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Spike timing-dependent plasticity (STDP) is a cellular model of Hebbian synaptic plastic-
ity which is believed to underlie memory formation. In an attempt to establish a STDP
paradigm in CA1 of acute hippocampal slices from juvenile rats (P15–20), we found that
changes in excitability resulting from different slice preparation protocols correlate with
the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged
rise time, reduced frequency adaptation, and decreased latency of action potentials in
CA1 pyramidal neurons compared to preparation in conventional ASCF, while other basal
electrophysiological parameters remained unaffected. Whereas we observed prominent
timing-dependent long-term potentiation (t-LTP) to 171 ± 10% of controls in conventional
ACSF, STDP was absent in sucrose prepared slices. This sucrose-induced STDP deficit
could not be rescued by stronger STDP paradigms, applying either more pre- and/or post-
synaptic stimuli, or by a higher stimulation frequency. Importantly, slice preparation with
sucrose containing ACSF did not eliminate theta-burst stimulation induced LTP in CA1 in
field potential recordings in our rat hippocampal slices. Application of dopamine (for 10–
20 min) to sucrose prepared slices completely rescued t-LTP and recovered action potential
properties back to levels observed in ACSF prepared slices. Conversely, acute inhibition of
D1 receptor signaling impaired t-LTP in ACSF prepared slices. No similar restoring effect
for STDP as seen with dopamine was observed in response to the β-adrenergic agonist
isoproterenol. ELISA measurements demonstrated a significant reduction of endogenous
dopamine levels (to 61.9 ± 6.9% of ACSF values) in sucrose prepared slices.These results
suggest that dopamine signaling is involved in regulating the efficiency to elicit STDP in
CA1 pyramidal neurons.
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INTRODUCTION
Long-term potentiation (LTP) and long-term depression (LTD)
are considered as neuronal substrates for learning and memory.
In comparison to high frequency stimulation or pairing proto-
cols for LTP induction (e.g., Bliss and Lomo, 1973; Kasten et al.,
2007), and to low frequency stimulation for LTD (e.g., Lynch et al.,
1977), spike timing-dependent plasticity (STDP) is dependent
on precise timing of single presynaptic and postsynaptic action
potentials rather than on excessive repetitive synaptic activation
(reviewed, e.g., in Bi and Poo, 2001; Duguid and Sjostrom, 2006;
Caporale and Dan, 2008; Markram et al., 2011). Positive timing
(i.e., synaptic activation precedes postsynaptic firing of an action
potential) leads to a timing-dependent LTP (t-LTP), while timing-
dependent LTD (t-LTD) is typically achieved if a postsynaptic spike
precedes the excitatory postsynaptic potential (see, e.g., Markram
et al., 1997; Bi and Poo, 1998; Froemke et al., 2005). STDP can
be observed in response to physiologically significant levels of
synaptic stimulation (Paulsen and Sejnowski, 2000) and has been
investigated previously in the hippocampal CA1 region (see, e.g.,
Magee and Johnston, 1997; Harvey and Svoboda, 2007; Tanaka
et al., 2008; Hardie and Spruston, 2009), by employing different

STDP paradigms with diverse efficiencies to induce synaptic plas-
ticity. It is well established that repetitive pairing of an EPSP and
a single action potential induces STDP in dissociated cultures
of hippocampal neurons (e.g., Bi and Poo, 1998; Gerkin et al.,
2007), in CA1 pyramidal cells of organotypic slices (Debanne
et al., 1994, 1996), or in CA1 of acute hippocampal slices of very
young animals (Meredith et al., 2003, P9–14 mice). For older, more
mature preparations, the described learning rules in CA1 tend to
be contradictory between different studies (compare Buchanan
and Mellor, 2010). While Nishiyama et al. (2000) and Campanac
and Debanne (2008) reported t-LTP after repetitive pairing of an
EPSP with a single action potential in CA1 of acute hippocampal
slices from P26–P33 or P15–P20 rats, respectively, neither Pike et
al. (1999, young adult rats), Wittenberg and Wang (2006, P14–
28 rats), Remy and Spruston (2007, 3- to 5-weeks-old rats), nor
Carlisle et al. (2008, 4–12 month old mice) could show t-LTP with
single spike pairing conditions in the hippocampal CA1 region.

In an attempt to establish a reliable STDP protocol with pairings
of single pre- and postsynaptic spikes for CA1 pyramidal neu-
rons in acute hippocampal slices, we analyzed the experimental
conditions necessary for successful induction of STDP.
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Our results reveal efficient induction and high amplitudes of
t-LTP when slices were prepared in ACSF solution, whereas prepa-
ration of slices in sucrose containing solution strongly reduced the
efficiency to induce STDP. Likewise, sucrose preparation of slices
reduced,but did not eliminate LTP induced by theta-burst stimula-
tion in field potential recordings. In parallel with reduced synaptic
plasticity, spike rise times, latencies, and accommodation proper-
ties during repetitive spiking, as well as rise times of single action
potentials, elicited by brief high amplitude current injections dur-
ing STDP induction, were changed significantly in CA1 pyramidal
neurons from sucrose prepared slices. Application of exogenous
dopamine for 10–20 min rescued t-LTP in sucrose prepared slices,
and also restored action potential properties back to values as
observed in ACSF prepared slices. Application of isoproterenol,
which has been described previously to modulate backpropagat-
ing action potentials (Hoffman and Johnston, 1999), changed
spike rise times (but not latency or accommodation) similar to
dopamine, and it was unable to restore STDP. Interestingly, inhi-
bition of D1 receptors in ACSF prepared slices inhibited t-LTP and
also prolonged AP rise times. Furthermore, ELISA measurements
revealed a reduction of dopamine levels in sucrose prepared slices.
These results suggest that ambient levels of endogenous dopamine
in hippocampal slices critically determine the efficiency of STDP
induction in CA1.

MATERIALS AND METHODS
ETHICAL APPROVAL
Wistar rats (Charles River, Sulzfeld, Germany; postnatal days
15–23) were killed by decapitations after anesthesia with keta-
mine/xylazine hydrochloride (i.p.; 1 ml/kg, Sigma-Aldrich, Ger-
many) and brains were immediately removed. All experiments
were performed in accordance with the ethical guidelines for the
use of animals in experiments and were approved by the local
animal care committee (Landesverwaltungsamt Sachsen-Anhalt).
Precaution was taken to minimize stress and the number of ani-
mals used in each experimental series. A total number of 88
animals were used in this study.

