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On decoding of rapid motor
imagery in a diverse population
using a high-density NIRS device

Christian Kothe*†, Grant Hanada†, Sean Mullen*† and Tim Mullen

Intheon, La Jolla, CA, United States

Introduction: Functional near-infrared spectroscopy (fNIRS) aims to infer
cognitive states such as the type of movement imagined by a study participant in
a given trial using an optical method that can di�erentiate between oxygenation
states of blood in the brain and thereby indirectly between neuronal activity
levels. We present findings from an fNIRS study that aimed to test the applicability
of a high-density (>3000 channels) NIRS device for use in short-duration (2 s)
left/right hand motor imagery decoding in a diverse, but not explicitly balanced,
subject population. A side aim was to assess relationships between data quality,
self-reported demographic characteristics, and brain-computer interface (BCI)
performance, with no subjects rejected from recruitment or analysis.

Methods: BCI performance was quantified using several published methods,
including subject-specific and subject-independent approaches, along with a
high-density fNIRS decoder previously validated in a separate study.

Results: We found that decoding of motor imagery on this population proved
extremely challenging across all tested methods. Overall accuracy of the
best-performing method (the high-density decoder) was 59.1 +/– 6.7% after
excluding subjects where almost no optode-scalp contact was made over
motor cortex and 54.7 +/– 7.6% when all recorded sessions were included.
Deeper investigation revealed that signal quality, hemodynamic responses, and
BCI performance were all strongly impacted by the hair phenotypical and
demographic factors under investigation, with over half of variance in signal
quality explained by demographic factors alone.

Discussion: Our results contribute to the literature reporting on challenges in
using current-generation NIRS devices on subjects with long, dense, dark, and
less pliable hair types along with the resulting potential for bias. Our findings
confirm the need for increased focus on these populations, accurate reporting
of data rejection choices across subject intake, curation, and final analysis in
general, and signal a need for NIRS optode designs better optimized for the
general population to facilitate more robust and inclusive research outcomes.
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1 Introduction

Functional near-infrared spectroscopy (fNIRS), first developed in seminal work by

Jöbsis (1977) and Delpy et al. (1988), and others, is a brain imaging technique that uses

near-infrared light sources and detectors (“optodes”) applied to the scalp to transmit

light non-invasively through brain tissue and thereby monitor the relative abundance of

oxygenated (HbO) and deoxygenated (HbR) hemoglobin species and changes thereof in
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response to functional brain dynamics. fNIRS thereby measures a

similar effect to the blood oxygen level dependent (BOLD) brain

responses known from functional magnetic resonance imaging

(fMRI, see e.g., Logothetis et al., 2001), albeit with a much lower

spatial resolution and a depth sensitivity that tends to be limited

to 10–15mm (Strangman et al., 2013). While many research-

grade fNIRS systems are stationary instruments connected via

fiber bundles to optode-fitted head caps, recent fiberless variants

based on compact sources and detectors such as light emitting

diodes (LED) and various types of photodiodes can be realized

in wearable form factors that are by and large rivaled only

by Electroencephalography (EEG), and whose costs are also

decreasing as a function of improved miniaturization (Pinti et al.,

2018; von Lühmann et al., 2021).

Non-invasive, compact, and potentially wearable brain imaging

modalities are also of interest not only for basic neuroscience in

freely moving subjects, but for the purpose of brain-computer

interfacing (BCI). BCI as an engineering discipline has historically

been focused on establishing communication and control channels

for the severely disabled (e.g., Wolpaw et al., 2002) by leveraging

intentional brain signals and interpreting them in real time as

control outputs in home, care, and wheelchair settings, often

relying on machine learning decoding of motor-cortex activity

mediated by imagined movements (e.g., Pfurtscheller et al., 2003;

Blankertz et al., 2006). While much of this work employs EEG,

considerable research has also been conducted in fNIRS, using

analogous motor imagery or execution processes, for example by

Sitaram et al. (2007), Cui et al. (2010), Fazli et al. (2012), and Hosni

et al. (2020). Such research efforts have collectively established

motor imagery as one of few benchmark cases formachine-learning

based brain signal decoding across both modalities, where a wide

range of techniques have been tested in a similarly wide range

of settings.

More recently, the spectrum of BCI applications has expanded

to include uses cases outside intentional communication and

control, for example in the form of passive BCIs (Zander andKothe,

2011) that aim to supplement human-machine interactions with

measures of ongoing cognitive state. This includes, for example,

workload in air traffic controllers as studied by Ayaz et al. (2013)

in an early case study in neuroergonomics, and more recent work

by Pinti et al. (2015) in everyday tasks or Gateau et al. (2018)

in pilots. Such use cases, enabled by relatively unobtrusive brain

imaging, mark a gradual expansion of fNIRS out of the lab and

into real-world contexts (von Lühmann et al., 2021), a process that

mirrors a similar transition seen in EEG a few years earlier that has

resulted not only in low-cost do-it-yourself EEG1 and now fNIRS2

kits aimed at the maker community, but in the case of EEG also

consumer products ranging from simple toys such as the Mattel

Mindflex3 to mindfulness-oriented headsets such as the Muse.4

Abbreviations: MVQ, minimum-viable quality; PQ, poor quality; ROI, region

of interest.

1 https://www.crowdsupply.com/starcat/hackeeg

2 https://www.crowdsupply.com/alaskit/hegduino-v2

3 https://store.neurosky.com/products/mindflex

4 https://choosemuse.com

However, so far, decoding accuracy has been a central challenge

for non-invasive BCIs (e.g., Banville and Falk, 2016), fNIRS

being no exception. While fNIRS has considerably lower spatial

resolution than fMRI, an emerging class of high-density NIRS

headsets aims to narrow this gap, suggesting that new levels of

spatial imaging fidelity may be achievable in fNIRS while retaining

wearability. In particular, the emerging field of high-density diffuse

optical tomography (HD-DOT) leverages high-density devices,

which typically measure at multiple source-detector distances and

thereby produce depth-differentiated fNIRS readings (Wheelock

et al., 2019). As the name implies, this approach marks a step from

two-dimensional topography to three-dimensional tomography of

brain dynamics, which promises, among others, improved spatial

(depth) specificity in neural activation maps. Results such as those

by Chitnis et al. (2016) have been encouraging and raise the

question to what degree these imaging improvements have analogs

in decoding capabilities in BCIs, which often similarly leverage

differentiated spatial measurements using what is known in array

signal processing as spatial filtering. This question led to the focus

of this study on decoding from high-density NIRS devices.

With fNIRS maturing and its applications expanding, there is a

need to address some of the remaining limitations of the modality,

which may also aid overall decoding performance. Among them

are the sensitivity to light obstructions from hair, particularly in

the presence of relatively thick, dark, dense, or less pliable hair

types (e.g., Orihuela-Espina et al., 2010), and the need to account

for variable scalp properties such as reflectance and pigmentation

(e.g., Fang et al., 2018). Some of these issues are exacerbated when

measuring at scalp sites that tend to be covered with more hair

(compared to, for instance, the forehead), as is the case in motor-

control decoding. Such caveats are by no means unique to fNIRS

(for instance, EEG faces its own set of hair- and skin conductivity

related challenges, see e.g., Etienne et al., 2020), and there are

ongoing efforts to mitigate these issues in fNIRS on the hardware

side using innovative optode designs such as, for example, brush

optodes (Khan et al., 2012). It may be assumed that these issues

may present more in some headset and optode form factors than

others, an aspect which is currently under-studied, and our study

adds a data point featuring a state-of-the-art high-density device

(LUMO, Gowerlabs).

In this light, we designed the present fNIRS study with a goal

of not rejecting any participant due to hair phenotype, ethnicity, or

other demographic criteria while faithfully reporting the impact of

this choice on neural and BCI outcomes. To this end we collected a

relatively large dataset of 61 sessions from 32 participants recruited

from the general population primarily through an online ad

(Craigslist), performing the same sequence of motor imagery tasks.

We studied the hemodynamic responses associated with a hand

motor imagery task in which subjects were prompted to imagine

left- or right-hand finger tapping on a surface in response to a cue.

However, unlike many prior fNIRS studies of this phenomenon

(e.g., Abdelnour and Huppert, 2009; Cui et al., 2010; Yamada et al.,

2012; Bak et al., 2019), we study a relatively short task performance

period of 2 s, as opposed to the more common 10–20 s. This is

motivated by the goal of higher information transfer rates in motor

imagery applications such as cursor control or prosthetics but leads

to a reduced signal-to-noise ratio (SNR).
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As we will discuss in the following, in this challenging setup,

degradations in signal quality can have a significant impact on

results, and with it the effects of diverse hair phenotypes and

demographic traits may become magnified. We present a panel

of analyses to test for correlations between these traits and NIRS

signal quality, machine learning performance, and neural responses

that reveals several potential and previously known (e.g., Yücel

et al., 2021), but rarely quantified statistical biases. At the same

time, we note that our data sample is likely somewhat tilted toward

university students, and the study uses a single (albeit state of the

art) NIRS device form factor, which limits the scope of the study’s

findings. Factor levels are based on self-reported questionnaire

data, which may limit sensitivity somewhat. However, we argue

that the scenario studied here is quite relevant to fNIRS as

it expands into new application areas (e.g., broad population

studies, wearable/ambulatory settings, high-bandwidth BCI-based

communication and control particularly from scalp sites other

than the forehead, and a diversity of potential future consumer

use cases), which underlines the need for both characterizing and

addressing the root causes of NIRS signal quality degradations, and

their effects.

2 Materials and methods

2.1 Experimental task

Our study is based on subjects performing a short-duration

finger tapping motor imagery task over the course of three sessions

spread out across several months (this time frame was significantly

longer than originally planned due to the COVID-19 pandemic).

In session 1, subjects performed an open-loop variant of the task,

without BCI feedback. Subjects who returned for sessions 2 and

3 (all were invited but only about half returned for all sessions)

performed a closed-loop variant of the same task that included

feedback from a BCI model trained on the previous session(s).

Trial structure. The subject sat at a desk in front of a computer

monitor with palms and fingers resting on the desk. The subject

imagined a single tap with each of the index and middle fingers

in succession (always in that order) at an instructed pace of ca.

