be defined at this

stage. Additional techniques utilized during training, such as early

stopping, need to be stated with the relevant parameters (Bengio,

2012).

Once test design and model building are completed, generated

models need to be assessed technically and compared to choose the

best model or models. Evaluation metrics should be defined with

their reasoning (Pineau et al., 2021; Putze et al., 2022) and their

chance-level values need to be included. Naive baseline models and

naive predictions are important to build, in particular when dealing

with class imbalanced datasets. A naive model, which generates the

majority class label at all times could imply whether the developed

model is useful. Chance-level values can be extracted by using

random estimators.

Additionally, attention is required when the model
performance is to be compared with baseline parametric

models proposed in the literature. Using model parameters as
they are would lead to wrong conclusions since they would be
tuned specifically to the dataset of the original study. Parameters

of baseline models should also be adjusted, if possible, with the

methodology provided in the original paper to perform a fair

comparison (Sculley et al., 2018). This would be possible if the

reference study is also reproducible.

When reporting the results, the data split that the metrics

are calculated on (train, validation, or test) must be explicitly

stated.When the dataset is imbalanced, metrics other than accuracy

should be used. Using confusion matrices is encouraged to identify

regions where the model does not fit completely. This is specifically

relevant for machine learning with EEG since these datasets are

usually small. Using a combination of complementary metrics

rather than relying on a single metric helps a more extensive

understanding of machine learning performance (Canbek et al.,

2021). Moreover, categories of data can be used to break down

performance measures to understand the results in different

regions (Sculley et al., 2018).

Machine learning models are prone to computational

environment changes; therefore, a description of the computing

hardware and software infrastructure needs to be presented

together with the dependencies, including external libraries and

their versions or virtual environment with all dependencies

(Gundersen and Kjensmo, 2018; Pineau et al., 2021). It would be

beneficial to test whether the same set of packages works on other

related environments, such as on a different device or operating

system, before moving on to deployment.

In conclusion, similar to the approach in the Data Preparation

phase, the process for modeling should be described in

detail so that an independent researcher can reproduce the

results. Open-sourcing the modeling scripts and providing

the trained models are also encouraged for details that may

have been left out or to mitigate misunderstandings from

written text.

Data Preparation and Modeling phases are managed iteratively

since the two phases affect each other closely.

5.5 Evaluation

In this phase, results are discussed in line with the

research questions or hypotheses stated in the Business

Understanding phase.

Due to high efforts required in EEG data collection, the

number and variety of participants are usually low. Therefore,

the distribution of the whole population cannot be normally

captured equally within data splits. Model selection, assessment,

and comparison need to be performed on validation sets since

Frontiers inNeuroergonomics 10 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1346794
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Demirezen et al. 10.3389/fnrgo.2024.1346794

training sets are used for model training. After finding the best

model, to generate an unbiased estimate of the performance, an

independent test set should be used for reporting. This test set

should not be included in model development or selection. Results

on the test set need to be presented to check for generalizability

and prevent misleading optimistic findings. For the most reliable

results, nested cross-validation is recommended (Pernet et al.,

2020). Finally, statistical analysis should be performed to ascertain

the significance of results. For comparison of classifiers, appropriate

statistical tests need to be used (Müller-Putz et al., 2008), such as

(non-parametric) Wilcoxon signed ranks and the Friedman test

(Demšar, 2006).

Recently, Strubell et al. (2020) emphasized the increase in

computational resources of machine learning research as larger

models are trained with larger amounts of data for performance

improvement. They advise researchers to report training time and

sensitivity to hyperparameters. Moreover, they are expected to

prioritize computationally efficient hardware and algorithms and

be mindful of energy sources powering their computing. Schwartz

et al. (2020) proposed Green AI, where the focus of research

would be efficiency rather than accuracy. This approach aims

to reduce the environmental impact of model training and the

entry barriers to the field, both caused by increased computational

resource requirements. Computational resources for training, such

as model size, run time or power consumption, and carbon

emissions, need to be reported to promote responsible AI that

is energy-efficient. Releasing code and data or models also helps

reduce carbon emissions as it will reduce the energy spent on

replicating the results by other researchers (Henderson et al., 2020).

Open-sourcing the scripts for evaluation is also encouraged to

perform appropriate comparisons.

