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The mechanism by which these behavioral effects of  corticosteroid 
hormones are achieved has in part become evident from electro-
physiological studies over the past two decades (reviewed in Joëls 
et al., 2007). In short, exposure to high levels of corticosteroids 
directly after stress quickly raises neuronal activity in hippocam-
pal cells, on the one hand by promoting synaptic strengthening as 
demonstrated with paradigms inducing long-term potentiation 
(LTP; Wiegert et al., 2006), on the other hand by enhancing the 
frequency of mEPSCs and glutamate release probability (Karst 
et al., 2005; Olijslagers et al., 2008). The latter rapid, non-genomic 
actions require expression of MRs. At the same time, a slower, gene-
mediated cascade is started via GR-dependent pathways, a cascade 
that will affect neuronal properties some hours later, i.e., by the time 
that the rapid effects have subsided. In CA1 neurons, these slow 
GR-dependent effects mostly attenuate information transfer – e.g., 
by enhancing cell firing frequency accommodation and hamper-
ing the induction of LTP (Joëls and de Kloet, 1989; Kerr et al., 
1989; Kim and Diamond, 2002) – thus preserving earlier encoded 
information and normalizing activity to the pre-stress level. Yet, 
there seems to be a substantial regional specificity for GR-signaling 
pathways. For instance, dentate granule cells appear to be relatively 
resistant to slow GR-mediated signaling (Karst and Joëls, 2003; Van 
Gemert et al., 2009); principal neurons in the BLA can even display 
enhanced excitability some hours after stress (Duvarci and Paré, 
2007; Liebmann et al., 2008). The delayed GR-mediated excita-
tory effects in the BLA may in part develop secondary to a rapid-
onset MR-dependent enhancement of  glutamatergic  transmission 

IntroductIon
Environmental challenges imposed on an individual are generally 
perceived and processed via the brain. This can lead to activation of 
parvocellular neurons in the hypothalamic paraventricular nucleus 
(see for reviews de Kloet et al., 2005; Ulrich-Lai and Herman, 
2009), causing stimulation of the autonomic nervous system and 
the hypothalamo–pituitary–adrenal (HPA) axis. Consequently, 
enhanced levels of (nor) adrenaline and corticosteroid hormones 
(corticosterone in most rodents and cortisol in humans) are released 
into the circulation. These two hormonal systems are instrumental 
in producing and replenishing energy resources that enable the 
organism to cope with the immediate challenge, while at the same 
time they suppress functions for which there is no immediate need 
(McEwen, 2007).

The brain is an important target organ for corticosteroids 
(reviewed in de Kloet et al., 2005). Both the high-affinity miner-
alocorticoid receptor (MR) and the lower affinity glucocorticoid 
receptor (GR) are highly expressed in specific brain regions, includ-
ing important limbic areas such as the CA1 hippocampus, dentate 
gyrus, and basolateral amygdala (BLA). In interaction with other 
stress hormones (e.g., noradrenaline and corticotrophin releas-
ing hormone), corticosteroids alter neuronal activity in areas that 
play a key role in attention, vigilance, selection of the appropriate 
behavioral strategy, and in the storage of memories for future use 
(Joëls and Baram, 2009). This can be seen as the central contribu-
tion to the general stress response, overall resulting in successful 
behavioral adaptation.
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of accumulating stress exposure throughout life in humans. Next, 
we will discuss how these cellular changes could contribute to the 
development of mood disorders and how they can be relieved by 
brief treatment with anti-glucocorticoids.

depressIon, chronIc stress, and structural 
plastIcIty
Recent studies have identified alterations in structural plasticity that 
may contribute to the etiology of depression (Castrén, 2005; Lucassen 
et al., 2010b). One of the most consistent findings is that hippocampal 
volume is reduced by approximately 10–15% in depression (reviewed 
in Sapolsky, 2000; Czeh and Lucassen, 2007). Several structural sub-
strates can explain the hippocampal volume loss, ranging from glial 
changes, reduced neurogenesis, dendritic atrophy, or shifts in fluid 
balance. Massive cell loss, though, is not a likely explanation for the 
reductions in hippocampal volume since many of the stress-induced 
structural changes are transient and disappear after recovery (Pham 
et al., 2003; Heine et al., 2004a). The following paragraphs will address 
how prolonged stress affects structural plasticity. In particular we will 
address the effects of prolonged stress and exposure to corticosteroid 
hormones on neurogenesis – which is required for the behavioral 
effects of antidepressants in animal studies – and changes in den-
dritic complexity.