1Hz (once per second for each of the 2 s), with either the left

or the right hand as indicated on the screen (Figure 1). Each

trial lasted 17 s and consisted of 5 s of rest (fixation cross shown

on screen), 2 s of imagined tapping (left/right hand indicated on

screen for the tapping period), 8 s of rest (fixation cross shown

on screen), and, in closed-loop sessions, 2 s of feedback during

which the left/right prediction was shown using a horizontal bar

indicating the confidence of the prediction, which reflected a single

prediction and therefore did not animate. During the open-loop

(i.e., no live BCI) session (Session 1), the fixation cross continued

to be displayed for this duration (no feedback shown), and subjects

perceived the resulting end-of-current-trial fixation period and

beginning-of-next-trial fixation period as one contiguous 15 s

fixation segment (except on the last trial).

Session structure. Each of the sessions was structured as a 2-

min baseline measurement, followed by 4 blocks × 30 trials each,

separated by 30-s breaks in between blocks, yielding 120 trials

total (with equal numbers of left- and right-hand motor trials in a

pseudo-randomized order). Each session was additionally preceded

by a practice run of 30 open-loop trials (not included in analysis).

During practice only, the rest periods in each trial were shortened

and the word “tap” was flashed along with an auditory cue at 1Hz

beats, to help accustom the subject to the expected pacing of the

taps. The total task time was ∼40min not including the setup time

and practice block.

Special cases. The first session differed from Sessions 2 and 3

in that it periodically included a small number of trials in which

subjects were asked to execute rather than imagine the tapping

motion. These trials, which we do not analyze in this study, were

designed to help reinforce the quality of imagery in the motor

imagery trials and to reduce some of the monotony of the task in

the absence of BCI feedback. To accommodate these trials, each

block was divided into two sub-blocks each with 13 imagined

trials followed by 2 motor execution trials. Therefore, Session 1

consisted of 16motor execution trials and 104motor imagery trials,

while the remaining sessions had 120 motor imagery trials each.

The sub-block type (“overt”/executed, or “covert”/imagined) and

a reminder of the trial count was visually indicated on screen for

5 s before each sub-block. For consistency, this pre-block reminder

was also displayed in Sessions 2 and 3 (always showing “covert”).

See Supplementary material for uncropped task screenshots.

2.2 Data collection procedures

fNIRS data was collected using a LUMO headset from

GowerLabs Ltd.,5 a wearable high-density NIRS headset with

repositionable rigid tiles that each hold a set of 3 sources and 4

detectors (Figure 2 top row). The configuration used for this study

featured 12 tiles, 6 on each hemisphere covering the motor and

premotor cortex areas. The setup consisted of 36 dual-wavelength

sources (735 nm and 850 nm) and 48 detectors, yielding 1728

dual-wavelength channels (3,456 in total across wavelengths) at a

sampling rate of 10Hz. The light guides used on the underside

of the cap each were 5mm in length and had 5mm wide flat

bottoms. The cap connects via a single wire to a hub which in turn

was connected to a desktop computer via USB. We had two caps

available, sizes 56 cm and 58 cm (head circumference).

Data from the LUMO device was captured using the LUMO

software application from GowerLabs, which streams the fNIRS

data over the Lab Streaming Layer (LSL) signal transport protocol

(Kothe et al., 2024). This LSL data stream was in turn captured by

the NeuroPype Experimenter Recorder software from Intheon6 and

recorded to disk in XDF format.7 The latter also performed the task

presentation. All software was run on a desktop computer running

Windows 10.

Data was collected at the Swartz Center for Computational

Neuroscience (SCCN) at the University of California San Diego

(UCSD). The studies involving humans were approved by UC

San Diego Institutional Review Board, La Jolla, United States

under protocol number 140053. The studies were conducted

5 https://www.gowerlabs.co.uk/lumo

6 https://www.neuropype.io

7 https://github.com/sccn/xdf
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FIGURE 1

(A) Sequence of one trial with tapping (imagined or executed), for the open-loop session without BCI feedback and (B) for the closed-loop sessions
with BCI feedback. The images are crops of the image/text shown on screen during that segment (full screenshots in Supplementary material). For
each trial either the right or left hand image was shown. The dim color scheme reflects on-screen colors and served to minimize ambient light from
the monitor.

in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study. The data was collected by

an experienced research assistant who was trained in using the

LUMO system as per the manufacturer guidelines and a backup

research assistant trained by the former. COVID-19 protocols were

followed as per SCCN and UCSD policies in effect at the time. Data

collection took place in a small windowless air-conditioned room,

with all overhead lights turned off. The screen monitor was set to

a low brightness level, and a black background was used to further

reduce ambient light sources (due to the low ambient brightness,

on-screen contrast appeared higher than suggested by Figure 1).

In Session 1, a dimmer lamp pointing at the ceiling was set to a

low brightness to provide some ambient light and was turned off in

Sessions 2 and 3.

At the beginning of each session, subjects filled out a

questionnaire with basic demographics questions (age, sex,

ethnicity), questions related to hair (length, color, density, strand

thickness), and a question to rate their alertness on a scale from 1

to 10. Due to the multi-week gaps between the sessions resulting

from delays caused by the COVID-19 pandemic, hair length and

other properties did change across sessions for some subjects.

Likewise, cap size was remeasured for each session to account for

any such variability.

The cap was placed on the head by the experimenter and

positioned in accordance with the vendor instruction manual, then

adjusted multiple times as needed while the experimenter checked

the signal quality in the LUMO application (Figure 2 bottom).

Signal quality was indicated in the LUMO app by the maximum

channel distance (in mm) at which a reasonable signal strength

could be detected.

We found it a considerable challenge to obtain even aminimum

threshold of signal quality with many subjects, particularly those

with longer, thicker, and/or darker hair. The goal was to obtain

a “good” (appear in green in the app, Figure 2 bottom) signal

quality reading for at least one optode over the primary motor

cortex on each hemisphere (4 innermost tiles on bottom row).

However, if this was not possible after 20–30min of attempted

adjustments and recalibration, the session was collected regardless,

in line with the study aim of collecting a diverse subject population
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FIGURE 2

(A) A photograph of the LUMO NIRS headset used in this study, profile view. (B) A photograph of the light guide assembly for one of the tiles. (C) A
montage of the same cap, top-down view, showing source optodes in red and detector optodes in blue, and a labeling of the 12 tiles. Bottom:
Screenshot from the LUMO data acquisition application showing optode signal quality, for a typical “minimum viable quality” (MVQ) session (D), and
for a “poor quality” (PQ) session (E). Optodes in green indicate the optode signal can be detected at a distance of 25mm or more.

TABLE 1 Left panel: breakdown of subjects by session.

Session # Subjects Excluded Retained Sex Male Female

1 33 1 (hw. err.) 32 16 16

2 15 0 15∗ Ethnic Origin White Hispanic Asian Black

3 14 0 14∗∗ 15 5 7 4

Total 61 Age 18–25 25–40 41–55 >56

14 7 4 7

Right panel: breakdown of subjects by demographics. ∗A subset of subjects from Session 1. ∗∗A subset of subjects from Session 2.

capturing a wide range of hair properties without additional

selection biases.

2.3 Dataset

Of a total of 33 subjects who recorded a Session 1, one subject

had to be excluded due to a hardware disconnect issue in Session

1. All remaining 32 participants were asked to voluntarily return

for Sessions 2 (15 did so) and Session 3 (14 did so). Due to the slow

pace of recruitment due to COVID-19 policies during the pandemic

and the summer semester at UCSD, there was a considerable gap,

between 2 and 17 weeks across subjects, between Session 1 and

Session 2, and a smaller gap of 2–5 weeks between Session 2 and

Session 3. As a result, subjects’ hair length, color, style and use

of hair product may have varied between sessions, and for this

reason, these properties are analyzed on a per-session basis. It

can be expected that a “lockdown hair” effect (longer-than-usual

hair) affected hair lengths in a few subjects, although it appears

unlikely that the subject population has become unrepresentative

as a result. Also due to the recruitment challenges, the final study

sample was smaller than initially planned but was still sizable at 61

sessions. A summary of collected sessions by session number and

demographics is shown in Table 1.
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2.4 Real-time BCI feedback

Sessions 2 and 3 included feedback from a real-time BCI to

increase subject engagement and capture brain dynamics more

representative of real-world closed-loop BCI interaction. The BCI

used for feedback during data collection was a complex hybrid

approach that leveraged data from both other subjects and prior

sessions of the target subject and predates the methodology that

is described in this article. The performance of this approach

proved unsatisfactory and likely suffered from the same challenges

alluded to in the introduction, yielding results in the 55–65%

range across subjects. The method is described in detail in the

Supplementary material.

This study instead focuses on a comprehensive panel of post-

hoc analyses of the collected data using several previously published

BCI methods, all of which had to be adapted to the dataset at

hand due to the specific considerations in high channel density

and rapid task timings. We focus our post-hoc analysis on the

best-performing method, which was separately validated in Kothe

et al. (2023, preprint under review at JNE), with adaptations noted

in Section 2.7.2. This method requires no training data from the

target subject, which enables calibration-free BCI usage, a desirable

property for real-world deployment (e.g., Kindermans et al., 2014).

This is accompanied by an analysis of the method’s performance

and other dependent variables in relation to physiological and

demographic factors.

In brief, the training of the original hybrid BCI used for

live feedback during data collection proceeded as follows. Data

collection for the three sessions was performed in phases, where

first all data for Session 1 was collected, and individualized BCI

models were trained for each subject for use in Session 2. These

BCIs used a transfer learning approach where a dimensionality

reduction using the Common Spatial Pattern for Slow Cortical

Potentials algorithm (Dornhege et al., 2003) was learned across

sessions from all subjects to reduce the high-density fNIRS data

to 300 spatial components. Then, for each subject, using that

subject’s Session-1 data only, a logistic regression-based classifier

was trained on the reduced component space. For Session 3, the

process was repeated after all Session 2 data was collected, with the

difference that both Sessions 1 and 2 of a given subject were pooled

for training.