After the evaluation of results in this phase, the process is

reviewed, and the next steps are determined as to reiterate from the

Business Understanding phase or move on with Deployment.

5.6 Deployment

While deploying models is essential for real-world applications,

current EEG (workload) research tends to focus more on

developing new methods for classification or data processing

approaches rather than on deployment specifics. When models are

deployed, it is important to provide details about the deployment

hardware, software infrastructure, and dependencies. Additionally,

reporting required computational resources for inference, such

as inference time, power consumption, and carbon emissions, is

necessary. Challenges arise with the growing sizes of recent models,

like those in natural language or image processing, as they may

pose difficulties in deployment due to constraints on size or cost in

practical applications. Deployment techniques, including low-rank

factorization or model quantization, along with computational

optimization methods, can be employed to address these challenges

(Huyen, 2022). If such techniques are used, it is important to report

the methods and parameters involved.

Interfaces and schematic or sample views need to be presented

for a good understanding of the application. The performance of

the model is required to be verified to yield sufficiently similar

results in both development and production environments given

identical input.

In an optimal scenario, for results to be deemed appropriate

for a real-world application, developed models should exhibit

consistent and acceptable performance across diverse subjects

and various time frames. If the conditions permit, it would be

best to model and evaluate these aspects to demonstrate the

generalizability before deployment. Between the development and

deployment environments, data flow must be consistent end-to-

end, from preprocessing the data to generating the features and

inferring the results. Moreover, after deployment, performance

needs to be monitored andmaintained continuously to prevent any

problems and model drift. The method to achieve this monitoring

can be reported for transparency.

6 Reproducibility in machine learning
models to predict mental workload
using EEG

We performed a comprehensive literature review to assess

the extent to which the aspects in the checklist (Table 1)

have been implemented within the domain of mental workload

classification studies utilizing EEG data. Although this section

is dedicated to assessing the reproducibility status of mental

workload classification using EEG, the guidelines and checklist

have the potential to be applicable to most other EEG machine

learning studies.

6.1 Literature search strategy

Figure 2 shows our search strategy. During phase I, we searched

in titles, abstracts, and keywords in Scopus, Web of Science,

ACM Digital Library (ACM DL), and Pubmed databases with

the following search term: “Machine Learning” AND “EEG” AND

(“Workload” OR “Cognitive Load” OR “Mental Effort” OR “Mental

Load”) in September 2023. We did not include limits on the

language at this stage. We also searched in the “Frontiers in

Neuroergonomics” journal from the webpage as at the time of the

search, this journal was not yet indexed in the aforementioned

databases and its scope directly entails our topic. We searched

in full-text for this journal because a search based on only titles,

abstracts, and keywords was not possible.

6.2 Eligibility criteria

In phase II, we selected publications according to the criteria

given in Table 4. All inclusion criteria are domain-specific, and all

exclusion criteria are generic.

6.3 Analysis of the studies

The search in the databases produced 376 publications in total.

The Scopus search produced 210 articles.Web of Science yielded 73
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FIGURE 2

Search strategy for literature review 2.

TABLE 4 Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

I1 Models mental
workload/cognitive load

E1 Original language is not
English

I2 Applies machine learning E2 Full text is not available

I3 Uses only EEG data features E3 Review paper

I4 Uses at least one classifier

I5 Uses EEG data at the sensor
level

papers, but none of them were different. Only one out of ten results

from ACM DL was distinct. Pubmed search produced 61 results,

7 of which were new. The search in Frontiers in Neuroergonomics

generated 22 results. As a result, we had 240 unique articles from

these four databases when duplicates were removed. From these,

59 publications met the eligibility criteria (Table 5). In phase III,

we inspected these publications in detail. We showcase the status of

reproducibility among the selected papers by following the checklist

given in Table 1. Results of phase III are presented in Section 6.4.

6.4 Reproducibility analysis

By inspecting the selected 59 publications based on the full

text according to the guidelines presented in Table 1, we aimed to

establish which elements of the guidelines in our list are commonly

adhered to, and which elements of the guidelines in our list

are commonly ignored in machine learning research that models

mental workload using EEG.