SLICE PREPARATION
Experiments were performed on transversal hippocampal slices
(400 μm thickness) from P15 to P20 Wistar rats (Charles River,
Sulzfeld, Germany). For field potential recordings P18–P23 Wis-
tar rats were used. Animals were decapitated after being anes-
thetized with an intraperitoneal injection of ketamine hydrochlo-
ride/xylazine hydrochloride (1 ml/kg, Sigma-Aldrich, Germany).
The brain was quickly removed from the skull and placed in one
out of three different ice cold preparation solutions [one ACSF-
based solution (A); two different sucrose-based solutions (B,C)].
ACSF-based preparation solution A contained (in mM): 125 NaCl,
2.5 KCl, 25 NaHCO3, 10 glucose, 1 CaCl2, 3 MgCl2, saturated with
95% O2 and 5% CO2 (pH 7.4; osmolarity: 292 mosmol/kg). Two
slightly different sucrose-based solutions (B and C) were used for
slice preparation. Solution B contained (in mM): 20 PIPES, 2.4
KCl, 10 MgSO4, 10 glucose, 195 sucrose, 0.5 CaCl2, bubbled with
O2, pH 7.2, osmolarity: 305 mosmol/kg (Munsch and Pape, 1999).
Solution C contained (in mM): 20 NaHCO3, 2.4 KCl, 10 MgCl2,
10 glucose, 195 sucrose, 0.5 CaCl2, saturated with 95% O2 and

5% CO2 (pH 7.35, osmolarity: 290 mosmol/kg). Slices prepared
in either of the two solutions B and C yielded identical results and
data from both groups were pooled. After slicing, the CA1 region
was isolated from excessive CA3 input by a single cut between CA3
and CA2 to reduce spontaneous EPSPs and bursting when inhibi-
tion was blocked with picrotoxin (Fink and O’Dell, 2009), which
is a widely accepted method for hippocampal electrophysiology
in CA1 region as well as for STDP experiments. Slices were then
transferred to an ACSF solution containing (in mM) 125 NaCl,
2.5 KCl, 25 NaHCO3, 10 glucose, 0.2 CaCl2, 3.8 MgCl2, saturated
with 95% O2 and 5% CO2 at 35˚C, incubated for 20 min, and
were allowed to cool to room temperature at least for 1 h before
recording, and were kept in this holding chamber until use (1–
7 h). The temperature was reduced to room temperature in order
to improve slice viability.

ELECTROPHYSIOLOGY
Whole cell patch clamp recordings
Pyramidal neurons in CA1 region of hippocampus were visualized
with DIC infrared–video microscopy for patch clamp experi-
ments. For all whole cell recordings 100 μM picrotoxin (PiTX;
GABAA receptor antagonist; binds to the GABA receptor-linked
Cl− channel) was added to the bath solution containing (in
mM) 125 NaCl, 2.5 KCl, 25 NaHCO3, 20 glucose, 2 CaCl2, 1
MgCl2 saturated with 95% O2 and 5% CO2 (pH 7.4, osmolar-
ity: 300 mosmol/kg). Slices were incubated for at least 10 min
in the recording chamber before start of recording. Whole cell
recordings were performed at 29.4 ± 0.1˚C, with pipettes (pipette
resistance 6–10 MΩ) filled with internal solution containing (in
mM): 115 potassium gluconate, 10 HEPES, 20 KCl, 4 Mg-ATP, 0.3
Na-GTP, 10 Na-phosphocreatine, 0.001 CaCl2; pH was adjusted to
7.4 using KOH (final osmolarity was 280 mosmol/kg). Cells were
held in the current clamp mode at −70 mV. To scavenge possible
metal ion impurities (including Mg2+ and Ca2+) originating from
any substances used for preparation of internal solutions, Chelex
100 resin (BioRad) was added as an ion exchanger to stocks of
our internal solutions. In some recordings, the concentrations of
Mg2+ (0–2.0 mM), Ca2+ (0–0.001 mM), and EGTA (0–0.5 mM)
in the internal solution was altered to investigate possible effects
on STDP efficiency. We tested different variants of our internal
solution and found that addition of EGTA as well as MgCl2 to the
internal solution prevented STDP in ACSF prepared slices (data
not shown). Small amounts of CaCl2 (up to 1 μM) in the internal
solution improved seal quality without impairment of STDP, and
most recordings were thus performed with 0.75 μM added CaCl2
in the pipette solution (see above). In some recordings, ALEXA
488 Fluor (30 μM, Invitrogen, Germany) was added to the internal
solution. To assess gross cell morphology, cells of both prepara-
tion conditions were dialyzed for at least 15 min with the dye.
Fluorescence images were taken at 40-fold magnification using
a digital CCD camera (Cool Snap HQ2, Photometrics). Image
capture and analysis was performed with MetaVue software (Mol-
ecular Devices, Inc.). Total dendritic length of the apical dendrites
was measured with the region measurement tool of MetaMorph
7.7 (Molecular Devices, Inc.) in micrometer.

For stimulation of Schaffer collaterals, a bipolar concentric
stimulation electrode (Frederick Haer & Co., Bowdoin, USA) was
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placed in stratum radiatum of the CA1 subfield. During con-
trol and test periods, EPSPs were evoked at 0.05 Hz. Stimulus
intensity was adjusted to evoke 30–50% of maximal EPSP ampli-
tudes (stimulus duration 0.7 ms, intensity 10–400 μA). Cells were
accepted for recording only if the resting membrane potential
(RMP) was between −50 and −70 mV at the start of the record-
ing. Input resistance of a cell was routinely verified by a 250 ms
long hyperpolarizing step in response to a 20 pA current injec-
tion. Data were discarded, if input resistance changed more than
30% throughout the recording or in case of a noticeable run-
down or run-up of synaptic responses during the first 10 min of a
recording.

Spike timing-dependent plasticity was induced by repeated
pairings of one presynaptically induced EPSP, evoked by stimu-
lation of Schaffer collaterals and (mostly) one postsynaptic action
potential induced by somatic current injection (2–3 ms, 1 nA)
via the recording electrode. Pairings were repeated 100 times for
positive pairing (pre–post pairings, t-LTP) and 150 times for neg-
ative pairings (post–pre pairings, t-LTD) at 0.5 Hz (exceptions as
indicated). Spike timing intervals (i.e., Δt in ms) were measured
between the onset of the EPSP and the peak of the (first) action
potential. NMDA-receptor (NMDAR) dependency of the LTP
protocol was verified by bath application of 50 μM DL-2-Amino-
5-phosphonopentanoic acid (APV, Sigma, data not shown). As a
negative control, experiments with ongoing synaptic test stimula-
tion over 45 min at 0.05 Hz, but without pairing with postsynaptic
action potentials, were performed.

In another set of experiments we used pairings with postsy-
naptic spike doublets or repetitive pairings (i.e., burst pairing)
with different frequencies (compare section Results), to check
if these STDP paradigms were more efficient in case of sucrose
preparation. Repetitions of pairings with spike doublets were per-
formed at 0.5 and 5 Hz, with 50 or 70 repetitions. Spike timing
was determined between the onset of the EPSP and the peak of
the first action potential. The burst STDP paradigm consisted of
five successive presynaptic stimulations combined with five post-
synaptic depolarizations by somatic current injections, at 10 Hz.
Train stimulation was repeated 15–30 times at 0.2 Hz. The spike
timing interval was determined between the onset of the first
EPSP and the peak of the first action potential under these condi-
tions. This paradigm was adapted with slight modifications from
existing protocols (Magee and Johnston, 1997; Golding et al.,
2002).