2.5 Signal quality measures and session
subsets

Wemeasured signal fidelity using a panel of simple per-channel

metrics, and a weighted whole-montage metric. The per-channel

metrics were as follows:

• Coefficient of variation (Ayaz et al., 2010), for each wavelength

(intensity), averaged across the session after discarding the

baseline and break periods, computed from the mean and

standard deviation for channel c as:

CVc =
σc

µc

• A robust signal to noise ratio measure (in dB), for each

wavelength (intensity), averaged across the session after

discarding the baseline and break segments, computed as:

SNRc = 10 log10
x̃c

median |xc − x̃c|

where x̃c is the median of the channel’s intensity signal.

• A stimulus-dependent signal to noise ratio measure as defined

in Bak et al. (2019), separately for HbO and HbR as in:

SNRc = 10 log10
Ps̃ (c)

Pñ (c)

See Bak et al. (2019) for a more detailed discussion of this

measure. In brief, Ps̃ (c) is the optical density of the imagined

tapping period (here 0 to 2 s relative to the onset of the MI

stimulus), to which a Butterworth bandpass filter of 0.01Hz to

0.1Hz was applied and from which a baseline of the same duration

immediately prior to the tapping period (−2 to 0 s relative to the

onset of the MI stimulus) was subtracted; and where Pñ (c) is the

unfiltered optical density of the same imagined tapping period (0

to 2 s relative to the onset of the MI stimulus).

Signal quality measures were computed and plotted using

NeuroPype8 and NeuroScale Insights, both developed by Intheon

(La Jolla, CA). NeuroPype itself relies in part on several open-

source Python data science packages such as numpy (Harris et al.,

2020), scipy (Virtanen et al., 2020), and statsmodels (Seabold and

Perktold, 2010).

Besides channel-wise quality measures, we employed an overall

session quality score to assess the quality of the montage as a

whole, which was implemented as a weighted sum of per-channel

coefficients of variation that places higher emphasis around the two

left/right motor cortex regions of interest (ROIs). This ROI quality

weighting was used since (1) with our high-channel montage it was

neither practical nor optimal to have the experimenter spend the

same effort on all channels during cap placement, particularly for

difficult hair types, and (2) we hypothesized that BCI performance

would be largely driven by the channels intersecting those ROIs.

The weighted metric is normalized to 0 (worse) – 1 (best) and is

specified in detail in the Supplementary material.

We found that this quality measure yields a compact cluster

of lowest-quality sessions for our data (which we refer to here as

“poor quality” or PQ sessions) that is separable from the quality

of the remaining sessions. We refer to those remaining sessions

as the “minimum viable quality” or MVQ sessions. We formally

define these two sets of sessions, which are compared in subsequent

analyses, in terms of a ROI quality threshold tqual, which we chose

as the lowest upper bound of the lowest-quality cluster of quality

scores (i.e., a highly conservative choice), which was for our dataset

tqual = 0.02 on the 0–1 session quality scale. A histogram of

quality scores across all sessions along with the threshold is found

in Figure 3 (left).

8 www.neuropype.io/
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FIGURE 3

(A) histogram of ROI quality scores across all sessions. Note the cluster of numerous very low quality sessions on the far left. The tqual = 0.02
threshold is shown as a vertical dashed line (red); note that thresholds as large as 0.03 would yield the same partitioning. (B) Per-channel grand
average coe�cient of variation, separately for poor quality (PQ, blue) and minimum viable quality (MVQ, orange) sessions, as a function of channel
length. The horizontal dashed line (green) indicates the 15% CoV level. Channels above 75mm were trimmed for greater legibility. Each dot
represents one channel.

2.6 Within-tile averaging

To visualize the neural responses more easily and to limit the

number of comparisons for certain statistics, the total number of

channels needed to be significantly reduced in some parts of our

analysis. For this we employed a within-tile averaging for each of

the 12 optode tiles (6 on each hemisphere, labeled as in Figure 2C)

in which the raw signal of all channels between the same two tiles

were averaged together. This is equivalent to all source (or detector)

optodes in a tile acting as a single multi-tip source (or detector)

optode. For the following neural response analyses (block averages),

we use this within-tile averaging and denote channels based on

their source and detector tile numbers (e.g., Tile 1 to Tile 2 pairing

written as “Tile1–2” in grid plots; numbering as in Figure 2C).

Besides data reduction, this has the side effect of improving the

effective SNR (e.g., coefficient of variation) of the newly formed

“virtual” channels.

2.7 Block averaging

For visualization of observed fNIRS hemodynamic responses

across subject groups, we follow a simple block averaging

strategy of single-trial waveform segments. We did not employ

Generalized Linear Model (GLM)-based statistical modeling (e.g.,

Yücel et al., 2021) here since task-related hemodynamic responses

were separated by sufficiently long rest periods that they can be

considered non-overlapping. To reduce the channel count and to

increase the per-channel SNR, we first converted data to within-

tile averages and then removed all resulting tile-to-tile (source-

detector) channels whose source-detector separation (henceforth

generally “length”) were outside a 15–60mm range (here measured

from center of tile to center of tile). This reduced the number of

these (tile-averaged) channels to 44 (22 on each hemisphere).

We converted channel intensity for the two wavelengths to

change in optical density relative to each channel’s whole-session

intensity average, followed by a series of common preprocessing

steps: a bandpass filter at 0.02–2Hz, Temporal Derivative

Distribution Repair (TDDR) (Fishburn et al., 2019), and outlier

trial removal using the Global Variance of Temporal Derivatives

(GVTD) criterion (Sherafati et al., 2020) with threshold at 3

standard deviations. Short-channel regression was not employed

at this stage for block averaging. We then estimated oxy- (HbO)

and deoxy-hemoglobin (HbR) concentration changes according to

the modified Beer-Lambert Law (MBLL) (Cope and Delpy, 1988)

assuming a DPF of 6. Each imagined (“covert”) tapping trial was

then epoched from 5 s prior to tapping onset to 17 s after onset,

which ends just prior to the next stimulus presentation. For each

trial, the signal average in the 2 s preceding the tapping onset

was subtracted as a baseline measure, and all covert trials per

session were averaged to obtain the block-average waveforms for

all retained channels, separately for HbO and HbR and left/right

conditions. Group analyses used 1-sample t-tests across sessions

for each HbO/HbR concentration measure and were corrected for

multiple comparisons over the time axis using the false discovery

rate (FDR, Benjamini and Hochberg, 1995).

2.8 Machine learning methods

In the following we describe a collection of BCI approaches that

we compare in an offline analysis of the previously collected study

data. Specifically, we replicate a set of published BCI methods (both

subject-independent and subject-specific), henceforth referred to

as “reference methods.” All of these methods required some

modifications since they were not designed for channel counts as

high as in our data and/or task timings as short as in our design.

We also test a recently developed method for very high-channel

NIRS data described in Kothe et al. (2023) and note how it was
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adapted to this study. As this method performed best, we study its

performance in greater detail in the following sections.

2.8.1 Reference methods
We applied 5 published reference methods to our data, which

we reimplemented using scikit-learn (Pedregosa et al., 2011)

for machine learning and NeuroPype for signal processing to

ensure sound implementations of the individual processing steps.

We generally restricted ourselves here to (generalized) linear

decoders, which currently represent the majority of published

fNIRS decoder methods.

The compared methods roughly adhere to the conventional

flow for brain-computer interfaces outlined in Mason and Birch

(2003) and can be partitioned into preprocessing, a feature

extraction stage, and a machine-learning stage, with methods

differing in their choices at the respective stages. We briefly

summarize these methods in the following with a focus on issues of

dimensionality (e.g., channel counts) and processing and ignoring

their task details; for complete details, the reader is encouraged

to review the respective articles. Deviations from the originally

proposed methods are also described in the following.

As is customary in fNIRS analysis, all methods apply a

frequency filter to continuous data. However, to assess performance

in a manner that is faithful to real-time usage, and for a fair

comparison across methods, we generally ensured that all methods

run causally by employing an approach modeled after the low-

latency moving average convergence-divergence (MACD)-type

(e.g., Gateau et al., 2018) bandpass filter by Cui et al. (2010) for all

methods. To realize this, we first applied a high-pass filter using an

exponential moving average (EMA) filter with a forget factor of 0.01

as in Cui et al., and subsequently a 2-s rectangular-window moving

average lowpass filter. We found this to yield lower filter delay than

the more common IIR-based high-pass filters, including low-order

elliptic filters, with minimal impact on performance.

To tailor the methods to our short-duration trials, which was

necessary since each method was built for different trial durations,

we used the best subset of 3 per-channel handcrafted signal

average features (2–4 s, 4.25–6.25 s, 6.5–7.5 s), whichwere originally

developed in a previous pilot study using identical task timings

and checked for agreement with hemodynamic responses on the

present dataset. These time windows correspond roughly to what

we identified as the likely “initial dip” (Hong and Zafar, 2018),

followed by the first imagined tap, and the second imagined tap

in our data (see also Figure 7 for analogous learned weight patterns

in the high-channel model, which exhibit prominent peaks around

those time windows). For methods that were designed for low-

density montages only (all except Shin et al., 2017), we additionally

employed tile averaging as a pre-processing step, since we found

that these methods would otherwise overfit.

With these considerations in mind, we implemented subject-

specific methods based on the following literature:

◮ We replicated a variant of the approach in Cui et al. (2010).

In brief, the authors leverage a total of 48 NIRS channels

over bilateral motor cortex at 10Hz, which we assume to be

of ca. 30–40mm length; the authors rely on the amplifier

software to derive optical density and ultimately concentration

changes, and then apply the MACD-type bandpass filter as

described above to this signal. The authors experimented

with a number of different handcrafted features including

amplitudes and gradients (slopes) but ultimately settled on

the 11 most recent concentration values of the NIRS signal

in a subset of channels selected using a criterion based on

contrast-to-noise ratios (while always including bothHbO and

HbR for a given channel); their results show data from one

participant where 10 channels performed best (yielding 10 ×

2 × 11 = 220 features), although this would have differed

across participants. They then apply a linear Support Vector

Machine (SVM, Cortes and Vapnik, 1995) using a fixed cost

value (C = 128) as the classifier. To replicate this method we

first applied tile averaging to the raw intensity signal, which

reduces the channel count to 348, and subsequently retained

channels in the 25–45mm range, which yields 36 channels

in a similar length range as the original method. We then

converted intensity to optical density following the MBLL and

derived delta-optical density referenced to the first 60 s of

the session so as to process all subsequent data in a causal

manner. We then applied the aforementioned MACD-type

bandpass filter, and estimated concentrations assuming a DPF

of 6. We explored fine-grained temporal features similar to

those used by Cui et al. (2010), but found that fewer longer-

duration time averages performed better on our task with the

linear SVM classifier, likely due to overfitting issues, and used

the best subset of the aforementioned time-domain features,

which amounted to all features. We tested a grouped F-

score based channel selection but found mutual information

based selection of individual features to perform somewhat

better, and a variable feature count (using sequential feature

selection) to perform somewhat worse, so here we retained the

top-scoring 10 × 2 × 4 = 80 features, somewhat mirroring

(Cui et al., 2010) example setup, using a mutual information

criterion. For machine learning, we employed a linear C-SVM

like the original authors but used a grid search to identify

the optimal C parameter on the training data (which worked

better on our dataset).