chronIc stress and adult hIppocampal neurogenesIs
Adult neurogenesis refers to the birth of new neurons in the adult 
brain that occurs in most vertebrate species including humans 
(Gould, 2007; Zhao et al., 2008). Similar to embryonic develop-
ment, neurogenesis in the adult hippocampus involves a multi-step 
process starting with the proliferation of progenitor cells, followed 
by morphological and physiological maturation and finally func-
tional integration into the hippocampal network. Although the 
exact functional role of the newborn granular neurons is unclear, 
numerous reports suggest that adult neurogenesis is involved in the 
acquisition of spatial learning, in pattern separation and in anxiety 
(Aimone et al., 2006; Dupret et al., 2008; Clelland et al., 2009; Garthe 
et al., 2009; Jessberger et al., 2009; Revest et al., 2009).

Stress is a potent inhibitor of adult neurogenesis; consistently, 
psychosocial and/or physical stressors all inhibit one or more 
phases of the neurogenetic process (Leuner et al., 2006; Oomen 
et al., 2007; Leuner and Gould, 2010). Both brief unpredictable 
stress exposure and chronic mild unpredictable stress potently 
suppress proliferation (see Figure 1). In addition, prolonged mild 
stress exposure inhibits the survival of newborn cells (Lucassen 
et al., 2010a). The origin of these stress-induced reductions in pro-
liferation can be diverse, ranging from, e.g., apoptosis of progeni-
tor cells to cell cycle arrest. Apoptosis (not only of newborn cells) 
is indeed affected by stress (Heine et al., 2004a). Thus, 1 day after 
brief unpredictable stress a reversible reduction in proliferation is 
paralleled by a reversible increase in the numbers of apoptotic cells 
(Heine et al., 2004a), suggesting enhanced turnover of granular 
cells. One day following chronic mild stress, both proliferation 
and apoptosis appear to be reduced in the granular cell layer 
(Heine et al., 2004a). Overall, these effects of prolonged stress are 
also reversible (Heine et al., 2004a). In parallel with these effects 
of prolonged stress exposure on apoptosis and proliferation, an 
increase of the cell cycle inhibitor p27Kip1 occurs in the dentate 

(Karst et al., personal communication). This would allow an 
extended time-window during which stress-related information 
can be encoded in the amygdala. If so, this might explain the obser-
vation that emotional or arousing details experienced in a stressful 
context are usually better remembered than neutral information 
(e.g., Buchanan and Lovallo, 2001; Smeets et al., 2009).

While activation of stress systems in response to a single chal-
lenge helps to restore homeostasis and is thus highly adaptive, 
repeated exposure to stressful situations – particularly when these 
are unpredictable, uncontrollable and/or taking place at vulnerable 
periods in life- can introduce a considerable risk for psychopathol-
ogy, especially in genetically predisposed individuals. For instance, 
the chances to develop an episode of depression in people carrying 
two alleles of the serotonin transporter s-type gene variant increase 
with the number of stressful events they have experienced through-
out life, whereas l-type gene variant carriers are relatively protected 
against depression under adverse life conditions (Caspi et al., 2003; 
but see Munafo et al., 2009). Similarly, carriers of the (gain of func-
tion) GR Bc/1 polymorphism are more likely to develop depression 
over the course of their life (reviewed by Maneschijn et al., 2009). 
Conversely, carriers of the GR loss-of-function ER22/23EK variant 
were reported to respond more quickly to antidepressants (Van 
Rossum et al., 2006).