Field potential recordings
Field potential measurements were also performed in CA1 region
of acute hippocampal slices of Wistar rats (P18–P23) prepared
with sucrose or sucrose-free ACSF slice preparation media (see
above). Experiments were performed at least 1 h after preparation
in a temperature controlled (30˚C) interface chamber. Schaffer col-
laterals were activated by the same concentric bipolar stimulation
electrode (Frederick Haer & Co, Bowdoin USA) positioned in the
stratum radiatum of CA3 or CA1 region, as used in STDP record-
ings. Field potentials (fEPSP) were measured with a glass electrode
filled with ACSF (6–10 MΩ). Stimulus intensity was set to 30–50%
of maximum synaptic responses. For LTP experiments, test stimuli
were applied every 60 s. Baseline was recorded for at least 10 min.

Theta-burst stimulation [10 bursts of 4 stimuli (at 100 Hz) every
200 ms] was given at test stimulus intensity and repeated twice at
20 s interval.

In all patch clamp and field potential recordings, bath perfusion
was set to 2–3 ml/min. All drugs were bath applied. PiTX, ISO, DA,
VitC, and APV were purchased from Sigma. Chelex 100 resin was
purchased from BioRad. Vit C (40 μM) was added as antioxidant
to all DA containing solutions.

DATA ACQUISITION AND DATA ANALYSIS
Whole cell recordings were obtained using either an EPC8 patch
clamp amplifier connected to a LiH8 + 8 interface or an EPC10
amplifier (HEKA, Germany), and acquired with Patchmaster soft-
ware (HEKA, Germany). Data were filtered at 3 kHz and digitized
at 10 kHz. Data analysis was performed using Fitmaster (HEKA,
Germany) and Minianalysis software (Synaptosoft, USA). For
most cells, synaptic signals were recorded in the current clamp
mode as EPSPs. In some experiments, postsynaptic neurons were
held in the voltage clamp mode (except for pairing) and synap-
tic EPSCs were recorded, without any obvious changes in STDP
efficiency.

EPSP slopes were calculated from the initial 2 ms after EPSP
onset, EPSP amplitudes were determined between EPSP peak val-
ues and baseline values. In all cases, changes in amplitude and
slope of synaptic signals were observed in parallel. All data were
normalized to baseline conditions, and baseline was set to 1 (aver-
age over 5–10 min). Plasticity, as an indicator for synaptic change,
was calculated as the normalized change in response size averaged
between 20 and 30 min, after t-LTP or t-LTD induction. Rise times
of EPSPs were determined by the 10–90% criterion of the Fit-
master software (HEKA, Germany). Action potential analysis was
performed with the spike detection algorithm of the Minianalysis
program (Synaptosoft, USA).

Field potentials were measured with an Ext-02F/2 amplifier
(npi, Germany) and recorded with a CED 1401 interface. Data
were filtered at 10 kHz. Field EPSP slope was calculated with the
program Intracell 1.5 (IFN Magdeburg, Germany) between fEPSP
onset and maximal amplitude. Field EPSP slopes were normal-
ized to mean baseline (between 0 and 10 min), which was set to
100%. LTP was determined as the normalized change in aver-
age response size during the last 5 min of recording (25–30 min
after LTP induction) compared to baseline. Measurements with-
out stable potentiation (early LTP ≤ 15% compared to baseline)
or showing only posttetanic potentiation were discarded.

HISTOLOGY
Slices were prepared as described for electrophysiological record-
ings. After incubation in recording solution for at least 1 h,
slices were fixed in 4% paraformaldehyde overnight. Cryosections
(20 μm thickness) of both preparation conditions were mounted
on glass slides and stained with cresyl violet according to stan-
dard procedures. Cell number, layer thickness and cell diameter
in CA1 region of the hippocampus were analyzed using an object
micrometer. Photomicrographs were taken at 20× magnification
with a CCD camera (SPOT insight fire wire 2, Diagnostic Instru-
ments, Inc., USA) using SPOT Basic 4.6 software (Diagnostic
Instruments, Inc., USA.).
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DOPAMINE ELISA
Hippocampal slices were prepared as described for electrophysi-
ological recordings, and quantitative determination of dopamine
in sucrose and sucrose-free prepared slices was carried out using
a commercially available ELISA kit (IBL International, Germany).
The procedure consisted of two phases – extraction and quan-
tification – executed following the manufacturer’s instruction.
Extinction of probes was analyzed with a TECAN infinite F200
ELISA reader (Tecan Group Ltd., Switzerland). Data are expressed
as dopamine (DA) in pg/mg tissue.

STATISTICS
Pooled data are given as mean ± SEM. Statistical analysis was per-
formed by paired or unpaired two-tailed Student’s t -test, as appro-
priate. Non-parametric data were analyzed by Mann–Whitney
U -test or Wilcoxon-test, respectively. Multiple comparisons were
performed with ANOVA and post hoc Tukey test. Significance levels
are indicated by *p < 0.05, **p < 0.01, ***p < 0.0001.

RESULTS
EFFICIENCY OF INDUCING T-LTP IS DEPENDENT ON PREPARATION
CONDITIONS
Whole cell patch clamp recording of CA1 pyramidal neurons was
employed to establish a STDP paradigm consisting of repeated
presynaptically elicited single EPSPs paired with single postsynap-
tic action potentials in hippocampus from juvenile rats (P15–P20).
Hippocampal slices were obtained under two different prepa-
ration conditions. Slices were prepared either in conventional
ACSF, or in sucrose containing ACSF to improve cell viabil-
ity as reported previously (Aghajanian and Rasmussen, 1989;
Urban et al., 1998). To circumvent possible LTP deficits due to
sucrose preparation induced changes in GABAergic transmission
(compare Kuenzi et al., 2000) and to investigate STDP mecha-
nisms in the absence of GABAA receptor mediated inhibition,
picrotoxin (100 μM) was added to all extracellular recording
solutions. In both groups the CA3 region was surgically discon-
nected by a cut from CA1, to avoid epileptiform activity dur-
ing measurement (compare Fink and O’Dell, 2009). Recordings
were obtained under visual inspection from CA1 pyramidal neu-
rons in either sucrose or ACSF prepared slices. Positive pairings
(Δt = +2 to +25 ms) and negative pairings (Δt = −9 to −25 ms)
revealed successful STDP only in CA1 neurons of ACSF prepared
slices (Figure 1). In contrast, slices prepared in sucrose contain-
ing ACSF did not show the characteristic STDP learning rules
seen with conventional ACSF (Figure 2). Single experiments are
shown for ACSF prepared slices for positive and negative pairings
(Figure 1C) as well as for sucrose prepared slices (Figure 2C).
For quantification of net effects of STDP, neurons of both groups
were binned in 15 ms intervals (Figure 2D). Significant timing-
dependent potentiation (t-LTP) for short positive pairings could
only be achieved in case of ACSF preparation [Figure 2D, ANOVA
F(6,82) = 13.04; p < 0.0001, post hoc Tukey test: *p < 0.05:
Δt = +15 ms vs. Δt = +30 ms, ***p < 0.0001: Δt = +15 ms vs.
CTRL and Δt = −15 ms, respectively], while sucrose prepared
slices failed to reveal a clear learning rule with the STDP para-
digms used in our study (Figure 2D: p > 0.05). Accordingly, t-LTP
was significantly enhanced in ACSF compared to sucrose prepared