◮ We implemented a variant of the method in Shin et al. (2017).

The authors utilize a device with a total of 204 channels at 8Hz

of three different channel lengths. They low-pass filter the raw

intensity at 0.5Hz using a 6th order non-causal Butterworth

filter and reject channels where CVc was greater or equal

to 40 or the raw intensity was less or equal to 10 units.

They then estimate concentration changes using the MBLL,

and further bandpass filter that signal at 0.01–0.09Hz with

another non-causal 6th order Butterworth filter. For feature

extraction, the authors use averages in three time windows

(0–5, 5–10, 10–15 s following task onset); these features are

of similar nature as ours but stretched over the longer task

performance period of 10 s. The authors’ method retains the

best-performing two of the three available channel lengths,

where 15mm and 30mm performed best by a small margin.

For classification, the authors use two-level shrinkage Linear

Discriminant Analysis (sLDA) where the first-level sLDA is

applied separately to each of the two retained channel sets of
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same length, and the second sLDA takes in the two resulting

output scores (i.e., a 2 d feature space). As before we replaced

the non-causal bandpass filters by the aforementioned causal

variant but use a 0.5Hz Butterworth low-pass filter for

purposes of coefficient of variation calculation, using the same

threshold of 40 (a separate intensity threshold was not used

since our setups’ signal units are on a different scale). We

retained channels of two length ranges (10–20mm and 25–

35mm) without tile averaging, yielding 215 channels and

thereby closely matching Shin’s setup. For feature extraction,

we used the three time window averages as noted above,

again mirroring the authors’ method relatively closely. For

classification, we also employed a sLDA classifier, but using

a single-level rather than a two-level classifier as a minor

simplification (Ledoit and Wolf, 2004).

◮ A variant of the method outlined in Schudlo and Chau (2018)

was also replicated. The authors use 22 NIRS channels of

30mm length at 10Hz and estimate HbO, HbR, and HbT

concentration changes. They then low-pass filter these data

using a 3rd order Type-II Chebyshev lowpass filter with

a transition band of 0.1–0.5Hz. The authors used visual

inspection to remove specific artifactual channels, leaving

between 12 and 17 channels across sessions. For feature

extraction, the authors utilize a pool of per-channel slope

features of different handcrafted time ranges out of which

they select, using sequential forward search (SFS) a subset

of the 4 best-performing features. They then trained a linear

discriminant analysis classifier on the retained features. In our

variant we first applied tile averaging to reduce the channel

count to 348, and then retained channels in the 25–35mm

length range, which yielded 36 channels (times 2 wavelengths).

We employed a coefficient of variation threshold (at 40) to

remove bad channels (visual inspection would have been

impractical given the larger channel and session count). As in

the othermethods, we replaced the IIR filter by the low-latency

MACD bandpass filter (although we had experimented with

the particular type of filter used by the authors in combination

with a variety of methods in earlier analysis, but did not see

enough of an improvement to justify the higher latency and

deviation from the other methods). For feature extraction we

used our predefined time windows across retained channels as

the candidate feature pool and similarly implemented a SFS

approach to retain the 4 best features. We then trained a plain

LDA classifier on the resulting feature space.

We also tested subject-independent setups based on the

following literature:

◮ We implemented a variant of the method in Trambaiolli et al.

(2021). The authors record data from 32 NIRS channels at

a sampling rate of 5.2Hz and band-pass filtered the signal

using a linear-phase FIR filter to 0.01–01Hz and detrended

the entire session (non-causally). They then calculated HbO

and HbR concentration changes using the MBLL using a

differential pathlength factor (DPF) of 7.25 and 6.38. They

then extract a 30-s average feature per channel in a given

trial. For machine learning they utilized an sLDA classifier

with automatically determined shrinkage as implemented in

the BCILAB toolbox (Kothe and Makeig, 2013). The authors

implement an elaborate eigenvector-based feature selection to

reduce the feature space.We replicated this method as follows:

we first performed tile averaging to reduce the channel count

again to 348 channels, and retained channels of 25–34mm

length, yielding 32 dual-wavelength features (i.e, similar to

the prior study). We used the MACD-type bandpass filter

in lieu of the FIR filter and skipped the detrending step

to keep processing causal. For estimating concentrations we

assumed here a DPF of 6 as in the other methods. For feature

extraction we used here a single time-average feature spanning

the interval of both taps (4.5–8.5 s) plus the initial-dip feature

(which improved performance). We employ the same type of

sLDA classifier, but used a more conventional F-score based

feature selection method, determining the optimal feature

count using nested cross-validation and searching over a range

from 2 to 100.

◮ We also implemented a second variant of the method in Shin

et al. (2017) (same as Shin et al., 2017 above) but applied

to pooled sessions and optionally with causal zero-phase

component analysis (ZCA) preprocessing (the ZCA approach

is explained in more detail in the following section).

Subject-independent methods were evaluated as described in

the subsequent Evaluation section, and subject-specific methods

were evaluated using a 4-fold blockwise cross-validation within-

session, adhering to the block structure of each session, in

accordance with best practices recommended by Varoquaux et al.

(2017).

2.8.2 Subject-independent BCI
We additionally applied a generalized linear decoder for high-

channel data that is closely related to that of Kothe et al. (2023),

but which was tailored to the study at hand. While differences

were relatively minor, we describe here the method in detail for the

sake of completeness, noting differences in context. We retained

all channels with a source-detector distance (“length”) of 50mm or

less and converted intensity to optical density using a log-transform

(e.g., Hocke et al., 2018). At this stage, no whole-session time

average was subtracted since processing was strictly causal. Instead,

the previously described EMA high-pass filter was applied at this

stage, as in the referencemethods, yielding change in optical density

relative to a running baseline.

Next, we decorrelated and standardized channels using a

recursive ZCA (Bell and Sejnowski, 1996), an adaptive spatial

filter that processes data here in 5-s block updates (this is applied

causally and independently for each session); this step was also

tested in combination with the Shin et al. (2017) method. Due

to the high channel count, the underlying covariance matrix

estimate was minimally regularized using shrinkage to prevent

degenerate solutions (λ = 10−6 was found to be sufficient). This

stage can be interpreted as a type of cross-session alignment

or domain adaptation step, where sessions are spatially matched

to have equal covariance [see also Huang et al. (2021) for a

similar usage, and Kothe et al. (2023) for a motivation and more
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detailed presentation]. We found this to help with session-to-

session transfer/generalization and with robustness to channels

of poor SNR, which were prevalent in this study. Explicit bad-

channel imputation as described in the original method was found

to not improve performance on these data, and was not applied;

likewise, removal of channels shorter than 10mm and addition of

an intensity bias were not applied for the same reason.

Next, we estimated HbO/HbR concentration changes using

the modified Beer-Lambert law (assuming a differential pathlength

factor of 6) (Delpy et al., 1988), also as in the reference methods.

Lastly, for each motor imagery trial, we extracted a segment from 0

to 8.5 s relative to stimulus onset for subsequent classification and

down-sampled each extracted trial segment to 5Hz using polyphase

resampling.9

We then robustly z-scored each of the resulting high-resolution

spatio-temporal features using the training-set distribution for the

respective feature (median and median absolute deviation) and

applied a regularized logistic regression to obtain probabilistic

single-trial predictions.We employ the subject-independent variant

of the method, including the same Tikhonov-type spatio-temporal

smoothness regularization, and also retaining the low-rank

promoting regularization term acting on the spatio-temporal

weight matrix W. This is the same idea also used for event-related

potentials in EEG by Tomioka and Müller (2010) and can be

interpreted as encouraging solutions where channels share linear

combinations of few latent temporal weight profiles (time courses).

During training, the logistic regression coefficients are

estimated by optimizing the following cost function, which is

jointly convex:

minW,b
1
N

∑N
i=1 log

(

1+ e−yi(〈W,Xi〉F+b)
)

+ α ‖W‖∗

+β ‖ŴU vecW‖22 + γ ‖ŴV vecW‖22

where Xi ∈ R
CLW×T is the matrix of z-scored chromophore

features for the i’th trial, representing W wavelengths (here 2), T

time points, CL channels of length less than L (here L = 50 mm),

while yi ∈ {0, 1} is the trial’s class label. W ∈ R
CLW×T is the

matrix of spatio-temporal weights, b is the bias, 〈·, ·〉F denotes the

Frobenius inner product, the matrices ŴU and ŴV are spatial and

temporal Tikhonov operators, respectively, and ‖·‖∗ denotes the

trace (or nuclear) norm. The parameters α, β , and γ are spatio-

temporal regularization parameters that are learned from the data.

The Tikhonov operators are formed as described in Kothe et al.

(2023) using the same smoothing radius r of 15mm and anisotropy

factor of τ = 3/2.

We solve this optimization problem using an accelerated

proximal gradient method (Beck and Teboulle, 2009), which

converges in under 10 s on an Nvidia V100 GPU on our 59 or 60-

session training sets (size depending on the subject) for a given set

of regularization parameters.