There is ample evidence that cumulative stress exposure in life 
indeed forms a risk factor for the precipitation of depression; the 
functionality of the HPA-axis and glucocorticoids play a key role 
in this process (see for reviews de Kloet et al., 2005; Holsboer and 
Ising, 2010). For instance, high-risk proband of individuals with 
depression were found to exhibit hyper-reactivity of the HPA-axis 
prior to the onset of clinical symptoms. Also, many individuals with 
depression have elevated 24-h corticosteroid levels and escape dex-
amethasone-induced suppression of the HPA axis; normalization of 
these parameters generally precedes the relief of depressive symp-
toms, and the degree of HPA-axis normalization in turn predicts the 
relapse probability. Finally, anti-glucocorticoids given (as adjunct 
to antidepressants) to patients with psychotic depression acceler-
ate and increase chances on successful treatment (DeBattista and 
Belanoff, 2006), provided that the anti-glucocorticoids levels are 
very high (Blasey et al., 2009).

Given the documented role of the HPA-axis and glucocorticoids 
in the etiology of depression, one may wonder how overexposure 
to stress and corticosteroids changes the structure and function 
of brain cells in such a way that an individual becomes more 
vulnerable to depression. Is the impact of chronic stress a mere 
accumulation of what is seen after acute stress exposure? To get a 
better understanding of the mechanisms that may contribute to the 
development of depression one could examine how (prolonged) 
stress changes cellular structure and function in key areas involved 
in depression and how this correlates with depressive-like symp-
toms such as learned helplessness and anhedonia in rodent models 
(Henn and Vollmayr, 2005). In this review we will summarize the 
main effects observed after prolonged corticosteroid treatment or 
stress exposure on both the structure and function of neurons in 
the rodent hippocampus, an area of interest for the etiology of 
depression. The rodent chronic stress model allows indepth inves-
tigation of these cellular endpoints (which is presently not possible 
in humans) and is generally regarded to be relevant to the situation 
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the same time, several examples exist of a persistent and  lasting 
inhibition of adult neurogenesis after a brief stressor, despite the 
later normalization of glucocorticoid levels. These findings sug-
gest that glucocorticoids may be involved in the initial suppres-
sion of cell proliferation, particularly in early life when adult 
neurogenesis is abundant, but that they are not always necessary 
for the maintenance of this effect.

gyrus (Heine et al., 2004b). The latter indicates that more cells 
enter cell cycle arrest, which may slow down granular cell turnover. 
However, the exact cellular pathways mediating the inhibitory 
effect of acute and prolonged mild stress on neurogenesis are 
unknown. Clearly, adrenal glucocorticoid hormones, via activa-
tion of GRs, appear to play a key role in this process (Montaron 
et al., 2003; Mayer et al., 2006; Boku et al., 2009 see Figure 1). At 

Figure 1 | (A) Doublecortin (DCX) immunostaining of immature neurons in the 
adult hippocampal dentate gyrus. DCX-positive somata are located in the 
subgranular zone at the border between the granular cell layer (gcl) and the hilus 
(h) with extensions (arrowheads) passing through the gcl and running into the 
molecular layer (ml). (B) Graph depicting quantification of BrdU- and DCX-
positive cell numbers in the hippocampus of rats treated with vehicle (veh), 
corticosterone (cort) for 3 weeks or corticosterone for 3 weeks plus the 
GR-antagonist mifepristone (RC, applied during the last 4 days of corticosterone 
administration), and with mifepristone alone (RO, applied for 4 days). The 

significant reduction in both BrdU- (21-day old cells) and DCX-positive cell 
numbers after 21 days of corticosterone treatment is normalized by mifepristone 
treatment for the last 4 days, whereas the drug alone has no effect. Black bars: 
control animals; white bars animals treated with corticosterone for 3 weeks; 
dark gray bars: animals treated with corticosterone and RU 38486; light gray 
bars: animals treated with RU 38486. (C + D) Details of the individual 
morphological patterns of DCX-positive new neurons in the hippocampus of 
control (C) and stressed animals (D). Reproduced with permission from Mayer 
et al. (2006).
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and stress reduces apical (but not basal) dendritic complexity and 
length of CA3  pyramidal neurons (Woolley et al., 1990; McEwen, 
2000). Various types of chronic stress (repeated restraint stress, 
prolonged mild stress) resulted in similar changes in different 
species (Watanabe et al., 1992; Magarinos and McEwen, 1995; 
McKittrick et al., 1995, 2000; Magarinos et al., 1996; Galea et al., 
1997). These changes in hippocampal dendritic morphology 
need several weeks to develop (Magarinos and McEwen, 1995), 
and the delay rather than the continuous presence of elevated 
corticosteroid levels seems to be important for these effects to 
occur (Magarinos and McEwen, 1995; Kole et al., 2004). Stress- 
and glucocorticoid-induced remodeling of dendritic structure 
can be prevented by the anti-epileptic drug phenytoin implying 
that excitatory amino acids are critically involved in these effects 
(McEwen, 2000). Other neurotransmitters that have been impli-
cated in stress-induced remodeling include serotonin and GABA 
(McEwen, 2000). Recent evidence also points to a critical role 
for tissue plasminogen activator (Pawlak et al., 2005) and brain-
derived neurotrophic factor (Magarinos et al., 2010).