FIGURE 1 | Spike timing-dependent plasticity (STDP) in ACSF prepared

rat hippocampal slices. Synaptic responses were recorded in the current
clamp mode in CA1 pyramidal neurons of juvenile rats (P15–P20).
Pre-stimulus membrane potential prior to recording was −70 mV for all
cells. Presynaptic stimulation of Schaffer collaterals was performed every
20 s. (A) Single spike pairings at short positive (Δt = +2 to +25 ms)
intervals lead to t-LTP. Negative (Δt = −8 to −25 ms) pairings result in t-LTD.
Insets show the employed pairing paradigms. (B) Summarized control
measurements (n = 9, mean ± SEM) without spike pairing in ACSF prepared
slices. (C) Examples of single experiments for positive pairing (left) and
negative pairing (right). The corresponding cells are indicated with arrows in
(A). Respective averaged original traces are shown as insets, analysis of
input resistance is shown in the lower graphs. Bar scales: 1 mV, 50 ms.

slices [ANOVA F(6,82) = 13.04; p < 0.0001, post hoc Tukey test:
***p < 0.001: Δt = +15 ms: t-LTPACSF: 1.71 ± 0.1 (n = 20) vs.
t-LTPSucrose: 0.87 ± 0.8 (n = 23) and Δt = +30 ms: t-LTPACSF:
1.22 ± 0.1 (n = 5) vs. t-LTPSucrose: 0.76 ± 0.1 (n = 12), respec-
tively]. The t-LTP induced by our STDP protocol was blocked
completely in the presence of the NMDA-receptor antagonist APV
[50 μM; Δt = +15 ms: 1.15 ± 0.1 (n = 7); p < 0.01 compared to
t-LTPACSF; two-tailed Student’s t -test].

In experiments with ACSF prepared slices, we occasionally also
obtained t-LTD at short negative pairings (1 EPSP/1 AP pro-
tocol). However, the mean t-LTD observed in these cells, was
smaller than in sucrose prepared slices [Figure 2D: Δt = −15 ms:
LTDACSF: 0.84 ± 0.1 (n = 5) vs. t-LTDSucrose: 0.56 ± 0.1 (n = 4)
and Δt = −30 ms: t-LTDACSF: 0.85 ± 0.1 (n = 4) vs. t-LTDSucrose:
0.54 ± 0.0 (n = 1)], and was not significantly different from un-
potentiated ACSF controls. Since, we focused on positive pairings
and LTP in the present study, conditions for t-LTD were not fur-
ther investigated. To be able to check for spontaneous changes in
plasticity in our recordings, we performed control experiments
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FIGURE 2 | Spike timing-dependent plasticity (STDP) after sucrose

preparation of rat hippocampal slices reveals STDP deficiency.

Experimental conditions as in Figure 1, but slices were prepared in sucrose
media. (A) Neither positive nor negative pairings led to convincing levels of
STDP (compare Figure 1). STDP paradigms with single EPSP/AP pairings
are indicated by insets. (B) Level of plasticity in control experiments in
sucrose prepared slices without spike pairing (open circle: n = 7,
mean ± SEM). (C) Example of an experiment with positive pairing in a
sucrose prepared slice. Averaged original traces are shown in the inset,
recording of input resistance is shown in the lower graph. The
corresponding cell is marked with an arrow in (A). Bar scale: 1 mV, 50 ms.
(D) Summary of STDP results in ACSF (black) and sucrose (white) prepared
hippocampal slices at different spike timings (in ms, 15 ms binning). Data
are given as mean ± SEM; statistics were performed by ANOVA *p < 0.05;
***p < 0.0001.

(i.e., without STDP stimulation) in both experimental groups. As
shown in Figures 1 and 2, these controls did not show signifi-
cant changes in EPSP slopes after 45 min of recording, and EPSP
slopes were not significantly different between cells in sucrose
and ACSF prepared control slices, respectively [Figure 2D: ACSF:
0.85 ± 0.1 (n = 9) vs. sucrose: 0.79 ± 0.1 (n = 7),p > 0.05]. Impor-
tantly, these results indicate no spontaneous difference in synaptic
efficacy (like, e.g., run-down) between the two groups.

SUCROSE PREPARATION DOES NOT INHIBIT, BUT SIGNIFICANTLY
REDUCES LTP IN FIELD POTENTIAL RECORDINGS
In order to test for a potential influence of the different prepa-
ration solutions on LTP efficiency, we also measured LTP with
field potential recordings in P18–P23 rats (Figure 3). LTP was
induced by two theta-burst stimulations (TBS) and was mea-
sured in the absence of picrotoxin, and thus with intact synaptic
inhibition. Omitting picrotoxin was necessary, because otherwise

FIGURE 3 | e-LTP is reduced, but not abolished in sucrose prepared

hippocampal slices. Field potential recordings in CA1 region of acute
hippocampal slices of P18–23 Wistar rats. Slices were prepared in sucrose
containing ACSF (open circles, n = 8 slices of 3 animals, from 11
experiments) or in conventional ACSF (black dots, n = 6 slices of 3 animals,
from 9 experiments). After recording of 10 min baseline, e-LTP was induced
by two theta-burst stimulations [interval 20 s, TBS protocol is shown as
inset, time point of TBS stimulation: arrow (A)]. While short-term plasticity
(≤20 min) is similar for both groups, e-LTP (at 30 min) is significantly
stronger in ACSF prepared slices compared to sucrose preparation (B). Data
are normalized to baseline (average over 10 min prior to theta-burst; set as
100%) and given in mean ± SEM, ***p < 0.0001, Mann–Whitney U -test.

epileptiform discharges were observed (data not shown). While
short-term potentiation (STP, first 20 min after TBS) was indistin-
guishable between both groups, e-LTP was significantly increased
in ACSF prepared slices compared to slices after sucrose prepara-
tion (Figures 3A,B: LTP at 30 min after TBS in ACSF prepared
slices: 188.6 ± 7.0 compared to 143.2 ± 2.4% in sucrose pre-
pared slices, p < 0.0001, Mann–Whitney U -test). However, also in
sucrose prepared slices stable e-LTP was clearly detected. Successful
e-LTP could be evoked in n = 8 slices from 3 animals (altogether 11
trials) after sucrose preparation and in n = 6 slices from 3 animals
(altogether 9 trials) after preparation in conventional ACSF.

Overall these data suggest a preparation dependent impair-
ment of LTP maintenance, or of conversion of STP to LTP in
sucrose prepared slices, which might result from depletion of
LTP-maintaining/inducing factors like, e.g., dopamine under these
conditions (compare Otmakhova and Lisman, 1996).