2.8.3 Evaluation
We evaluated the performance of the subject-independent

models in a leave-one-subject-out cross-validation, where, for each

9 This was done using scipy’s resample function.

session, we first train a model on all other sessions excluding any

sessions of the target subject, and then test the model on that

target session, on which we calculate average accuracy. We perform

a one-sided t-test of all test sessions’ average accuracy, against

chance level (here 50% accuracy). Hyper-parameters governing the

spatio-temporal regularization were optimized separately on each

cross-validation fold’s training set in a nested leave-one-subject-

out cross-validation over α ∈ 0.025..0.075 and β ∈ 50..75, with

γ fixed at 5. Note that these parameter ranges depend to some

extent on the headset geometry and task timings, although wider

ranges could be used at greater computational expense. The full

nested cross-validation to assess performance of this model across

all subjects was performed on a single-GPU machine on Amazon

AWS in 2.5 days (since the method uses no per-subject training

data, this is a one-time cost for this study, and the model does

not need to be retrained for use with a new subject). We did not

observe improvements from employing the subject-specific variant

of the method, and we therefore restrict ourselves here to the

subject-independent formulation.

2.9 Factor analyses

To examine pairwise correlations between BCI performance

or ROI quality and subject factors (hair, demographics), we

report three statistics: Pearson’s correlation coefficient, Spearman’s

rank correlation coefficient (rho), and Kendall’s rank correlation

coefficient (tau). To keep the number of comparisons to a

minimum, we limit our factor analysis to the best-performing

method (the high-channel decoder). For additional insight our

figures also show two trend lines, one fit with a least-squares

linear regression, the other showing a robust fit using a Theil-

Sen estimator (for visualization only). To examine correlations

between binary-valued subject factors and BCI performance or

ROI quality, we used a Wilcoxon rank-sum test as a robust analog

to an unpaired t-test. Lastly, to compute the variance in ROI

Quality and BCI Performance explained by subject factors (i.e.,

hair), we used a mass-univariate one-way ANOVA with FDR

correction (Benjamini–Hochberg).

3 Results

3.1 Signal quality review

We reviewed channel quality, using the Coefficient of Variation

(CoV) metric, as a function of channel length. Figure 3 (right)

shows the group averages for the “minimum viable quality” (MVQ)

and “poor quality” (PQ) sessions, where each dot represents

the average across all sessions in that group for each probe

channel (averaged across wavelengths). The figure shows that

the sessions in the MVQ group follow a trend where nearly all

channels up to about 30mm length are of somewhat reasonable

quality (though many still low) after which there is a nearly

linear falloff in quality until settling into a limit around the

60mm threshold. The overall progression is well explained by a

sigmoid curve, and we show the best-fit curve in the figure. By

contrast, for the PQ group, all channels above 25mm have an
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FIGURE 4

Coe�cient of variation (A), intensity signal to noise ratio (B), optical density signal to noise ratio (C), for “minimum viable quality” (MVQ) sessions (left)
and “poor quality” (PQ) sessions (right). Channels are averaged per LUMO tile (see Figure 2). See Section 2.3 (Channel Quality Measures) for
explanations.

excessive CoV (>15%) which rises approximately linearly from

there, in a broad band, until converging with the MVQ group

at the 60mm range. This figure shows that the ROI Quality

threshold used for binning of sessions into these two groups

was effective, and the rejected (PQ) sessions have essentially no

channel in the 25–45mm range with an average CoV below 15%.

We also found that all but one subject (1022) had either all of

their sessions or none of their sessions scored as PQ, so the

quality-based scoring was highly consistent across sessions of a

given subject.

To allow for readable topographic quality plots given the

LUMO’s very large channel count, we averaged the raw channel

metrics to the same between-tile resolution described in the

Tile Averaging section, and excluded inter-hemispheric channels

(which were all >60 mm).

Also, to better characterize the quality of the signal data, we

report our battery of channel quality measures separately for the

MVQ and PQ session groups. The difference in quality between

the two groups is clearly manifest in the group average plots in

Figure 4, with the PQ group scoring very low on all metrics across

all channels of interest.

3.2 Hemodynamic response averages

Block average results were computed separately for all sessions

(All), and the two quality-based session groupings described in

Section 2.4, MVQ, and PQ. These are plotted side-by-side for

comparison (Figure 5 top three rows) showing the same three
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FIGURE 5

All (left column) vs. “minimum viable quality” MVQ (middle column) vs. “poor quality” PQ (right column) sessions mean block average concentrations
of three representative right central motor area channels for 2 s imagery tapping (instructions presented at time point 0) with left hand for covert
trials (top three rows) and of the left central motor area, showing right hand trials (bottom three rows). Shaded error bars denote 95% confidence
intervals. Gray bars indicate significant time periods (p < 0.05, FDR corrected).

representative contralateral right-central motor area channels (after

within-tile averaging), here showing left-hand covert tapping. For

these channels, the group of all pooled sessions (All) had only

one channel (Tile1–6, which is situated approximately over left-

hand motor cortex) with a significantly positive HbO peak near

9 s after onset (cf. Figure 2C for the tile indexing). A second

channel (Tile6–1, i.e., with reversed source/detector optodes)

showed a significantly positive HbR peak near 3 s, and a third

channel (Tile1–2 also near left-hand motor cortex) showed a

weak HbO activation which did not reach significance at any
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point. In contrast, the MVQ session group showed all 3 channels

had a significantly positive HbO peak ∼8 s after onset and the

HbO concentrations showed stereotypical canonical hemodynamic

response function (HRF) patterns with relatively low variability

throughout the time course. HbR concentration also showed

low variability but did not reach significance, though there was

a slight concentration increase around 3 s after onset. The PQ

group showed no significant concentration changes whatsoever

for either HbO or HbR as there was high variability across the

trials, and there was no clear indication of a canonical HRF

waveform. One channel (Tile6–1) even showed an opposite effect

with negative HbO peaks and decreased levels of concentrations

across the trials.

Similarly, for right-hand motor imagery we show three

representative contralateral left-central motor area channels (after

within-tile averaging) for comparison between these session

groups. Here, only one channel (Tile7–12, over right-hand motor

cortex) in theMVQgroup shows a significant HbO peak around 8 s.

The remaining channels across all other groups show no significant

time periods, but the patterns shown in left hand tapping are also

present here, with the MVQ group showing stereotypical canonical

HRF waveforms with HbO concentration peaking around 8 s.

Although the relative concentration levels were about the same as

the left-hand tapping condition, there was overall higher variability

near the peaks. Both the PQ group and all group show noisier

waveforms and higher variability lacking the expected canonical

HRF waveform patterns.

3.3 Machine learning analysis

3.3.1 Reference methods
Table 2 compares the overall performance across all tested

methods, using the MVQ group of sessions. None of the

selected reference methods appeared sufficiently well adapted

to channel counts as high as that provided by the LUMO,

so none are likely optimal for our dataset. Nevertheless, we

made a concerted effort to adapt parameters (e.g., feature

TABLE 2 Performance comparison of di�erent BCI methods on study

dataset (MVQ session group).

Method Accuracy

Subject-Specific

Cui et al. (2010) 57.3+/– 11.8% (∗∗)

Shin et al. (2017) 54.5+/– 12.3% (n.s.)

Schudlo and Chau (2018) 53.3+/– 11.5% (n.s.)

Subject-independent

Kothe et al. (2023) 59.1 +/– 6.7% (∗∗)

Shin et al. (2017) (with ZCA) 54.1+/– 5.0% (∗∗)

Trambaiolli et al. (2021) 53.5+/– 6.4% (∗∗)

Shin et al. (2017) (no ZCA) 51.8+/– 6.3% (n.s.)

Outcome of a one-sided t-test vs. chance level (50%), here based on uncorrected p-values, is

indicated in brackets using ∗ for significant (p < 0.05) and ∗∗ for highly significant (p < 0.01)

outcomes.

timings and channel reductions) within reason. As the table

shows, all reference methods struggled to reach adequate

performance on our challenging dataset, with performance

in the 50%−60% range. Significance levels from one-

sided t-tests vs. the chance level of 50% are indicated in

brackets (uncorrected).

The performance of the high-channel decoder can be

interpreted as roughly doubling the gap to chance level (here

50%) compared to most of the other tested methods, except Cui

et al. (2010). However, we note that the goal of this comparison

is not to benchmark any specific published method, but to upper-

bound the overall performance achievable with various published

state-of-the-art fNIRS approaches on the collected dataset.

3.3.2 Subject-independent method
In the following we review individual-session results across

all collected sessions using the best-performing method. We

performed a leave-one-subject-out cross-validation (LOSO CV),

where all sessions of a given test subject are excluded from the

respective training set, representing performance in the subject-

independent case where no individualized training data is needed

for BCI usage. We report performance averages at the level of

individual sessions here, since over half of the subjects participated

in only a subset of the 3 sessions.

We performed two runs of this analysis: (1) over all sessions

(All), and (2) over the previously defined MVQ session group.

Figure 6 (top) shows results from the all-sessions cross-validation.

This analysis confirms that the majority of sessions with poor data

quality (the PQ group discussed earlier, shown cross-hatched) tend

to have about chance accuracy as one might expect, with only

a few exceptions. Average accuracy across all sessions (including

PQ, Figure 6 bottom) was near the 50% chance at 54.7 +/– 7.6%

(however, sig. at p < 0.05 in a one-sided t-test vs. chance). A

leave-one-subject-out CV run on the MVQ sessions yielded an

accuracy of 59.1 +/– 6.7% (significantly different at p < 0.01).

Onemight assume that including additional subjects in the training

set (i.e., adding the PQ group to the training but not test set)

may aid performance on the MVQ data; however, this was not the

case, and doing so resulted in a performance degradation. Average

performance on the PQ group is at chance with 49.9 +/– 5.3%

(n.s., despite including MVQ sessions in the training set to help

the learning).

3.3.3 Spatio-temporal model weights
To aid interpretation of the learned patterns and as a visual

sanity check, Figures 7, 8 depict the model weights learned on

the MVQ session group in time and space. We again restrict

ourselves to the best-performing model. Figure 7 shows a summary

of the model weights’ temporal evolution over the course of the

portion of the trial used for prediction, where we show the averaged

model weight over left-hemisphere channels minus average right-

hemisphere channel weight at a given time point (i.e., overall

asymmetry in model weights as it varies over the course of a trial),

separately for HbO and HbR. The time courses exhibit several

peaks of varying polarity, which suggests several change points and

temporal phases in the brain dynamics leveraged by the model. We

Frontiers inNeuroergonomics 13 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1355534
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Kothe et al. 10.3389/fnrgo.2024.1355534

FIGURE 6

Top: Leave-one-subject-out cross-validation accuracy, training on all other subjects’ sessions in the dataset, results grouped/colored by session
number (1–3). The cross-hatched sessions were identified as “poor quality” (PQ) based on a ROI quality index < 0.02. Bars are ordered by data
collection time and by session. Bottom: Cross-validation results for model trained on the subset of sessions that had at least minimal quality. The
chance-level accuracy (50%) is indicated by the horizontal dashed line.