1. Business Understanding: Related to the Business Understanding

phase, we considered “Problem/Scope statement” present

when the objective of the paper was stated in the Abstract

or Introduction sections. Additionally, if the problem was

described in the Introduction with references or a separate

“Literature Review” section, “Related literature” was marked as

present. According to our analysis, all publications defined the

problem and presented relevant literature, although the extent

of their coverage differed.

2. Data Understanding: Checklist items regarding Participant

Selection, Experimental Setup, Experimental Task Information,

Task-free recordings, Behavioral Measures, SubjectiveMeasures,
Labeling, and Analysis research steps are evaluated for the

selected papers. Table 6 shows the reported percentages of the

checklist items related to the participants, experiment, labeling,
and statistical analysis. Table 7 shows the reported percentages
of additionally collected data, namely, task-free recordings,

behavioral and subjective measures.

Sixteen of the publications used an open dataset. When
a publication referenced an open dataset, we checked the

relevant publication to analyze if the checklist items were

reported. Additionally, when more than one dataset was used,
we marked an item present if it was included for at least

one of the datasets. We considered the “Education level of

participants” provided if the “Participant sampling strategy”

stated information about education level, for example, graduate
students or pilots. “Prior/Current illness of participants” was

marked as reported if it was explicitly stated or the participants

were stated to be healthy. Participants identified as healthy were

presumed to be free from medication use.

“Amplifier characteristics” were considered present when an

amplifier model or amplifier properties such as channel number

or time constant were specified. “Participant seated or lying

down status” was marked as present if it was explicitly stated or

it could be inferred from the recording environment or the task.

“Recording length” was considered given if it was explicitly

stated or it could be calculated from given information.

Characteristics of stimuli were marked as given when it was

explicitly stated or it could be inferred from the task description,

for example, visual or auditory stimuli. Detailed instructions

for the experimental task are required for reproduction.

We marked a study to have reported instructions, whether

the instructions were related to the experiment execution

or physical restraints, such as refraining from movement.

Even if most of the studies (80%) reported instructions,

capturing all information in reports to enable the execution

of tasks by other researchers is hard. Although 73% had

their own recording and dataset, only three of them had the

raw data available upon request, and two of them had the

preprocessed data available. Open datasets and standardized

data collection methodologies and experiment settings should

be established to overcome most of these challenges. Similarly,

open-source codes help to reproduce the methodologies

and provide a common baseline for comparisons, yet

only two of the publications shared their data processing

repositories. In addition to open-sourcing, authors need to

be willing to help other researchers perform experiments.

Expanding the knowledge base toward generalizable models
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TABLE 5 List of publications.

References Year Title Journal/
Conference name

Taheri Gorji et al. (2023) 2023 Using machine learning methods and EEG to discriminate
aircraft pilot cognitive workload during flight

Scientific Reports

Chiang et al. (2023) 2023 Using EEG signals to assess workload during memory retrieval in
a real-world scenario

Journal of Neural Engineering

Zhu et al. (2023) 2023 Recognition of Pilot Mental workload in the Simulation
Operation of Carrier-based Aircraft Using the Portable EEG

ACM International Conference Proceeding Series

Zemla et al. (2023) 2023 Modeling of Brain Cortical Activity during Relaxation and Mental
Workload Tasks Based on EEG Signal Collection

Applied Sciences (Switzerland)

Zhang et al. (2023) 2023 A Mental Workload Classification Method Based on GCN
Modified by Squeeze-and-Excitation Residual

Mathematics

Guan et al. (2023) 2023 Cross-Task Mental Workload Recognition Based on EEG Tensor
Representation and Transfer Learning

IEEE Transactions on Neural Systems and
Rehabilitation Engineering

Teymourlouei et al. (2023) 2023 Decoding EEG Signals with Visibility Graphs to Predict Varying
Levels of Mental Workload

2023 57th Annual Conference on Information Sciences
and Systems, CISS 2023

Kingphai and Moshfeghi
(2023)

2023 On Time Series Cross-Validation for Deep Learning Classification
Model of Mental Workload Levels Based on EEG Signals

Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics)

Zheng et al. (2023) 2023 Inter-subject cognitive workload estimation based on a cascade
ensemble of multilayer autoencoders

Expert Systems with Applications

Yedukondalu and Sharma
(2023)