PREPARATION DEPENDENT CHANGES IN BASAL
ELECTROPHYSIOLOGICAL PARAMETERS ARE NOT RESPONSIBLE FOR
CHANGES IN SPIKE TIMING-DEPENDENT PLASTICITY
Differences in the efficacy of t-LTP in response to single spike pair-
ings could result from differences in basal properties of recorded
pyramidal cells in slices prepared under different conditions. To
test this, we compared basal electrophysiological properties of the
cells in the different experimental groups. The measured RMPs
were significantly different between ACSF- and the sucrose group
(ACSF: −63.9 ± 1.4 mV vs. Sucrose: −58.7 ± 1.1 mV, p < 0.01,
two-tailed Student’s t -test). Nevertheless, RMPs of all groups fall
within the normal range described for CA1 pyramidal neurons in
the hippocampus (Spigelman et al., 1992; Spruston and Johnston,
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1992; Staff et al., 2000). All other measured electrophysiological
parameters (like input resistance, mean EPSP amplitude, EPSP
rise time and EPSP half width) were not significantly different
between the two groups (see Table 1: ACSF vs. Sucrose). Impor-
tantly, membrane potential was set to −70 mV for all cells during
STDP recording, ruling out an effect of changed RMP on induction
of synaptic plasticity.

STDP DEFICIT IS OBSERVED OVER A BROAD RANGE OF INDUCTION
PROTOCOLS
Slice preparation in sucrose solution could affect several fellow
properties, not investigated explicitly by our electrophysiological
measurements (compare basal and active cell properties, Tables 1
and 2; Figure 5), thus leading to an increase in the STDP induc-
tion threshold. In an attempt to compensate for such possible
deficits in sucrose prepared slices, we tried to rescue STDP by
repetitive (burst) pairings or doublet pairings with either higher or
lower pairing frequency. However, pairing of one presynaptically
induced EPSP with two postsynaptic spikes (compare Wittenberg
and Wang, 2006) with an interspike interval of 10 ms at 5 Hz and
3 ms at 0.5 Hz, did not improve the efficiency of STDP at short pos-
itive pairings (Figure 4, black circles: pairings at 5 Hz; gray circles:
pairings at 0.5 Hz). Likewise, applying stronger STDP induction
protocols (Golding et al., 2002; modified after Magee and John-
ston, 1997), using repetitive (burst) pairings of 5 successive EPSPs
with 5 successive action potentials repeated 15–30 times at 0.2 Hz

did also not rescue t-LTP (Figure 4, open triangles). Plasticity val-
ues were not significantly different from unstimulated controls for
these conditions (Figure 4B, p > 0.05). Respective single experi-
ments are shown in Figure 4C. These data indicate that stronger
protocols and/or higher pairing frequency cannot compensate for
the deficit in STDP in the sucrose group.

CHANGED EXCITABILITY OF CA1 PYRAMIDAL NEURONS INDUCED BY
SUCROSE PREPARATION
The efficiency to induce STDP, which is critically dependent on the
fidelity of action potential firing, is likely to be altered by changes in
the intrinsic excitability of neurons. We therefore determined fir-
ing frequency and action potential time course/shape in neurons of
the two groups of slice preparation techniques (Figure 5). Action
potential frequency in response to constant 1000 ms long cur-
rent injection was significantly enhanced by sucrose preparation
[Figures 5A,B; ANOVA F(1,29) = 6.42; p < 0.05, post hoc Tukey
test p < 0.05 for a depolarization stronger than 60 pA]. Accord-
ingly, first and last interspike intervals were significantly shortened
(Figures 5C,D). However, these differences in repetitive firing can-
not be directly related to the absence of t-LTP in the sucrose group,
since only single postsynaptic APs were elicited with our standard
STDP paradigm. Interestingly, action potential rise time (10–
90%) was prolonged roughly threefold in the sucrose group [see
Figure 5E; sucrose: 1.16 ± 0.2 ms (n = 22) vs. ACSF: 0.4 ± 0.0 ms
(n = 9), p < 0.01 Student’s t -test], and latency of firing after the

Table 1 | Basal electrophysiological parameters of neurons in ACSF or sucrose prepared slices, and after dopamine or isoproterenol treatment of

sucrose prepared slices.

ACSF (n = 51) SUCROSE (n = 43) +DA (n = 17) +ISO (n = 7)

RMP (mV) −63.9 ± 1.4* −58.7 ± 1.1 −70.4 ± 1.3 −59.7 ± 5.8

R in (MΩ) 170.7 ± 17.3 171.7 ± 8.9 155.1 ± 13.8 159.4 ± 10.4

EPSPmean (mV) 6.4 ± 0.3 7.4 ± 0.6 6.9 ± 0.4 8.6 ± 0.7

EPSPrise time (ms) 6.9 ± 0.3 6.6 ± 0.4 5.1 ± 0.2 4.6 ± 0.2

EPSPhalf width (ms) 39.0 ± 1.7 38.3 ± 1.6 30.9 ± 0.9 32.6 ± 2.1

Age (days) 16.4 ± 0.3 17.1 ± 0.3 17.8 ± 0.3 16.1 ± 0.4

Data are given as mean ± SEM, p > 0.05 ANOVA. *Significantly different from sucrose (using two-tailed Student’s t-test), when only ACSF and sucrose group are

compared. When data from all four groups are compared (using ANOVA), no significant differences exist.

Table 2 | Comparison of action potential parameters (compare Figures 5 and 7) in ACSF and sucrose prepared hippocampal slices, and after

dopamine or isoproterenol treatment of sucrose prepared slices.

ACSF (n = 9) SUCROSE (n = 22) +DA (n = 9) +ISO (n = 10)

Threshold (mV) −45.6 ± 0.9 −41.1 ± 1.3 −50.0 ± 1.9* −46.5 ± 1.9

Amplitude (mV) 82.4 ± 1.7 73.8 ± 3.4 89.4 ± 3.1* 84.4 ± 3.6

Half width (ms) 1.3 ± 0.1 1.4 ± 0.2 1.0 ± 0.5* 1.0 ± 0.1

Area (mV*ms) 116.9 ± 4.1 124.8 ± 6.7 99.9 ± 3.0* 97.9 ± 3.7*

Decay time (ms) 1.2 ± 0.1 1.3 ± 0.1 0.9 ± 0.0* 1.0 ± 1.9*

All cells were held at −70 mV membrane potential prior to current injection (120 pA). Parameters were analyzed for the first action potential in a burst. Data are given

as mean ± SEM, ANOVA with post hoc Tukey test: AP threshold: F(3,46) = 6.335; p < 0.01; AP amplitude: F(3,44) = 3.758; p < 0.05; AP half width: F(3,46) = 3.718;

p < 0.05; AP area: F(3,46) = 4.554; p < 0.01, for DA vs. SUC and ISO vs. SUC; AP decay time: F(3,46) = 4.533; p < 0.01, for DA vs. SUC and ISO vs. SUC; *Indicates

significance of differences from sucrose.
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FIGURE 4 | Spike timing-dependent plasticity deficiency is not

restored by stronger STDP inducing paradigms. Experimental conditions
as in Figure 1. STDP could not be rescued in sucrose prepared
hippocampal slices, when using 50 or 70 pairings of one presynaptically
evoked EPSP and two postsynaptic spikes with 3 ms interspike interval
paired at 0.5 Hz (gray dots), or with 10 ms interspike interval paired at 5 Hz
(black dots), or when using 15–30 burst stimulations consisting of 5
successive EPSPs paired with 5 evoked action potentials at 0.2 Hz (open
triangles), respectively (A). Respective data for the different paradigms are
summarized in (B). Results from individual experiments are shown in (C)

for doublet pairing (left), and repetitive burst pairings (right). The
corresponding cells are indicated with arrows in (A). Bar scales: 10 mV,
50 ms (left), 5 mV, 50 ms (right).