FIGURE 7

Temporal evolution of model weights relative to stimulus onset, showing weight asymmetry (left minus right di�erence) separately for HbO (red) and
HbR (blue) features. The time axis is re-labeled to account for the 1 s moving average filter lag that precedes the ML stage; if filter lag was ignored,
the stimulus onset (t = 0), would be at the −1 marking. Shaded regions 1–5 indicate time windows for which average spatial weight is plotted
(subsequent figure).

identify 5 phases (shaded regions labeled 1–5 in the figure), for

each of which we display the spatial weight distribution, averaged

within the respective time window (cf. Figure 8). To further aid

interpretation, the time axis is relabeled to correct for the effective

delay introduced by the causal preprocessing pipeline (1 s), so 0 s

(dashed line) shows weights corresponding to the stimulus onset.

Shaded regions 4 and 5 likely correspond to the HRF peak induced

by the 2-s imagined tapping task. The large negative HbO deflection
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FIGURE 8

Coronal slices through model weight distributions averaged within 5 variable-length time windows. Only channels whose midpoint lies within +/–
2 cm of the coronal plane (through Cz) are plotted, where the hue of the dot indicates weight polarity (red = positive, blue = negative) and saturation
indicates weight magnitude (all images use the same color scale). Channels are plotted at a depth proportional to the channel length (length/4).
Weights for HbO-derived features are shown in the left column and HbR on the right. Panel headings indicate the time window (1–5) and the time
range over which the weight was averaged in seconds (cf. Figure 7).

in region 3 appearsmost compatible with the timing andmagnitude

of what has been identified as an initial dip of the hemodynamic

response [e.g., described in Hong and Zafar (2018) and references

therein]. Regions 1 and 2 resemble weight “swings” flanking the

highest-weighted features that are often seen in learned linear filter

weights, and which could be involved in noise cancellation.

In Figure 8 we show the model weights for channels near the

coronal plane (within +/−2 cm from the plane) in coronal slice

plots viewed from the back of the head (nose pointing away from

the viewer). Longer channels are plotted deeper in line with a

simplified NIRS photon path model (e.g., Strangman et al., 2013)

for the purpose of visualization. A channel is then rendered as

a single-colored dot at the linear midpoint between source and

detector, offset toward the head center by a distance proportional

to the channel length (using the formula for midc given in the

Supplementary material with proportionality factor τ = 4).

Briefly, we can see that absolute weights increase toward later

time windows, and that within each time window the spatial

weight distribution is relatively smooth, which is expected due

to the spatial regularization. The weight gradient is relatively
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FIGURE 9

Left column: ROI quality vs. demographic traits, showing age (top), sex (center), and ethnicity (bottom). Right column: ROI quality vs. hair traits,
showing color (top), density (center) and length (bottom). For ordinal or continuous quantities, Pearson’s correlation coe�cient, Spearman’s rho,
and Kendall’s tau are provided, and for binary quantities, a Wilcoxon rank-sum unpaired t-test statistic is shown. Each dot represents one session.
Fitted trend is shown in dotted blue, and robust trend (Theil-Sen estimate) is shown in orange. For FDR-corrected statistics, see Table 3.

steep between the short (shallow) and longer (deeper) channels,

which is visible as a polarity reversal in most plots that happens

between depths differing by no more than 0.5–1 cm, which is

compatible with the model performing implicit short-channel

regression. Across time windows we can see prominent weight

hotspots about 2–3 cm diameter near the hand motor areas in the

last and second-to-last time windows with opposite polarities for

HbO/HbR, in agreement with a physiological origin. Time window

#3 (2.1–4 s) remarkably shows nearly the opposite HbO effects as

the subsequent windows, again compatible with the effect described

as an initial dip in Hong and Zafar (2018).

In summary, these results confirm that the model learns

brain dynamics that are overall compatible with a short-duration

left/right hand motor imagery task.

3.4 Factor analysis

3.4.1 ROI quality vs. hair and demographics
factors

To better understand the factors contributing to low signal

quality, and in turn generally low BCI performance, we first
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TABLE 3 Top: ROI quality variance explained by hair length, hair color and hair density, computed using a mass-univariate one-way ANOVA with FDR

correction, along with the sum of squares, mean of squares, F-stat, and p-values.

ROI quality Variance explained Sum of squares F-statistic p-value (FDR)

Hair length 16.14% 0.0835 15.8410 0.0002 (∗∗)

Hair color 14.21% 0.0735 13.9432 0.0004 (∗∗)

Hair density 8.51% 0.0450 8.3479 0.0054 (∗∗)

Residual 61.14% 0.3162 n/a n/a

Ethnicity 16.72% 0.0866 7.7657 0.0002 (∗∗)

Sex 6.96% 0.0360 9.6949 0.0029 (∗∗)

Age 34.69% 0.1794 48.3405 0.0000 (∗∗)

Residual 41.63% 0.2153 n/a n/a

Bottom: ROI quality variance explained by ethnicity, sex and age, computed using a mass-univariate one-way ANOVA with FDR correction, along with the sum of squares, F-statistic

and p-values. ∗ and ∗∗ : Significance levels (thresholds as in Table 2).

computed the correlations between subject factors impacting signal

quality, primarily those related to hair, and the ROI quality score

described in Section 2.4. For categorical factors with only two

values, an unpaired Wilcoxon rank-sum test was used, while

for factors with more than two values the Pearson correlation

coefficient was computed along with a robust Kendall’s T statistic

(tau), and Spearman’s rho. These all show statistically significant

correlations between the ROI quality score and the color, length,

or density of the subject’s hair (see Figure 9 and Table 3). We found

the robust correlationmeasures to be somewhat more conservative,

and report these in the following text, after FDR correction for

multiple comparisons. No other comparisons were performed

beyond those reported in this section.

For hair length we combined subjects’ “none” and “short”

responses into one category and “medium” and “long” into a

second category due to too few “none” and “medium” responses,

and performed an unpaired robust Wilcoxon rank-sum test. The

result, as shown in Figure 9 (bottom right), was a statistically

significant association where medium or long hair predicted lower

ROI quality (T = 3.347, p= 0.003).

A look at hair density and color (Figure 9 right) showed greater

hair density to be significantly negatively correlated with ROI

Quality (tau=−0.325, p < 0.001). Likewise, when comparing ROI

quality with hair color, we again find a significant correlation (tau=

−0.399, p= 0.001), with darker hair resulting in lower ROI quality.

Hair color was rank-coded based on a sorting of self-reported hair

color by approximately lightness (see Figure 9). Our results concur

with findings in other studies where hair density and color were

found to be inversely correlated with signal quality (Khan et al.,

2012). We also looked at hair strand thickness as self-reported

by subjects, but found it unusable as most subjects reported it as

simply “medium.”

Since hair color, density and length often vary between

ethnicities, genders, and ages, we examined the relationship

between these three factors and the ROI quality score. We found

a significant positive correlation (tau = 0.486, p < 0.001) between

age and ROI quality, as shown in Figure 9 (left top), with subjects

over 50, who are likely to have thinner and greyer hair, having a

significantly higher ROI quality score than subjects under 30. As for

sex (gender at birth), an unpaired Wilcoxon rank-sum test showed

that male subjects had a statistically significant higher ROI quality

score than female subjects (T = 2.279, p = 0.025) (see Figure 9 left

center.). Lastly, binned into broad ethnic categories for the sake of

a correlation analysis (and due to the relatively small sample size,

see Table 2), we observed a highly significant correlation between

the ROI quality score and ethnic origin (tau = −0.391, p = 0.002),

with sessions from subjects of ethnicities likely to have higher

hair occlusion (according to self-reported responses averaged by

ethnicity) also having lower ROI quality scores (see Figure 9 left

bottom). Note that this ordering sorts African Americans lower

than Hispanics (also in agreement with the table reproduced in

Maymone et al., 2021); reversing the order of these two bins yields

a lower, but still-significant correlation (tau=−0.295, p= 0.025).

We then calculated the variance explained by each of these hair

properties above contributing to ROI quality using an ANOVA, and

found that taken together, they accounted for nearly 40% of total

variance, with hair length, hair color, and hair density accounting

for 16.1%, 14.2% and 8.5% of total variance, respectively (Table 4).

We performed the same analysis using the available demographic

factors for age, sex, and ethnicity (coded as unordered categories

for the ANOVA). Here we find a total variance explained of

nearly 60%, and 34.7%, 7%, and 16.8% for age, sex, and ethnicity,

respectively. P-values are statistically significant (p < 0.01) for

all factors after FDR multiple-comparison correction (Benjamini

and Hochberg, 1995). A highly conservative Bonferroni multiple

comparison correction across these comparisons showmost factors

retain significance except sex and hair density.

3.4.2 Block averages vs. hair and demographic
factors

An attempt was made to directly correlate HRF block averages

for HbO and HbR chromophores with the same battery of factors,

however this proved challenging due to the high variability intrinsic

to HRF responses in our data. No significant effects were found in

this analysis, although we cannot rule out that better preprocessing

would not reveal such associations. Note however, that both

qualitative differences and differences in significant HRF effects

were pronounced between the overall PQ and MVQ groups, as

discussed in the Block averages section.
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TABLE 4 Statistics for correlation comparison of signal quality vs. subject demographics and hair properties as shown in Figure 9 (top), and BCI

performance vs. subject alertness and hair properties as shown in Figure 10 (bottom).