2023 Cognitive load detection using circulant singular spectrum
analysis and Binary Harris Hawks Optimization based feature
selection

Biomedical Signal Processing and Control

Patel et al. (2022) 2022 Optimal classification of N-back task EEG data by performing
effective feature reduction

Sadhana - Academy Proceedings in Engineering
Sciences

Albuquerque et al. (2022) 2022 Estimating distribution shifts for predicting cross-subject
generalization in electroencephalography-based mental workload
assessment

Frontiers in Artificial Intelligence

Sciaraffa et al. (2022) 2022 Evaluation of a New Lightweight EEG Technology for
Translational Applications of Passive Brain-Computer Interfaces

Frontiers in Human Neuroscience

Wu et al. (2022) 2022 Self-Paced Dynamic Infinite Mixture Model for Fatigue
Evaluation of Pilots’ Brains

IEEE Transactions on Cybernetics

Raufi and Longo (2022) 2022 An Evaluation of the EEG Alpha-to-Theta and Theta-to-Alpha
Band Ratios as Indexes of Mental Workload

Frontiers in Neuroinformatics

Zhao et al. (2022) 2022 Assessing Distinct Cognitive Workload Levels Associated with
Unambiguous and Ambiguous Pronoun Resolutions in
Human–Machine Interactions

Brain Sciences

Yedukondalu and Sharma
(2022)

2022 Cognitive load detection using Binary salp swarm algorithm for
feature selection

2022 IEEE 6th Conference on Information and
Communication Technology, CICT 2022

Liu et al. (2022) 2022 EEG based Mental Workload Assessment by Power Spectral
Density Feature

2022 IEEE International Conference on Mechatronics
and Automation, ICMA 2022

Babu et al. (2022) 2022 Analysis of Mental Task Ability in Students based on
Electroencephalography Signals

SPICES 2022 - IEEE International Conference on
Signal Processing, Informatics, Communication and
Energy Systems

Zanetti et al. (2022) 2022 Real-Time EEG-Based Cognitive Workload Monitoring on
Wearable Devices

IEEE Transactions on Biomedical Engineering

Hussain et al. (2021) 2021 Driving-induced neurological biomarkers in an advanced
driver-assistance system

Sensors

Sharma et al. (2021) 2021 Cognitive performance detection using entropy-based features
and lead-specific approach

Signal, Image and Video Processing

Kakkos et al. (2021) 2021 EEG Fingerprints of Task-Independent Mental Workload
Discrimination

IEEE Journal of Biomedical and Health Informatics

Rahman et al. (2021) 2021 Prediction and Detection in Change of Cognitive Load for VIP’s
by A Machine Learning Approach

3rd IEEE International Conference on Artificial
Intelligence in Engineering and Technology, IICAIET
2021

(Continued)
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TABLE 5 (Continued)

References Year Title Journal/
Conference name

Kutafina et al. (2021) 2021 Tracking of mental workload with a mobile eeg sensor Sensors

Shao et al. (2021) 2021 FINE-GRAINED and MULTI-SCALE MOTIF FEATURES for
CROSS-SUBJECT MENTALWORKLOAD ASSESSMENT
USING BI-LSTM

Journal of Mechanics in Medicine and Biology

Balamurugan et al. (2021) 2021 Brain–computer interface for assessment of mental efforts in
e-learning using the nonmarkovian queueing model

Computer Applications in Engineering Education

Ved and Yildirim (2021) 2021 Detecting Mental Workload in Virtual Reality Using EEG Spectral
Data: A Deep Learning Approach

Proceedings - 2021 4th IEEE International Conference
on Artificial Intelligence and Virtual Reality, AIVR
2021

Cheng et al. (2021) 2021 The Cognitive Load Evaluation Based on EEG with K-Nearest
Neighbor Algorithm

ISPACS 2021 - International Symposium on Intelligent
Signal Processing and Communication Systems: 5G
Dream to Reality, Proceeding

Sciaraffa et al. (2021) 2021 Mental Effort Estimation by Passive BCI: A Cross-Subject
Analysis

Proceedings of the Annual International Conference of
the IEEE Engineering in Medicine and Biology Society,
EMBS