onset of somatic depolarization, as indicated by latency of first
AP, was significantly shortened in sucrose [Figure 5F; sucrose:
31.4 ± 5.3 (n = 22) vs. ACSF: 51.9 ± 7.2 (n = 9); Mann–Whitney
U -test, p < 0.01]. These changes in rise time and latency pointed
to a possible role of the action potential time course in mod-
ulating the efficiency of STDP. In contrast, other parameters
like action potential threshold, amplitude, area, half width and
decay time, respectively, were not significantly different between
ACSF and sucrose preparation conditions (compare Table 2). A
similar prolongation of action potential rise times after sucrose
preparation was observed for somatically induced action poten-
tials during STDP induction, which were elicited by brief high
amplitude current injections (Figure 6E; 1 nA current injection,
2–3 ms; ACSFrise time: 1.31 ± 0.1 ms vs. sucroserise time: 1.82 ± 0.2,
p < 0.05).

FIGURE 5 | Action potential frequency and rise times are influenced by

sucrose preparation. CA1 pyramidal neurons were recorded in the current
clamp mode and action potentials were induced by current injection.
Membrane potential was −70 mV prior to stimulation. (A) Sucrose
preparation led to a significant increase in action potential frequency
compared to preparation in ACSF (p < 0.05, ANOVA). Typical original traces
are shown for both conditions (1 s depolarization at 120 pA). (B)

Representative original traces for rise time and latency differences are
shown for a 120 pA current injection for neurons of sucrose and ACSF
prepared slices. Spike adaptation (C) at the beginning of the spike train and
(D) at the end of the spike train was diminished in sucrose prepared
hippocampal slices (**p < 0.01, 120 pA depolarization). (E) Action potential
rise time (10–90% of peak amplitude) was significantly prolonged after
sucrose preparation compared to ACSF (**p < 0.01, 120 pA constant
current injection). (F) Changed latency to first action potential (in ms) in
response to 120 pA current injection in sucrose and ASCF group of slice
preparation (**p < 0.01, Mann–Whitney U -test).

Taken together, the observed differences in spike rise time and
latency to first action potential between the two groups showed a
strong correlation with the success rate for induction of t-LTP.

STDP IS RESCUED IN SUCROSE PREPARED HIPPOCAMPAL SLICES BY
ACUTE APPLICATION OF DOPAMINE, BUT NOT BY ISOPROTERENOL
Neuromodulators like dopamine, noradrenaline, and nicotine
have been implicated recently in modulating the success of STDP
protocols in brain slices from striatum and visual cortex, respec-
tively (Seol et al., 2007; Pawlak and Kerr, 2008; Shen et al.,
2008). Dopaminergic innervation from midbrain A9 and A10 cell
groups and noradrenergic innervation from locus coeruleus were
described for the hippocampal CA1 region (e.g., Swanson-Park
et al., 1999; Scheiderer et al., 2008). Both neuromodulators are
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FIGURE 6 | Spike timing-dependent plasticity can be restored by acute

application of dopamine, but not isoproterenol, in sucrose prepared

slices. Experimental conditions as described in Figure 1. (A) Example of a
cell prepared in sucrose, in which STDP induction with short positive
pairings was initially unsuccessful (first trial of STDP induction at 0 min, see
arrow), but was restored after application of dopamine (DA, horizontal bar
indicates time of DA application), followed by a subsequent second trial of
STDP induction (at 40 min, arrow). Averaged original traces (10 min mean,
numbers refer to averaging intervals as indicated in (A) during the
experiments are shown in (A1). While DA alone has no effect on plasticity,
it enables t-LTP. (B) The β-adrenergic agonist isoproterenol (ISO, horizontal
bar indicates time of ISO application) does not restore STDP in sucrose
prepared slices. Respective averaged traces (10 min mean, numbers refer to
averaging intervals as indicated in (B) are shown in (B1). (C) Data for STDP
experiments in sucrose prepared slices performed either in the absence of
DA (gray), in the presence of 20 μM DA (black), or with 10 μM ISO (open
circles) show that DA can restore STDP (drugs were preincubated for
20 min) to levels observed in ACSF prepared slices (light gray symbols).
These data are summarized in (D). DA significantly enhances potentiation at
short positive pairings, while isoproterenol is not effective to restore STDP
(*p < 0.05, **p < 0.01, ANOVA). (E) The rise time of action potentials during
STDP induction is significantly longer in sucrose prepared slices and is
shortened by either application of DA or ISO (*p < 0.05, ANOVA).

also involved in hippocampal learning (e.g., Yang et al., 2002).
To investigate whether the deficit in STDP after sucrose prepara-
tion depends on dopamine and/or noradrenaline signaling in our
slices, we tried to rescue STDP either by adding dopamine (20 μM)
or 10 μM isoproterenol (β-adrenergic agonist) to the extracellular
recording solution.

Interestingly, the same sucrose prepared slices not showing t-
LTP in response to our STDP protocol, revealed t-LTP when the
STDP protocol was repeated after 20 min of dopamine application

(Figures 6A,C). Dopamine application in the absence of STDP
stimulation failed to show a consistent change in EPSP ampli-
tudes (data not shown), but all cells now yielded functional t-LTP
when the STDP protocol was applied (Figures 6C,D). When
including dopamine (20 μM; incubation ≥ 10 min) in the stan-
dard extracellular recording solution, positive pairings in sucrose
prepared slices routinely showed t-LTP, which was indistinguish-
able from t-LTP in ACSF prepared slices (compare Figure 2D
and Figures 6A,C; t-LTP in ACSF prepared slices: 1.71 ± 0.1 com-
pared to 1.87 ± 0.2 in dopamine treated sucrose prepared slices,
p > 0.05, Student’s t -test). In contrast, pretreatment with isopro-
terenol (10 μM; incubation ≥ 10 min) did not appear to restore
the deficit in t-LTP at short positive spike timings after sucrose
preparation (Figures 6B,C). In individual cells, t-LTP could be
observed, but the average plasticity was significantly different
from t-LTP in ACSF and sucrose + DA slices [Figure 6D: ANOVA
F(3,48) = 14.88; p < 0.0001, post hoc Tukey test: ***p < 0.0001: t-
LTPACSF or SUC + DA: 1.68 ± 0.1 (n = 22) or 1.87 ± 0.2 (n = 12) vs.
t-LTPSucrose: 0.70 ± 0.2 (n = 13) and *p < 0.05: vs. t-LTPSUC + ISO:
1.13 ± 0.2 (n = 7), respectively]. These results show that the t-LTP
deficit after sucrose preparation can be counteracted completely
by brief incubation (i.e., 10–20 min) of slices with dopamine, but
not by application of isoproterenol.