ROI quality p (raw) p (FDR) tau rho Wilcoxon

Age 0.000 0.000 (∗∗) 0.486 0.662 n/a

Sex 0.023 0.025 (∗) n/a n/a 2.279

Ethnicity 0.001 0.002 (∗∗) −0.391 −0.562 n/a

Hair color 0.000 0.001 (∗∗) −0.399 −0.504 n/a

Hair density 0.000 0.001 (∗∗) −0.325 −0.402 n/a

Hair length 0.002 0.003 (∗∗) n/a n/a 3.347

Bci performance p (raw) p (FDR) tau rho Wilcoxon

Roi quality 0.004 0.006 (∗∗) 0.412 0.579 n/a

Alertness 0.007 0.008 (∗∗) 0.573 0.717 n/a

Hair color 0.087 0.087 −0.132 −0.181 n/a

Hair density 0.000 0.002 (∗∗) −0.296 −0.363 n/a

Hair length 0.001 0.003 (∗∗) n/a n/a 3.073

Pearson’s correlation coefficient, Kendall’s tau, and Spearman’s rho were calculated, and for binary quantities, a Wilcoxon rank-sum unpaired t-test statistic was used. The p-value and

FDR-corrected p-value included here is of the Pearson’s correlation coefficient. ∗ and ∗∗ : Significance levels (thresholds as in Table 2).

3.4.3 BCI performance vs. quality, hair and
demographics factors

We examined the correlation between the ROI quality score

and BCI performance and found them to also be significantly

correlated (tau = 0.412, p = 0.004) (shown in Figure 10 left

top). Furthermore, we found that below tqual (indicated by the

dashed green line in the figure), BCI performance is spread around

chance level for most sessions, with performance slowly increasing

with better quality. This mirrors similar results between these

two groups in terms of signal quality using a variety of metrics

(Figure 4), and in neural responses (Figure 5).

Given the demonstrated correlation between quality and BCI

performance, we then computed the direct relationship between

the latter and hair factors contributing to quality, specifically

hair color, density, and length. The results were similar to the

trends and correlations found between those factors and ROI

quality (Figure 10 right column). Specifically, hair density was

significantly correlated (r = −0.363, tau = −0.296, p < 0.0005),

as was (short/long) hair length (T = 3.073, p = 0.001, using a

robust Wilcoxon rank-sum unpaired t-test). Hair color was not

significantly correlated with BCI performance (r = −0.181); this

was the main difference to the findings based on ROI quality.

Another factor that we assumed would be likely to impact BCI

performance, though not signal quality, was the subjects’ level of

alertness, self-reported at the start of the session on a scale of 1

(Drowsy) to 10 (Alert). A direct comparison between performance

and alertness level showed no significant correlation. Of note,

however, we observed that these data appeared to show a “ceiling”

effect, where the top-percentile scores across sessions binned by

alertness appear limited by and correlated with alertness (Figure 10,

right center, tau = 0.573). This was also not significant, likely due

to the 5 times lower sample size in these top-performance sessions.

Finally, we computed the explained variance of BCI

performance by hair characteristics, using a mass-univariate

ANOVA. This is lower than the explained variance for ROI quality,

with about 28% of the variance in BCI performance explained by

hair characteristics (16.4%, 2.3%, and 9.8% for hair length, color,

and density, respectively). The F-stat values were FDR corrected

(Benjamini–Hochberg) and were statistically significant for hair

length (binary categorization of none/short, and medium/long as

in Figure 10, p < 0.001) and hair density (p= 0.007), but again not

for hair color. Results are shown in Table 5.

4 Discussion

4.1 Related research

Our study employs a hand motor task based on sequential

finger tapping that is modeled after tasks in which subjects tap

fingers against a surface (here the desk), for instance Holper

et al. (2009), Khan et al. (2010, 2012), and Nguyen et al. (2018).

Throughout the article we analyzed exclusively data from motor

imagery trials where this action is imagined, which comprised all

the analyzed trials in our paradigm.

4.1.1 Short-duration hand motor imagery tasks
Most fNIRS hand motor imagery studies utilize task durations

of 10 to 20 s (e.g., Cui et al., 2010; Wriessnegger et al., 2018; Bak

et al., 2019). Fewer studies attempt to use shorter durations which

pose a greater challenge for BCI decoding due to higher single-trial

variability, but may promise faster trial and bit rates. Fazli et al.

(2012), Kaiser et al. (2014), and Chiarelli et al. (2018) employ 4,

5, and 6-second tasks, respectively, however all three are hybrid

fNIRS/EEG studies. Two exceptions in fNIRS are Mihara et al.

(2012) (5-s) and Peng et al. (2018) (7-s), the latter of which was a

BCI study with continuous feedback. Similarly in motor execution

paradigms, the majority of studies also utilize 10 to 20 s (or longer)

trials, with few exceptions including Huppert et al. (2006) and

Gagnon et al. (2012, 2014) (2, 2, and 5 s, respectively). Finger
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FIGURE 10

Top left: BCI performance (classification accuracy) vs. ROI Quality score; the green vertical line marks the threshold for binning sessions into
“minimum viable quality” (MVQ) and “poor quality” (PQ) groups. Bottom right: BCI performance vs. alertness; dots highlighted in orange represent
top 20% performers in each alertness bin; trends (fit on this subset) serve to illustrate hypothesized ceiling e�ect. Right column: BCI performance vs.
hair properties, showing color (top), density (center), and length (bottom). Other details as in Figure 9. For corresponding statistics, see Table 3.

tapping, as studied here, is one of the most common types of hand

motor studies in the literature (e.g., Sitaram et al., 2007; Holper

and Wolf, 2011; Wu et al., 2018; Bak et al., 2019; Kwon et al.,

2020), although we note that alternatives such as fist clenching, e.g.,

studied by Xu et al. (2014) or squeezing a ball or soft prop (e.g.,

Coyle et al., 2007; Batula et al., 2017) have also been used.

4.1.2 Subject-dependent vs. subject-
independent BCIs

Many fNIRS BCI studies to date (e.g., Holper and Wolf, 2011;

Fazli et al., 2012; Xu et al., 2014) employ subject-dependent BCIs,

i.e., trained on data from the subject in question, either from parts

of the test session itself or from separate sessions of the same

subject. The latter scenario avoids some issues in how preprocessing

(e.g., whole-data statistics), trial selection (e.g., randomized cross-

validation), or reduced cap fit variability within-session might lead

to overestimating BCI performance relative to a full session-to-

session transfer setting.

To date, only a small number of fNIRS studies have investigated

entirely subject-independent BCIs, where no data from the target

subject is needed to train or adapt the BCI. We choose this

paradigm here among others to overcome the challenge of learning

very high-dimensional models from relatively few fNIRS trials.

To the best of our knowledge, the only example of such a study

focusing on motor imagery is Fu et al. (2021), where cross-subject

transfer of arm movement imagery BCIs was tested with a longer
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TABLE 5 BCI performance variance explained by hair length, color and density, computed using a mass-univariate one-way ANOVA with FDR correction,

along with the sum of squares, F-statistic and p-values.

BCI performance Variance explained Sum of squares F-statistic p-value (FDR)

Hair length 16.37% 0.0576 13.0367 0.0006 (∗∗)

Hair color 2.33% 0.0082 1.8549 0.1786

Hair density 9.75% 0.0343 7.7732 0.0072 (∗∗)

Residual 71.55% 0.2517 n/a n/a

∗ and ∗∗ : Significance levels (thresholds as in Table 2).

task duration of 8 s. That yielded a performance range of 60%−77%

accuracy (no summary statistics were provided in this setting).

Outside motor imagery, three other examples are Kwon and Im

(2021), where mental arithmetic vs. rest was tested (10 s. task), the

work of Wang et al. (2021), where the current workload level in

an n-back task was predicted (2 s. time windows of a long-duration

task), and Trambaiolli et al. (2021), where the subject’s binarized

affective state was predicted (positive vs. negative or negative vs.

neutral) from 30 s of data. Of these, Kwon and Im (2021) present,

among others, results for a linear classifier (shrinkage LDA) and

report an accuracy of 65.74% +/– 7.86% for that method. In

Wang et al. (2021) the main focus was on hybrid calibration

schemes where data from the target subject and other subjects

was combined, although results for the pure subject-independent

case were provided as well, where 55.6% accuracy was reported

in a binary classification task, a near-chance result. Trambaiolli

et al. (2021) reported statistically significant accuracies of 64.50

+/– 12.03% (positive vs. negative emotion) and 68.25 +/– 12.97%

(negative vs. neutral emotion). In Kothe et al. (2023) we reported an

accuracy of 67.7+/– 10.4% when classifying low vs. high workload

in an n-back task (n = 0 vs. 2, 40 s) across subjects in a similarly

diverse population using the same high-channel decoding approach

and using a different high-density fNIRS device.

4.1.3 Data collection and analysis exclusion
criteria

Due to the challenge of penetrating subjects’ hair with NIRS

optical probes (optodes), it is not uncommon to exclude subjects

from analysis in current fNIRS studies, potentially at recruitment

or screening time, at data collection time, or at analysis time, as

has been discussed by, e.g., Khan et al. (2012) and more recently

by Kwasa et al. (2023). With high-density devices, this problem

can be exacerbated in a multitude of ways, for instance due to the

time required to maneuver all optodes through the hair, or due

to the inability to independently move closely spaced or rigidly

mounted optodes.

However, as pointed out in Yücel et al. (2021), the practice of

excluding subjects can inadvertently introduce systematic biases,

since hair properties are correlated with, among others, age, sex,

and ethnic background, and those factors in turn are strongly

linked to differences in NIRS signal quality that can then drive

data exclusion criteria. The sensitivity to hair factors has previously

been demonstrated in Khan et al. (2012) and Fang et al. (2018) and

acknowledged in Orihuela-Espina et al. (2010) and Scholkmann

et al. (2014). However, literature exploring physiological and

demographic confounds or biases due to such factors is otherwise

relatively scarce, which prompted our choice to avoid any pre-

biasing of the dataset at subject recruitment or data collection time.

4.2 ROI quality threshold and session
partitioning

We found that when binning sessions into poor and minimum

viable quality groups (PQ and MVQ) according to the proposed

motor ROI-based quality threshold, the resulting partitioning also

happened to separate sessions well according to quality observed

in other channel locations, including the most distal channels.

We infer this to be because quality observed at one scalp site is

highly correlated with quality at another site if there are common

underlying causes, such as specific hair and scalp properties.

