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Our view of the world has changed dramati-
cally since it was realized in the early 1970s 
that networks of neurons can form map-
pings that are associative, content address-
able and relatively invulnerable to the loss 
of individual neurons or synapses – thus 
potential candidates for memory storage in 
the animal brain (Anderson et  al., 1972). 
But how, we asked ourselves, could such 
mappings be constructed in networks of 
neurons? That is, how could the values of 
vast numbers of synapses be adjusted to 
obtain a mapping that corresponds to an 
appropriate memory?

One possibility was that synaptic modi-
fication followed the famous Hebbian rule: 
“When an axon in cell A is near enough to 
excite cell B and repeatedly and persistently 
takes part in firing it, some growth process 
or metabolic change takes place in one or 
both cells such that A’s efficiency in firing 
B is increased” (Hebb, 1949). Or, “Neurons 
that fire together wire together.” In restricted 
circumstances this gave a mapping with 
some of the properties of memory.

But, though Hebb had proposed this idea 
in 1949, it had hardly become fashionable 
in the biological community. I recall giv-
ing talks on this subject, being greeted with 
condescending smiles and, perhaps, a pat 
on the head from established neurophysi-
ologists: “You’re very clever young man, but 
what shred of evidence do you have that 
synapses modify?” I remember, in particu-
lar, an extended conversation with a famous 
neuroscientist in the late 70s: “We have no 
evidence whatsoever for Hebbian modifica-
tion in the ugly little sea snail that I am stud-
ying,” he would say. (The evidence has since 
been obtained, Lin and Glanzman, 1994.) 
I remember, in exasperation, suggesting 
“Well perhaps that’s the difference between 
an ugly little sea snail and a good looking 
tenured professor at a major university.”

It was evident, of course, that Hebbian 
modification could be only part of the story, 
since synapses would grow in strength with-
out bound. Thus one early question was: 
How would such modification be stabilized? 

Another question was: How is the required 
information made available at the syn-
aptic junction? The input rate is locally 
available. The integrated cell response to 
the inputs from all of the cell’s dendrites 
is not. Thus, in order for the information 
required for Hebbian modification to be 
available locally, I conjectured that it must 
be propagated backwards (by depolariza-
tion or spiking in the direction opposite to 
the usual information flow) from the cell 
body to each of the synapses, see Figure 1 
(Cooper, 1973).

Although such conjectures seemed 
attractive, there was, in fact, little or no evi-
dence for synaptic modification of any kind 
at that time. The primary question thus 
became: Can we find any evidence for syn-
aptic modification? If so, what is its form? 
Further, what is its cellular and molecular 
basis – thus the cellular and molecular basis 
for learning and memory storage?

One way to attack these questions lay 
in the experimental observation that many 
cortical neurons are selective. Selectivity is 
relatively common in the nervous system. 
Hubel and Wiesel (1962, 1970) observed 
edge detectors in area 17 (V1) of visual 
cortex of kittens. By the mid 1970s there 
had already been years of experimenta-
tion in visual cortex that had led to two 

(sometimes controversial) conclusions: 
In animals with “normal” visual experi-
ence, visual cortical neurons are selective 
and binocular; further, these properties 
depend on the visual experience of the ani-
mal (Blakemore and Cooper, 1970; Hirsch 
and Spinelli, 1971; Pettigrew and Freeman, 
1973; Imbert and Buisseret, 1975).

Thus it seemed that the input–output 
relations of these neurons could be altered 
by visual experience – a possible indication 
of synaptic modification that might be test-
able experimentally. Could these experience 
dependent changes in the input–output 
properties of neurons be attributed to syn-
aptic modification? If so what kind of modi-
fication could explain what was seen?

Early models were rate based (von der 
Malsburg, 1973; Nass and Cooper, 1975; 
Perez et al., 1975; Cooper et al., 1979). In par-
ticular the BCM theory (Bienenstock et al., 
1982), created to stabilize Hebbian modifi-
cation and give the desired neuron selectiv-
ity, has diverse consequences that have been 
shown to be in agreement with observation 
(Cooper et  al., 2004). Essential postulates 
of BCM are the existence the LTD and LTP 
regions as well as the sliding modification 
threshold. These are very simple math-
ematical requirements but demand rather 
complicated cell properties. Are they there? 

Figure 1 | In order that the junction (ij) be modified in proportion to gifj, a means is needed for 
communicating the firing rate gi which is the result of signals incoming from all the dendrites gi = 
∑jAijfj back to the junction (ij).
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that can account for different methods of 
inducing synaptic plasticity?

It had been proposed that a moderate 
elevation of calcium above baseline pro-
duces LTD while a larger elevation produces 
LTP. (Lynch et al., 1983; Geiger and Singer, 
1986; Bear et  al., 1987; Lisman, 1989). A 
calcium control hypothesis that can be 
derived from lower-level molecular models 
has been shown to be capable of accounting 
for the plasticity induced using the various 
induction mechanisms mentioned above 
(Shouval et al., 2002b). It required an addi-
tional assumption that the back propagat-
ing action potential have a wide component. 
Experimental results suggest that in some 
dendrites back propagating action poten-
tials are wider than in soma (Magee and 
Johnson, 1997).

The wide component of the back prop-
agating action potential is also capable of 
explaining the seeming a-causal behavior 
of the post–pre spike sequence. The pre-
post sequence in which the back propagat-
ing action potential is presumably initiated 
at least in part by the pre spike gives the 
expected LTP. However in the post–pre 
sequence the post spike might be thought 
to be produced by spikes arriving at other 
inputs that should not modify the post–
pre site. This would occur if we imagine 
that the post-signal is accompanied by sto-
chastic pre-signals that initiate both LTD 
and LTP, giving, on average, no change in 
the synapse.

It has been suggested that the cellular and 
molecular basis for LTD and LTP involve 
changes in the number of postsynaptic 
AMPA receptors as well as phosphoryla-
tion and dephosphorylation of specific 
gluR1 sites on the AMPA receptors (Nayak 
et al., 1998; Carroll et al., 1999; Shi et al., 
1999; Hayashi et al., 2000; Lee et al., 2000). 
One possibility for the molecular basis of 
the sliding modification threshold might 
be variations of the NR2A/2B ratios since 
changing the NR2A/2B ratio changes the 
amounts of current that flow through the 
NMDA receptors. Experience dependent 
variations of these ratios that have been 
observed experimentally (Quinlan et  al., 
1999; Cho and Bear, 2010). It has also been 
suggested that the h current may play a 
role as a basis for the sliding modification 
threshold (Narayanan et al., 2005).

We thus have a variety of candidates for 
the cellular and molecular basis for synaptic 

modification. Among the major remaining 
questions is to put all of this together in a 
consistent theory that yields both STDP and 
rate-based results that is in agreement with 
observation. And then, of course, this has to 
be put into networks of neurons to show how 
we can arrive at brain function, from recep-
tive field formation, learning and memory to 
mental states including consciousness.

My guess is that we will leave our stu-
dents a few problems to keep them busy.
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