Diwakar et al. (2020) 2020 Deep Learning Identifies Brain Cognitive Load Via EEG Signals 2020 IEEE 17th India Council International
Conference, INDICON 2020

Do et al. (2020) 2020 Estimating the cognitive load in physical spatial navigation 2020 IEEE Symposium Series on Computational
Intelligence, SSCI 2020

Pandey et al. (2020) 2020 Mental Workload Estimation Using EEG Proceedings - 2020 5th International Conference on
Research in Computational Intelligence and
Communication Networks, ICRCICN 2020

Becerra-Sánchez et al. (2020) 2020 Feature selection model based on eeg signals for assessing the
cognitive workload in drivers

Sensors

Qiao and Bi (2020) 2020 Ternary-task convolutional bidirectional neural turing machine
for assessment of EEG-based cognitive workload

Biomedical Signal Processing and Control

Plechawska-Wójcik et al.
(2019)

2019 A three-class classification of cognitiveworkload based on EEG
spectral data

Applied Sciences (Switzerland)

Tao et al. (2019) 2019 Individual-specific classification of mental workload levels via an
ensemble heterogeneous extreme learning machine for EEG
modeling

Symmetry

Gu et al. (2019) 2019 EEG based mental workload assessment via a hybrid classifier of
extreme learning machine and support vector machine

Chinese Control Conference, CCC

Yin et al. (2019) 2019 Physiological-signal-based mental workload estimation via
transfer dynamical autoencoders in a deep learning framework

Neurocomputing

Zhang et al. (2019a) 2019 Spectral and Temporal Feature Learning with Two-Stream Neural
Networks for Mental Workload Assessment

IEEE Transactions on Neural Systems and
Rehabilitation Engineering

Di Flumeri et al. (2019) 2019 EEG-Based Workload Index as a Taxonomic Tool to Evaluate the
Similarity of Different Robot-Assisted Surgery Systems

Communications in Computer and Information
Science

Sciaraffa et al. (2019) 2019 On the Use of Machine Learning for EEG-Based Workload
Assessment: Algorithms Comparison in a Realistic Task

Communications in Computer and Information
Science

Zhang et al. (2019b) 2019 Learning Spatial-Spectral-Temporal EEG Features With
Recurrent 3D Convolutional Neural Networks for Cross-Task
Mental Workload Assessment

IEEE Transactions on Neural Systems and
Rehabilitation Engineering

Parekh et al. (2018) 2018 Investigating the generalizability of EEG-based cognitive load
estimation across visualizations

Proceedings of the 20th International Conference on
Multimodal Interaction, ICMI 2018

Blanco et al. (2018) 2018 Quantifying cognitive workload in simulated flight using passive,
dry EEG measurements

IEEE Transactions on Cognitive and Developmental
Systems

Appriou et al. (2018) 2018 Towards robust neuroadaptive HCI: Exploring modern machine
learning methods to estimate mental workload from EEG signals

Conference on Human Factors in Computing Systems -
Proceedings

Jiao et al. (2018) 2018 Deep Convolutional Neural Networks for mental load
classification based on EEG data

Pattern Recognition

(Continued)
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TABLE 5 (Continued)

References Year Title Journal/
Conference name

Saha et al. (2018) 2018 Classification of EEG signals for cognitive load estimation using
deep learning architectures

Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics)

Cheema et al. (2018) 2018 Mental workload estimation from EEG signals using machine
learning algorithms

Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics)

Dai et al. (2017) 2017 Mental workload classification in n-back tasks based on
single-trial EEG

Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific
Instrument

Yin and Zhang (2017) 2017 Cross-session classification of mental workload levels using EEG
and an adaptive deep learning model

Biomedical Signal Processing and Control

Zhou et al. (2017) 2017 Monitoring cognitive workload in online videos learning through
an EEG-based brain-computer interface

Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics)

Abrantes et al. (2017) 2017 Classification of EEG features for prediction of working memory
load

Advances in Intelligent Systems and Computing

Aricò et al. (2016a) 2016 Adaptive automation triggered by EEG-based mental workload
index: A passive brain-computer interface application in realistic
air traffic control environment

Frontiers in Human Neuroscience

Aricò et al. (2015) 2015 Reliability over time of EEG-based mental workload evaluation
during Air Traffic Management (ATM) tasks