In addition to changes in the apical dendritic tree, prolonged 
restraint stress or glucocorticoid exposure also leads to a loss of 
mossy fiber synapses (Sousa et al., 2000; Sandi et al., 2003; Tata 
et al., 2006). These changes at the synaptic level are accompanied 
by the retraction of thorny excrescences (Stewart et al., 2005). 
Presynaptically, prolonged stress/glucocorticoid exposure causes 
a rearrangement of synaptic mitochondria and vesicles, with more 
densely packed vesicle clusters localized close to the active zones 
(Magarinos et al., 1997). Taken together this indicates that pro-
longed exposure to chronic stress and glucocorticoids markedly 
change both pre-and post-synaptic structural structure.

The morphological changes in other hippocampal subfields 
upon exposure to prolonged chronic stress are less well studied. 
Prolonged activity-induced stress or corticosterone administra-
tion did show dendritic retraction of CA1 pyramidal neurons in 
some (Lambert et al., 1998; Sousa et al., 2000) but not in all stud-
ies (Woolley et al., 1990; Alfarez et al., 2008). Interestingly, brief 
exposure to elevated corticosteroid hormone levels does reduce 
apical CA1 dendritic complexity in animals that were exposed to 
prolonged mild stress (Alfarez et al., 2008; see Figure 2) indicating 
that prolonged stress renders these cells more sensitive to acute 
stress; this sensitivity to glucocorticoids was also observed in tis-
sue from young animals (Alfarez et al., 2009). At the synaptic level, 
prolonged corticosteroid exposure decreases the number of spines 
on CA1 pyramidal neurons via a mechanism that requires tissue 
plasminogen activator (Pawlak et al., 2005).

Chronic stress not only affects hippocampal morphology. The 
prefrontal cortex and amygdala also appear to be remarkably sensi-
tive to stress. Both brief and long-term exposure to restraint stress 
and glucocorticoid exposure elicit dendritic retraction of layer II/
III pyramidal neurons in the medial prefrontal cortex (mPFC) 
(Wellman, 2001; Seib and Wellman, 2003; Cook and Wellman, 2004; 
Brown et al., 2005; Izquierdo et al., 2006; Liston et al., 2006; Radley 
et al., 2006; Hains et al., 2009). Interestingly, there is dichotomy in 
the effects of stress on structural plasticity in the prefrontal cortex 
since dendritic complexity of pyramidal cells in the orbital frontal 
cortex – which play a role in reversal learning – is increased after 
prolonged stress (Liston et al., 2006).

A large number of other factors may also mediate stress-induced 
inhibition of adult neurogenesis. For instance, NMDA receptors, 
which have been identified on early progenitor cells, may be involved 
(Nacher and McEwen, 2006) since blocking NMDA-receptors pre-
vents the corticosterone-induced decrease in proliferating cells 
(Cameron et al., 1998). Stress is also known to affect the levels of 
various neurotransmitters such as GABA, serotonin, noradrenaline, 
dopamine, cannabinoids, opioids, nitric oxide, and several neu-
ropeptides that have been reported to regulate adult neurogenesis 
(see Lucassen et al., 2010a). Furthermore, stress reduces the expres-
sion of a number of growth and neurotrophic factors that all can 
influence neurogenesis. Moreover, the proximity of the precursors 
to blood vessels suggests a strong interaction with the vasculature 
and it is this population that is particularly sensitive to prolonged 
mild stress (Heine et al., 2005). Also astrocytes, which support the 
survival of developing neurons, possess GRs and are significantly 
affected by prolonged psychosocial stress (Czéh et al., 2006).