DOPAMINE AND ISOPROTERENOL DIFFERENTIALLY MODULATE FIRING
PROPERTIES OF CA1 PYRAMIDAL NEURONS IN SUCROSE PREPARED
SLICES
Acting via D1 and D2 receptors dopamine is known to exert a
multitude of effects on K+, Ca2+

, and Na+ channels (see, e.g.,
Neve et al., 2004), respectively, which corroborate in regulating
firing properties of neurons. Similar modulatory effects have been
described for agonists of the adrenergic system (like, e.g., isopro-
terenol; compare, e.g., Segal, 1982; Hillman et al., 2005). In the
light of the importance of spike fidelity for induction of STDP,
and given the modified spiking of sucrose prepared neurons in
addition to failure of induction of STDP, we checked whether
treatment with dopamine or isoproterenol would also change the
spiking properties back to ACSF conditions. As shown in Figure 7,
this was indeed the case for dopamine: 6–20 min incubation of
neurons with 20 μM dopamine increased spike accommodation
[Figure 7A, ANOVA F(3,50) = 4.652; p < 0.01, post hoc Tukey test
p < 0.01 for a depolarization stronger than 80 pA], spike inter-
vals (Figures 7C,D, p < 0.05), and latency of AP firing (Figure 7F,
p < 0.05), and decreased spike rise times (Figure 7E, p < 0.05, all
statistical analyses were performed by ANOVA with post hoc Tukey
test), back to values observed in ACSF.

In contrast to dopamine, application of isoproterenol only par-
tially restored AP parameters back to ACSF levels (Figure 7). While
the AP rise time was shortened by application of isoproterenol
(compare Figure 6E and Figure 7E), other AP parameters were
not/not fully restored back to ACSF conditions (Figures 7A,C,D,F,
further parameters see Table 2). The distinct effects of dopamine
and isoproterenol on these spike properties cannot be explained by
changes of basal electrophysiological properties, because they were
not significantly different between the two groups (see Table 1).

These experiments reveal that dopamine regulates – on the
same time scale – the efficiency of STDP protocols and the fidelity

Frontiers in Synaptic Neuroscience www.frontiersin.org November 2011 | Volume 3 | Article 6 | 8

http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Edelmann and Lessmann Dopamine modulates STDP in CA1

FIGURE 7 | Acute application of dopamine, but not isoproterenol,

completely restores firing pattern in sucrose prepared slices.

Experimental conditions as in Figure 5. APs were recorded in current clamp
in the absence/presence of dopamine (DA) or isoproterenol (ISO). (A) After
6–10 min application of DA (20 μM), or 10 μM ISO the AP frequency of
neurons in sucrose prepared slices was either completely (DA) or partially
(ISO) decreased, back to levels observed in ACSF prepared slices
(*p < 0.05). Typical original traces are shown as insets. (B) Representative
original traces for rise times and latency changes in response to 120 pA
current injection. First and last interspike intervals were prolonged after
acute application of DA (but not ISO) to a comparable level as observed in
ACSF prepared slices [(C,D), *p < 0.05]. The prolonged rise times typical for
neurons after sucrose preparation were reduced by acute application of DA
or ISO [(E), **p < 0.01]. (F) The first AP was generated significantly later
after application of DA compared to sucrose preparation. ISO had no effect
on spike latency. All measurements were performed with APs induced by
120 pA current injection (*p < 0.05, multiple comparisons were performed
by ANOVA).

of action potential firing in CA1 pyramidal neurons. In contrast,
isoproterenol only restored those AP parameters which do not
seem to correlate with rescue of STDP in sucrose prepared slices.

EXOGENOUS DOPAMINE DOES NOT AFFECT, BUT ENDOGENOUS
DOPAMINE ENABLES T-LTP
When dopamine (20 μM) was applied to ACSF prepared slices,
t-LTP was not affected. Thus, plasticity was not altered com-
pared to untreated controls, but was significantly different from
negative controls (compare Figure 8). Interestingly, when ACSF
prepared slices were preincubated (20 min) with the D1 recep-
tor antagonists SCH23390, our induction protocol which usually
yielded t-LTP, was then ineffective [Figures 8C,D, ANOVA Test
F(3,28) = 10.43; p < 0.0001, post hoc Tukey comparison *p < 0.05:
DA (t-LTP: 1.48 ± 0.2) vs. CTRL (unstimulated: 0.97 ± 0.1) and

FIGURE 8 | Spike timing-dependent plasticity (STDP) in ACSF prepared

slices is dependent on endogenous dopamine. Experimental conditions
as in Figure 6. (A) Experiment showing unaltered STDP in an ACSF
prepared slice after acute application of exogenous DA (20 μM, see
horizontal bar). (B) Averaged original traces [*suprathreshold EPSP is
truncated; numbers refer to averaging intervals as indicated in (A)]. (C) Data
for STDP experiments in ACSF prepared slices performed either in normal
ACSF (gray circles), in 20 μM DA (black circles), or in the presence of the D1
antagonist SCH23390 (10 μM; open circles). (D) Averaged data for
experiments shown in (C). Note that application of exogenous DA has no
effect on intact STDP in ACSF prepared slices (with sufficient ambient DA),
but that inhibiting D1 signaling by SCH23390 (SCH) significantly blocked
potentiation at short positive pairings (white bar), CTRL = Control
measurement without drug and pairing protocol (dark gray bar).*p < 0.05 or
***p < 0.001 ANOVA with post hoc Tukey test.

DA vs. SCH23390 (t-LTP: 0.6 ± 0.2); ***p < 0.0001: ACSF (t-LTP:
1.74 ± 0.1) vs. CTRL and ACSF vs. SCH23390]. On the same time
scale, SCH23390 also converted action potentials to a slower rise
time mode [rise time (10–90%) in ACSF: 0.34 ± 0.01 ms compared
to SCH23390: 0.39 ± 0.02 ms, p < 0.05, paired Student’s t -test].
The action potential frequency and RMP remained unchanged
under SCH23390 (data not shown). These results suggest that
ambient levels of endogenous dopamine in ACSF prepared slices,
acting via D1 dopamine receptors, keep action potential proper-
ties in shape and yield efficient t-LTP. Adding surplus dopamine,
however, does not seem to further improve conditions for STDP
induction.

Frontiers in Synaptic Neuroscience www.frontiersin.org November 2011 | Volume 3 | Article 6 | 9

http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Edelmann and Lessmann Dopamine modulates STDP in CA1

To directly check dopamine levels we performed dopamine
ELISA measurements in sucrose and ACSF prepared slices. Con-
sistent with the above mentioned results, dopamine levels in
sucrose treated slices were significantly lower compared to ACSF
prepared samples [DA-reduction to 61.9 ± 6.9% in sucrose pre-
pared slices compared to ACSF prepared slices, **p < 0.01 t -test
(n = 5 preparations/group); 47.9 ± 23.4 pg/mg tissue in sucrose
vs. 78.8 ± 18.4 pg/mg tissue in ACSF prepared slices].