Proceedings of the Annual International Conference of
the IEEE Engineering in Medicine and Biology Society,
EMBS

Ke et al. (2015) 2015 Towards an effective cross-task mental workload recognition
model using electroencephalography based on feature selection
and support vector machine regression

International Journal of Psychophysiology

Dimitriadis et al. (2015) 2015 Cognitive Workload Assessment Based on the Tensorial
Treatment of EEG Estimates of Cross-Frequency Phase
Interactions

Annals of Biomedical Engineering

Penaranda and Baldwin
(2012)

2012 Temporal factors of EEG and artificial neural network classifiers
of Mental Workload

Proceedings of the Human Factors and Ergonomics
Society

Grimes et al. (2008) 2008 Feasibility and pragmatics of classifying working memory load
with an Electroencephalograph

Conference on Human Factors in Computing Systems -
Proceedings

for real-life applications is possible by achieving a collaborative

research environment.

3. Data preparation: In our analysis, we considered the “flow

of algorithms” included even if it was listed in one sentence.

Flow of algorithms used to preprocess data, to generate and

select features and to develop models were reported for most of

the studies (93%). ’Seeds for random number generators’ were

marked as given when they were stated explicitly or the code

was open. Two publications, which shared their codes, were

consequently marked as reporting them and one publication

provided the seed number.

Table 8 shows the status of preprocessing items. The

percentage of application of the research steps and the

percentage that parameters were reported among them

are presented. Similar to performing the experiments, data

preparation, and modeling would be best understood by

independent researchers when code and data are shared to

prevent having to state all parameters in detail.

Feature generation was unclear for three of the publications,

and the number of features was not explicitly stated for

29% of the publications. Feature generation method and

parameters were not explicitly stated for 32% and 41% of

the publications, respectively. Thirty four% of the publications

performed descriptive statistics and themethodwas specified for

85% of them.

53% of the publications performed feature selection, and

60% of those that performed feature selection indicated the

number of selected features. 93% of the publications stated

method for data splits, and 25% among them listed their

parameters in the form of percentages, fold numbers, or session-

based splits.

Fifteen% and 42% of the publications provided information

about the computing infrastructure and dependencies,

respectively. “Dependencies” were marked given even

if only one software package or software was stated

(e.g., Python, scikit-learn, Tensorflow, EEGLAB (version

14.2.0), MATLAB2019b).

4. Modeling: For the modeling phase, 64% of the studies explain

the algorithm used and the motivation to apply it. Sixty-

nine% of the publications state the hyperparameters, 56%,

44% and 41% of them report the method for hyperparameter

tuning, state ranges of the hyperparameters, and present selected

hyperparameters, respectively. Only one of the publications that

use methods other than grid search reported the number of
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TABLE 6 Reported percentages of checklist items in the data

understanding phase-1.

Research
step

Checklist item Percentage
reported (%)

Participant
selection

Participant recruitment method 8

Participant sampling strategy 75

Age of participants 71

Gender of participants 76

Education level of participants 59

Medications taken by the
participants

34

Prior/Current illness of
participants

64

Information on sleep deprivation 7

Handedness of participants 42

Consent of participants 66

Experimental
setup

Type of EEG sensor/device 86

Number of Sensors 98

Sensor Locations 85

Sampling rate 88

Online filters 15

Electrode impedance 34

Amplifier characteristics 31

Measurement procedures 37

Recording environment 73

Participant seated or lying down
status

75

Experimental
Task Information

Task Description 100

Characteristics of stimuli 54

Instructions for the task 81

Number of runs and sessions 93

Timing of all stimuli/events 68

Intertrial intervals 61

Software and hardware for
stimulus presentation

56

Labeling Definition 98

Analysis Recording Length 86

Statistical analysis to justify the
number of trials and number of
participants

2

Statistical analysis for descriptives
of the collected measurements

39

trials for hyperparameter tuning. Here, we exclude grid search

as the number of trials for it can be deduced from parameter

ranges. Detailed information on models or model training,

such as loss function, regularization, model structure, optimizer,

TABLE 7 Reported percentages of checklist items in the data

understanding phase-2: the third column refers to percentages of the

subset in the second column.