Postmortem studies on the hippocampus of depressed patients 
have generally found reductions in proliferating cells (Reif et al., 
2006; Lucassen et al., 2010b). Although reductions in neurogenesis 
may be characteristic for depression, it is unknown whether it is a 
cause, correlate, or consequence of the disorder (Kemperman and 
Kronenberg, 2003). In this respect it is of interest that a recent paper 
showed that reductions in neurogenesis can cause increases in stress 
hormone levels and HPA-axis activity rather than the other way 
around (Schloesser et al., 2009). In monkeys too, hippocampal vol-
ume appears predictive for stress responsivity (Lyons et al., 2007). 
Early life environment is also important, because in women with 
depression only those with a history of stress early in life exhibited 
a decreased hippocampal volume (Heim et al., 2008). Interestingly, 
perinatal stress in rodents affects critical periods of brain develop-
ment and alters structural (including neurogenesis), emotional, 
and neuroendocrine parameters in adult offspring in a specific 
and persisting manner that depends very much on the type and 
timing of stress (Lemaire et al., 2000; Bredy et al., 2003; Fenoglio 
et al., 2006; Oomen et al., 2009, 2010). As such, a reduced rate in 
neurogenesis may be a vulnerability factor for depression.

chronIc stress and dendrItIc complexIty
In addition to the robust effects on neurogenesis, prolonged expo-
sure to stress also dynamically regulates dendritic complexity. These 
stress-induced changes in dendritic structure are not only confined 
to the hippocampus but can also be observed in amygdala and 
prefrontal cortex. Moreover, stress can both increase and decrease 
dendritic complexity, depending on the brain area.

Stress-induced hippocampal structural plasticity has been 
reported in particular in the hippocampal CA3 area. Overall, 
prolonged exposure to glucocorticoids and prolonged psycho-
social stress does not reduce cell number (Bodnoff et al., 1995; 
Vollmann-Honsdorf et al., 1997; Tata et al., 2006), but does cause 
a small reduction in total hippocampal CA3 volume (Czeh et al., 
2001; Sheline et al., 2003; Heine et al., 2004a; Stewart et al., 2005). 
Moreover, there is evidence that glial processes make up a larger 
proportion of the tissue after exposure to prolonged psychosocial 
stress and glucocorticoid exposure (Czéh et al., 2006; Tata et al., 
2006; Tata and Anderson, 2010). At the structural level, many 
studies have reported that prolonged exposure to glucocorticoids 
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chronIc stress and synaptIc functIon
Several conspicuous changes in cell and/or network function have 
been observed after 3 weeks of exposure to high levels of corticoster-
one or stress. In all hippocampal areas, i.e., CA1, CA3, and dentate 
gyrus, induction of LTP is greatly impaired after a prolonged period 
of mild stress or chronic corticosteroid exposure (Bodnoff et al., 
1995; Pavlides et al., 2002; Alfarez et al., 2003). This was seen both 
when corticosteroid levels are low (i.e., under conditions of rest, 
against a background of chronic stress), and several hours after a 
brief pulse of corticosterone (Alfarez et al., 2003). This indicates 
that activity-dependent strengthening of synapses, as is thought to 
occur in association with learning and memory formation, is greatly 
impaired after chronic stress under all circumstances.

The changes in synaptic strengthening may have been caused by 
alterations in glutamatergic transmission, the GABAergic network 
or calcium influx after chronic stress. In the CA3 area an enhance-
ment of NMDA-receptor dependent transmission was observed 
(Kole et al., 2002) after prolonged psychosocial stress, while in 
the dentate gyrus AMPA-receptor dependent synaptic transmis-
sion mediated was found to be increased (Karst and Joëls, 2003), 
though only when chronic mild stress was combined with acute 
GR activation. In line with the generally raised basal excitability, 
a very recent report demonstrated reduced functionality of the 
GABAergic network in the hippocampal CA1 area after chronic 
restraint stress exposure in rats, presumably by a reduction in the 
number of parvalbumin-positive interneurons (Hu et al., 2010). 
The rapid increase in spontaneous GABAergic events seen in con-
trol animals after dexamethasone treatment was attenuated. These 
changes in basal glutamatergic and GABAergic transmission may 
implicate the potential to strengthen synaptic contacts.