The partitioning also helped separate PQ/MVQ session groups

in our analysis of neural measures as further discussed in the

below Section 4.3. The machine-learning/BCI analysis showed

significantly above-chance accuracy for the MVQ group but

chance-level accuracy for the PQ group. Moreover, the latter

two analyses clearly demonstrate the consequences of pooling

PQ and MVQ data (or equivalently, not rejecting sessions based

on quality), namely that grand-average neural response estimates

become significantly degraded and ML performance is likewise

significantly impacted, averaging out at half-way between chance

level and the MVQ group’s average accuracy.

4.3 Neural measures

We found from block average analysis that HbO/HbR

concentrations for the MVQ group present stereotypical canonical

HRF waveforms, particularly for HbO, withmost channels showing

significant HbO peaks around 8 seconds after tapping onset.

The finding of increased HbO agrees with previous fNIRS motor

imagery studies that used longer imagined tapping durations

[Holper and Wolf, 2011 (15 s), Mihara et al., 2012 (5 s), Iso et al.,

2016 (20 s), and Batula et al., 2017 (20 s)], which also commonly

show HbO (but not HbR) peaks around 8–12 s after onset for

channels over the pre-motor and motor cortex areas. In contrast,

the PQ group showed very noisy concentration waveforms with

high variability across subjects and no significant time courses for

any channels in either tapping condition. As might be expected,

combining all sessions together produced roughly the average

of both quality groups and showed relatively high variability

across all channels and conditions, though there were several

significant channels with HbO concentration peaks, whose latency
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is often extended out to 9–10 s after tapping onset. These results

suggest that good-quality and plausible HRF waveforms can be

obtained from block averaging of the 2 s tapping trials using our

preprocessing chain of a bandpass filter, TDDR, and outlier removal

if the relative signal quality is good, but HRF waveforms are greatly

diminished when lower-quality sessions are included.

There remains a challenge in comparing the neural results of

this study directly to previous literature as many fNIRS studies

frequently use somewhat smaller sample sizes (< 20) and often

report little detail regarding recruitment criteria with respect

to demographics or hair phenotypes. As we have demonstrated

here these factors can significantly impact signal quality which

can affect the statistical results and conclusions made from

neural analyses. Future fNIRS studies could benefit from even

better understanding these factors and their impact on potential

inferences and conclusions.

4.4 Machine learning analysis

Our original study aim of reaching high decoding accuracy

on the collected fNIRS data was not achieved with any of the

tested methods. Instead, we reached only modest BCI performance

overall, even with the best tested method, and in analogy to the

neural measures analysis, we identified a large difference in BCI

performance between the two subject groups (PQ and MVQ).

Specifically, a significantly above-chance accuracy of on average

59.1 +/– 6.7 was achieved when restricting cross-validation to

the MVQ group, while a clear chance-level accuracy of 49.9 +/–

5.3% was obtained on the PQ sessions (even when including MVQ

subjects in the training set), in both cases using a rigorous leave-

one-subject-out cross-validation and the high-channel decoder.

When including all subjects in the analysis, we obtained outcomes

that were roughly in between those of the two data partitions, and

in fact somewhat lower at 54.7 +/– 7.6%, which we attribute to the

deleterious effects of including low-quality sessions in the training

set. Nevertheless, at the same time these results represent one of

the first subject-independent BCI results to date for fNIRS motor

imagery data, and the first such analysis applied to short-duration

motor tasks (here 2 s).

Due to the large available training set of over 30 sessions (in the

MVQ set) and a high level of spatio-temporal regularization, we

were nevertheless able to learn a high-resolution model, which is

amenable to some amount of interpretation, including clear weight

patterns compatible with hand motor activity of physiological

origin during time windows corresponding to the imagined

movements, possibly a signature of the initial dip, and evidence of

implicit short-channel regression being performed by themodel, all

of which further support that the model leveraged patterns in good

agreement with motor imagery decoding assumptions.

4.5 Factor analyses

The relatively large data sample and demographic metadata

proved invaluable in our comprehensive study of potential causes

of our signal quality, neural measures, and BCI results. Specifically,

we performed an extensive analysis of associations between hair

phenotypical and subject demographic factors vs. ROI quality

scores (as defined in Section 2.4.), and ML performance. We

reviewed each factor individually and tested for significant effects

in dependent measures using both a robust and non-robust two-

sample test (in the case of binary factors), or correlation test (for

ordinal and continuous-valued factors), and reported the more

conservative of the two.

We further performed FDR-corrected ANOVA analyses for

groups of factors (separately for hair phenotype and demographic

factors). These analyses showed significant effects of the following

factors in outcome measures:

• Hair length (binarized as short vs. medium or long), hair color

(coded as an ordinal factor by lightness), and hair density (self-

reported 3-point scale, low/medium/high) each significantly

influence ROI quality and collectively explain ca. 38.9% of the

variance in ROI quality (p < 0.01 after FDR correction).

• Age, ethnicity (White, Hispanic, Black, Asian, in our sample),

and sex (binary, in our sample) also each significantly

influence ROI quality and collectively explain 58.6% of the

variance in ROI quality (p < 0.01 after FDR correction).

• BCI performance was highly correlated with ROI quality (p

< 0.005).

• Hair density and hair length each significantly influence BCI

performance and collectively explain 26.1% of the variance in

BCI performance (each p < 0.05 after FDR correction).

• Neither hair color nor alertness were found to be significantly

correlated with BCI performance (although alertness appears

to participate in an interaction effect).

• We attempted to construct quantitative measures of neural

response effect size for inclusion in the correlation analysis,

but these measures proved too noisy for analysis. No other

tests yielding negative results were performed which are not

mentioned or reported in this article.

Collectively, the factor analysis shows that effects of

phenotypical and demographic factors on ROI quality are

pervasive and highly significant. Furthermore, we showed that

ROI quality itself is highly predictive of outcome measures such

as BCI performance (accuracy) and neural responses (presence of

significant effects), and hair phenotype is also directly predictive of

BCI performance as would be expected on these grounds.

In this study, while 28 of the 61 sessions analyzed (46%)

were from subjects with an ethnic origin other than “white,” once

sessions were separated into MVQ and PQ groups using only

the highly conservative ROI Quality threshold discussed earlier

(Section 2.4.), only 26% of MVQ sessions (9 of 34) were from

“non-white” subjects. This analysis leads to the conclusion that

our results shown for the MVQ group, such as hemodynamic

response curves, brain images, and ML model weights, should not

be assumed to be representative of the unbiased general population,

or of underrepresented ethnicities in particular. Due to the low

quality of data obtained from the latter, we were not able to generate

such results.More broadly, this situation underlines the importance

of characterizing and accounting for potential demographic biases

when data selection or exclusion criteria are employed that may

in part be driven by hair phenotype or other demographics-

linked factors.

Frontiers inNeuroergonomics 21 frontiersin.org

https://doi.org/10.3389/fnrgo.2024.1355534
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Kothe et al. 10.3389/fnrgo.2024.1355534

4.6 Limitations and future work

While our results are striking and support the need for a

deeper investigation of the nature of such biases along with

applicable remedies, these results must nevertheless be interpreted

in the context of the unique features and limitations of the

present study:

1) We employ a lightweight wearable, LED-based headset with

a high-density channel configuration. This alone contributes

to individual channels having somewhat lower signal to

noise ratios than what is found in many commercially

available systems, due to factors including the shorter duty

cycle of individual channels, the greater effort associated

with working the many optodes through hair, and relative

crowding of optodes and hair on the scalp. The headset

also features a unique optode geometry using light guides

that are relatively short (5mm long) and which have

5mm wide flat tips compared to some other point-

tipped optode designs, or more elaborate interfaces such

as, e.g., brush optodes (Khan et al., 2012). Also, optodes

come in rigid assemblies (tiles) that do not allow for

individual optode maneuverability. In combination, these

circumstances limit the direct applicability of our findings

to the somewhat narrow scope of headsets with similar

probe designs, although the device can be viewed as state-

of-the-art representative of a new generation of high-

density headsets suitable for e.g., HD-DOT imaging and

wearable/wireless setups.

2) High-channel/low-SNR configurations additionally pose

a second challenge for BCIs, since higher-dimensional

parameter vectors need to be estimated from limited training

data, which is simultaneously less amenable to channel

selection and sparse modeling due to low per-channel SNR,

prompting the use of techniques such as cross-subject

pooling and spatial smoothing to surmount these issues.

A study that directly compares different types of fNIRS

headsets, including low-density models, could shed light

on designs and configurations that are optimally suited to

minimizing these physiological biases.

3) The present study is not designed to replicate an idealized

robust effect in a “textbook” setup involving generously

long task times and, in the case of the BCI, ideal training

data. Rather, we investigate here a purposely challenging

setup where a well-known NIRS effect is pushed closer to

the detection limit by use of a considerably shorter than

commonly studied (and closer to potential real-world use

cases) task performance time. Also, some of the presented

results are for subject-independent BCIs, which suffer from

additional factors of inter-subject variability.

4) Collecting more detailed data related to demographic

characteristics, in particular hair characteristics such as

length, thickness, and color, using objective numerical

measurements rather than broader observation-based

categories, would allow for more precise correlation

measurements with signal quality and may improve

sensitivity.

5) While the study was sufficient in size so as not to be

underpowered, it would have benefited from more subjects

having completed multiple sessions. This study was also

designed to study BCI performance in the general population

rather than to specifically compare between demographic

groups, and therefore pseudorandom recruitment and almost

no exclusion criteria was employed. A larger study without

the constraints of data collection during COVID-19 and

which actively recruits a weighted number of subjects across

phenotypical and demographic categories could provide

additional insights.

5 Conclusion

In summary, under the demanding circumstances of this

study we observe a considerable impact of nearly every tested

demographic and hair physiology factor on fNIRS (1) signal

quality metrics, (2) neural responses, and (3) BCI accuracy.

While the presented setting is certainly not representative of

the typical fNIRS study, we nevertheless find that ethnographic

biases including gender, ethnic origin, and age are potentially

prone to be exacerbated near the detection limit and under

conditions that may be increasingly relevant as fNIRS moves

out of the lab and into real-world settings and populations.

The results also renew the call for improved NIRS optode

geometries and headset form factors that can overcome

such challenges.
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