Research step Usage
percentage (%)

Parameter
percentages (%)

Task-free recordings 54 Timing: 84
Eyes open or closed status: 69
If eyes open, fixation point
usage: 13

Behavioral measures 51 Acquisition device: 43
Interface with EEG data and
calibration procedures: 23
Method for errors and outlier
handling: 3

Subjective measures 32 Timing: 100
Method: 100

TABLE 8 Reported percentages of checklist items in the data preparation

phase: the third column refers to percentages of the subset in the second

column.

Research
step

Usage
percentage (%)

Parameter
percentages (%)

Sensor/segment
removal

19 Interpolation: 18
Removed sensors: 55

Artifact
removal/correction

39 Range of parameters: 13
Types of artifacts identified: 69
Criteria to identify: 30
Number/proportion of removed
artifacts: 4
Position of removed artifacts: 0

Signal-noise
separation
methods

39 Parameters: 17
Number of ICs: 4
How non-brain ICs were
identified: 30
How back-projection was
performed: 17

Downsampling 17 Method: 40
Parameters: 80

Detrending 5 Method: 100
Parameters: 0

Filtering 76 Filter type: 100
Parameters: 96

Segmentation 80 Method: 100
Parameters: 96

Baseline
correction

3 Method: 100
Parameters: 100

Re-referencing 19 Method: 100

Dimensionality
Reduction

2 Method: 100
Parameters: 0

Feature
Transformation

22 Method: 100
Parameters: 77
Applied using training data?: 31

Data
Augmentation

12 Method: 100
Parameters: 43
Applied using training data?: 14

or number of training epochs/iterations, are not applicable to

all models. Therefore, they could only be investigated where

applicable. To present the general situation, we extracted their
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FIGURE 3

Number of participants.

reporting percentages without considering the related models.

Optimization method, number of training epochs/iterations,

and additional methods used during training were reported for

22%, 24%, and 17 % of the publications, respectively.

All publications except one report the metrics used, and

five of them state the chance-level value. Data split that the

metrics are calculated on is not clearly explained for 17% of the

publications. Additionally, 20% report confusion matrices.

When we consider computational environment and open

sourcing, 29% and 44% report computing infrastructure and

dependencies, respectively. None of them open-source their

trained models and only three of them open-source their code

for modeling.

5. Evaluation: Statistical analysis for significance of results was

carried out by 42% of the publications, 68% of which also

included parameters such as alpha parameter, confidence

interval, or p-value. During the Evaluation phase, an unseen test

set to report the performance of the model is mandatory for

unbiased estimates and to present the generalizability of results.

However, 39% of the studies hold out a test set and only 34%

report the results on the test set. For EEGmodality, setting aside

an unseen test set can be difficult considering the limited amount

of data and low number of participants. EEG data collection

is time-consuming, and it may be difficult to find participants

who satisfy the inclusion criteria and are willing to participate in

the experiment. To illustrate this, Figure 3 shows a histogram

of the number of participants where most studies include 15

or less participants. One publication did not state the number

of subjects.

Few studies (20%) report the computational resources

for training such as model size, training or inference

times, power consumption, and carbon emissions.We consider

these resources reported even when one of these types

of data is presented. These aspects are closely related to

both the limitations of the deployment environment and

sustainable AI.

All publications related their results to the problem

statement. Three of them open-sourced their code

for evaluation.

6. Deployment: Only one of the publications considered

deployment. Deployment techniques, computational resources

required for inference, deployment environment, and

deployment tests need to be considered after finalizing the

model in the development environment. Deployed systems

must retain their performance and be reliable, scalable,

maintainable, and adaptable (Huyen, 2022).

7 Discussion

This study introduced guidelines, compiled in a checklist

aligned with the CRISP-DM framework, for improving the

reproducibility of machine learning research utilizing EEG data. A

systematic evaluation of EEG mental workload studies shed light

on commonly employed strategies, frequently overlooked aspects,

and the existing gaps that impede progress toward achieving

reproducible science for practical applications.

The key revelation from our analysis is the prevalent

limitation in reproducibility across the examined studies. Notably,

a significant number of publications fall short in reporting

performance on unseen test data, an important aspect that is

informative of the model’s generalizability. This omission poses a

potential problem to the applicability of these models in diverse

settings and under varying conditions.