Moreover, the combination of acute and chronic GR activation 
also enhanced calcium influx into dentate granule cells, compared 
to acute GR activation in handled controls (Van Gemert and Joëls, 
2006). In CA1 pyramidal cells calcium influx was also increased, but 
this was most clearly seen in tissue from chronically stressed rats 
which were studied under rest (Karst and Joëls, 2007); after corti-
costerone application in vitro the amplitude declined (Figure 3). 
Enhanced calcium influx might hamper NMDA-receptor function 
and hence contribute to the generally impaired LTP observed after 
chronic stress.

Chronic stress also affects responsiveness of CA1 pyramidal 
neurons to serotonin (5-HT). In control animals, brief exposure 
of CA1 hippocampal cells to corticosterone induces a delayed 
GR-dependent enhancement of responses (i.e., a bigger hyperpo-
larization of the resting membrane potential) in the CA1 area via 
the 5-HT1A receptor (Karst et al., 2000). After 3 weeks of exposure 
to high levels of corticosterone or to unpredictable stress, 5-HT1A 
receptor-mediated responses were attenuated (Karten et al., 1999; 
Van Riel et al., 2003), both under basal corticosterone conditions 
and several hours after a brief exposure to corticosterone (i.e., when 
MRs as well as GRs are activated; Van Riel et al., 2003). The attenu-
ated responses to serotonin after corticosterone treatment devel-
oped gradually and were associated with a significant reduction in 
the single cell expression level of MR relative to GR after 1 week of 
treatment, whereas expression levels of the 5-HT1A receptor itself 
were unchanged, both after 1 week and 3 weeks of corticosterone 
treatment (Karten et al., 1999).

The amygdala also appears to be extremely sensitive to prolonged 
stress. Exposure to chronic restraint stress triggers an increase in the 
total dendritic length as well as the number of spines of pyrami-
dal and stellate cells in the BLA (Vyas et al., 2002, 2006). These 
effects may be stressor specific and/or cell specific since prolonged 
exposure to unpredictable stress reduces dendritic length of the 
bipolar cells (Vyas et al., 2002). Like in the CA3 region, stress-
induced hypertrophy develops gradually in the amygdala and may 
be involved in the increased anxiety after (chronic) stress exposure 
(Mitra and Sapolsky, 2008).

Figure 2 | Prolonged stress affects sensitivity of hippocampal CA1 
structural plasticity. (A) Example of hippocampal CA1 pyramidal cell 
stained with Alexa 568. (B) Summated length of hippocampal CA1 pyramidal 
cells of naïve animals and animals exposed to 3 weeks of unpredictable 
stress. Exposure to prolonged stress does not affect length of CA1 
pyramidal cells. However, brief application of corticosterone to stressed 
animals (dashed bars) rapidly reduces apical dendritic length. (C) Number of 
branch points of hippocampal CA1 pyramidal cells of naïve animals and 
animals exposed to 3 weeks of unpredictable stress (based on Alfarez et al., 
2008).
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following exposure to inescapable shocks or chronic stress, can 
occur without impairments in neurogenesis. Conversely, a down-
regulation in neurogenesis does not necessarily lead to helpless 
(Santarelli et al., 2003; Vollmayr et al., 2003) or anhedonic-like 
behaviors (Jayatissa et al., 2009).

Thus, linking behavioral performance to structural plasticity is 
not entirely straightforward. The behavioral tasks are also often not 
very specific for a particular subregion of the hippocampus, which 
makes it difficult to directly relate cell shape or neurogenesis to 
behavioral performance. Moreover, learning itself may affect spine 
morphology and neurogenesis, so that ‘learning effects’ confound 
effects caused by chronic stress (Leuner et al., 2006; Dupret et al., 
2007). It has furthermore been argued that hyperactivity of the 
HPA-axis at the moment of behavioral testing rather than lasting 
morphological changes explain differences in memory perform-
ance due to chronic stress (Wright et al., 2006). Still, since LTP is 
greatly hampered in all three hippocampal subareas after chronic 
stress, deficits in declarative memory are expected to develop along 
with prolonged stress exposure. In agreement, an overall decline 
in declarative memory function has been reported in depressed 
patients (see for example Deuschle et al., 2004).