Furthermore, our investigation reveals that only a minority of

studies share essential resources, such as data or scripts, crucial

for achieving full reproducibility. Given the inherent complexity of

capturing every detail in the machine learning pipeline, the open

sharing of data and code emerges as a key factor in increasing

the credibility of models. This not only builds trust but also helps

speed up progress by making it easier to understand new research,

saving time on reproducing results, and creating starting points for

future work.

A third noteworthy finding is the inadequate reporting of

resources essential for training and inference processes. Now

that the detrimental environmental effects of AI are becoming

increasingly clear, reporting the training and inference times,

power consumption, and carbon emissions has become a

recommended practice. The inclusion of such information is

important for fostering environmentally conscious practices

in machine learning research. Deployment techniques to

compress models or optimize inference are being developed.

With only one study found in our survey specifically addressing

deployment considerations, there is an apparent need to study

and discuss deployment strategies for EEG classification using

machine learning.

Our study has several implications.

Firstly, the introduction of a guideline and checklist, aligned

with the CRISP-DM framework, provides a foundational

framework for researchers in the field. Adhering to these guidelines

will result in a clearer understanding and validation of the

methodologies employed, enable the reduction of errors, and

improve the credibility and reliability of machine learning

studies utilizing EEG data, their authors, and the scientific
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field as a whole, promoting better scientific practices and

accelerated progress.

Secondly, by using the introduced checklist, models

can be more fairly compared, ensuring a comprehensive

evaluation. With models being compared more fairly,

the results and experiments become more transparent

and interpretable.

Thirdly, key findings from the reproducibility assessment

highlight areas for improvement and future work.

While the present study has contributed valuable insights, there

are limitations and promising paths for future research.

Search terms for the systematic literature reviews

could be added to enhance coverage and inclusivity.

Terms could be expanded to include similar words, such

as “Electroencephalography” in addition to “EEG” and

“Classification” in addition to “Machine Learning”. Additionally, in

the first literature review, not all studies examining reproducibility

will have emerged using our terms "reproducibility", "replicability",

and "generalizability". Moreover, we focus on the reproducibility

status of mental workload estimation studies using EEG. This work

could still be extended to include the reproducibility status of EEG

studies in general.

Our study focused on mental workload estimation studies. The

proposed checklist has the potential to be applied to EEG machine

learning studies in general, in particular mental state monitoring

in a broader sense. Future work could explore reproducibility

of machine learning studies using EEG across various domains,

e.g., mental states besides workload, therewith broadening the

scope of the reproducibility results and checking in detail for

applicability of the proposed checklist across domains. In addition,

it would be of interest to examine how reproducibility of different

aspects depends on the working domain or expertise of the

authors. Mental workload estimation is an interdisciplinary topic.

Authors’ background and main expertise likely affect the degree of

reproducibility of different aspects, and interdisciplinary teams will

likely increase the overall quality of reproducibility.

Transparency and explainability are now integral components

of Responsible AI, and are as such requested in various standards,

recommendations, and regulations, including the EU AI Act,

OECD AI principles, and ISO/IEC 42001:2023. These principles

are also catalyzing the acceleration of reproducible studies in the

field of machine learning. In the future, the proposed guidelines

could incorporate Responsible AI aspects, such as the growing

significance of explainability features in model development. These

features are increasingly becoming essential, even mandated, in

the regulations of certain countries. Further research is needed to

explore and address deployment strategies, especially considering

the environmental impact and practical applications.

The current study did not account for the time frame of the

considered papers. A crucial aspect for future exploration involves

investigating whether reproducibility and other good practices

have undergone changes over time. Given the increasing topic-

related standards and publication requirements in recent years, it is

pertinent to examine if these shifts have influenced reproducibility

in more recent papers.

In conclusion, the proposed guidelines for reproducible

machine learning research using EEG, as well as the overview
of the current state of the literature regarding reproducibility,

have the potential to support and motivate the community to

further improve the current state of affairs. Our findings highlight

the necessity for a change in research methods, putting a focus

on transparency, sharing data openly, and reporting resources

in detail. Tackling these issues is crucial for moving the field

forward, building trust in models, improving the quality of

studies, and lessening the environmental impact of machine

learning applications.
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