Clearly, cellular changes after chronic stress – and hence their 
behavioral consequences – are not restricted to the hippocampus. 
For instance, the extended dendritic trees of principal cells in the 
BLA may very well promote anxiety (Roozendaal et al., 2009). In 
accordance, enhanced anxiety was seen in chronic stress condi-
tions resulting in dendritic changes, whereas conditions that did 
not affect dendritic structure did not increase anxiety (Vyas and 
Chattarji, 2004). A second example concerns the structural plastic-
ity seen in the mPFC. Dendritic complexity in the mPFC (but not 
orbital frontal) was found to correlate with behavioral flexibility 
(Cerqueira et al., 2005; Dias-Ferreira et al., 2009) and attentional 
set-shifting performance, i.e., behavioral aspects that depend on 
mPFC function (Liston et al., 2009). Conversely, reversal learning, 
which depends on the function of the orbital frontal cortex, was 
not impaired, which fits with the increased rather than decreased 
dendritic complexity of pyramidal neurons in the orbitofrontal 
cortex after chronic stress (Liston et al., 2006).

antIdepressants and antI-glucocortIcoIds
A second set of data also supports the idea that chronic stress-
induced structural and functional changes in limbic areas bears 
relevance to psychopathology. This refers to the observation that 
treatments with antidepressants often reverse the stress-induced 
effects. For instance, antidepressant drugs can prevent and/or nor-
malize effects of chronic stress on dendritic remodeling, apoptosis, 
and increased NMDA-transmission in the CA3 area (Magarinos 
et al., 1999; Kole et al., 2002; Lucassen et al., 2004). The normal-
izing effect has been most extensively studied with respect to neu-
rogenesis (Czeh et al., 2001; Santarelli et al., 2003; Drew and Hen, 
2007; Pittenger and Duman, 2008; Lucassen et al., 2010a). The 
observation that different classes of antidepressant drugs, with 
distinct mechanisms of action, can all block behavioral effects of 
stress and restore normal levels of adult hippocampal neurogen-
esis is complemented by experiments showing that neurogenesis 
is required for the behavioral effects of antidepressants (Santarelli 
et al., 2003). Together, they support the possibility that stimulating 

clInIcal relevance
BehavIoral consequences of chronIc stress
How could these cellular changes after chronic stress contribute 
to increased susceptibility to disease and/or the manifestation 
of psychopathology?

The gradual reduction in 5-HT responsiveness of CA1 hip-
pocampal neurons after chronic stress may contribute to the 
development of mood disturbances. The morphological changes 
in the various hippocampal regions have been related to changes 
in hippocampal function after chronic stress and glucocorticoid 
exposure (see Conrad, 2006; Tata and Anderson, 2010). Reduced 
dendritic length is thought to compromise the transfer of signals 
through the hippocampus and thereby the capacity to learn and 
memorize information. Reduced neurogenesis could also have a 
large impact, since young adult-born granule cells contribute sig-
nificantly to behavioral functions such as contextual fear memory, 
spatial pattern separation, and spatial learning (Saxe et al., 2006; 
Zhang et al., 2008; Clelland et al., 2009; Kitamura et al., 2009). Yet, 
the link between depressive-like behavior and neurogenesis is much 
disputed (see e.g., DeCarolis and Eisch, 2010). This is corroborated 
by recent experimental studies showing that development of help-
lessness (Vollmayr et al., 2003) or anhedonia (Jayatissa et al., 2009) 

Figure 3 | The effect of corticosterone on calcium current amplitude 
depends on the stress history of the rat. Calcium currents were recorded 
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conditions). Animals that were handled for 3 weeks (middle), were relatively 
unresponsive to corticosterone (handled, cort) and showed amplitudes that 
were comparable to those seen after vehicle treatment (handled, veh). Yet, in 
animals that were exposed to 3 weeks of unpredictable stress (right), 
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