PREPARATION OF HIPPOCAMPAL SLICES IN SUCROSE CONTAINING
ACSF DOES NOT AFFECT THE NUMBER AND MORPHOLOGY OF
PYRAMIDAL NEURONS IN THE CA1 REGION
To check for possible preparation dependent changes in via-
bility of CA1 pyramidal neurons, both, cresyl violet stainings
(Figures 9A,B) as well as visualization of the dendritic tree by
Alexa 488 Fluor loading of CA1 neurons (Figures 9A1,B1) were
performed in ACSF and sucrose prepared slices. The number of cell

FIGURE 9 | Similar morphological properties of CA1 pyramidal neurons

in both types of preparation. Hippocampal slices were prepared
according to the two described procedures [(A): ACSF, (B): sucrose] and
subsequently processed for cresyl violet staining. Higher magnifications
(20×) are shown in the middle panels. No obvious differences in the quality
of slices are visible. Reconstructions of the apical dendrites of CA1
pyramidal cells with Alexa 488 Fluor are shown in (A1) for ACSF preparation
and (B1) for sucrose prepared slices. No gross differences in dendritic
length or branching are visible. Data are quantified in the lower panels: (C)

Number of cell layers in stratum pyramidale in ACSF (black) and sucrose
prepared slices (white bar) are similar (p > 0.05). Sucrose preparation leads
to an increase in thickness of stratum pyramidale (D) and an increased
soma size of individual pyramidal cells (for explanation see text) compared
to ACSF preparation [(E), p < 0.05]. (F) Total dendritic length of the apical
dendrites is comparable for slices of both preparation groups.

layers in CA1 (ACSF: 4.6 ± 0.2 vs. Sucrose: 4.7 ± 0.2, p > 0.05) and
the total length of the apical dendrites (ACSF: 1734.2 ± 148.2 μm
vs. Sucrose: 1921.3 ± 243.3 μm, p > 0.05) was similar in both
groups (Figures 9C,F). Overall, the results of the cresyl violet
stainings for both groups were comparable to typical respec-
tive stainings of hippocampal slices (Rice et al., 1994; Aitken
et al., 1995). Nevertheless, the thickness of the pyramidal cell
layer in CA1 (ACSF: 128.5 ± 6.4 μm vs. Sucrose: 152.7 ± 4.5 μm,
p < 0.05, two-tailed Student’s t -test) and the soma size of CA1
pyramidal cells (ACSF: 32 ± 1.2 μm vs. Sucrose: 28.7 ± 1.1 μm,
p < 0.05, two-tailed Student’s t -test) was increased in sucrose
prepared slices (Figures 9D,E). These latter two findings might
result from reduced stiffness of the perineuronal net in sucrose
prepared slices (compare Morales et al., 2004), allowing somata,
and thus cell layers, to increase in size. Overall, our histologi-
cal data do not reveal any morphological changes which could
obviously account for the observed STDP deficit after sucrose
preparation.

In conclusion, several lines of evidence suggest that endogenous
dopamine regulates both, spiking behavior and the efficiency to
induce t-LTP, and that sucrose preparation – by decreasing endoge-
nous dopamine levels – interferes with the efficiency to induce
STDP in CA1 of rat hippocampus.

DISCUSSION
Using whole cell recordings of CA1 pyramidal neurons in acute
hippocampal slices from juvenile rats, we show that with a
given STDP paradigm the resulting change in plasticity is crit-
ically dependent on conditions during slice preparation. We
demonstrate that preparation of hippocampal slices in sucrose
containing media reduces dopamine levels and leads to slower
action potential rise times and increased AP latencies, which
correlates with a reduced efficiency to elicit STDP. t-LTP and
action potential properties of sucrose slices could be rescued
completely by brief incubation with dopamine (but not isopro-
terenol), whereas reduction of endogenous dopamine signaling
via D1 receptors in ACSF slices inhibited t-LTP. These results sug-
gest that dopamine regulates the efficiency of STDP induction in
hippocampal CA1 area.

Previous studies of STDP in the hippocampus revealed a large
diversity of successful induction protocols and deduced learning
rules (e.g., Magee and Johnston, 1997; Pike et al., 1999; Nishiyama
et al., 2000, for review see Buchanan and Mellor, 2010). One
might argue that species and age differences could account for
these distinctions in successful STDP induction protocols. How-
ever, even with a given species and age, and employing a similar
STDP protocol, different learning rules have been described (com-
pare Wittenberg and Wang, 2006; Campanac and Debanne, 2008,
see Table 3). According to our data, some of these rather contrast-
ing findings could originate at least in part from subtle differences
in experimental conditions, which could lead, e.g., to depletion of
STDP modulators like dopamine.

SLICE PREPARATION IN SUCROSE-BASED MEDIA LEADS TO A STDP
DEFICIT
Sucrose-based preparation media are widely accepted as
slice preparation solutions for electrophysiological recordings,
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including measurements of synaptic plasticity (see, e.g., Campanac
and Debanne, 2008; Pawlak and Kerr, 2008). In our experiments,
slice preparation in sucrose media inhibited STDP (compare
Figures 1 and 2), which could not be rescued by stronger synaptic
activation with pre- or postsynaptic train stimulation or by post-
synaptic spike doublets (see Figure 4). Thus, neither enhanced
glutamate release nor strengthened postsynaptic depolarization
during STDP induction could compensate for the lack of STDP.
Our results suggest that the deficit in synaptic plasticity after
sucrose preparation is more pronounced when using STDP proto-
cols, because theta-burst induced LTP in field potential recordings
was still observed, although the resulting LTP was decreased in
amplitude compared to ACSF slices (see Figure 3). Interestingly,
both experimental groups showed similar levels of short-term
plasticity (i.e., 1–20 min after theta-burst stimulation). In the light
of the reduced endogenous DA levels in our sucrose prepared slices,
it seems reasonable to suggest that the reduced e-LTP in these slices
results from decreased DA signaling. A similar decrease in e-LTP
after application of the D1 antagonist SCH23390 has been shown
previously in CA1 (Otmakhova and Lisman, 1996).

The STDP deficit after sucrose preparation was not an acute
effect, since brief incubation of slices with sucrose containing solu-
tion (195 mM, 20 mM Na+) for up to 10 min, and subsequent
recovery in our standard extracellular ACSF, did not yield compa-
rable changes in STDP and AP properties, as observed in sucrose
prepared slices (data not shown). Possible explanations for the
STDP deficit could be washout of important plasticity relevant
factors by incubation with the sucrose containing solutions during
preparation. In this respect, besides dopamine, BDNF and adren-
aline have also been proven to be important factors for induction
of LTP in CA1 (Korte et al., 1995; Otmakhova and Lisman, 1996;
Patterson et al., 1996; Kang et al., 1997; Kauer and Malenka, 2007;
Seol et al., 2007; Gottmann et al., 2009; Scott and Aperia, 2009). To
clarify the contribution of some of these plasticity relevant factors
to the sucrose-induced STDP deficit, further experiments were
performed (see below).

LACK OF CORRELATION BETWEEN BASAL ELECTROPHYSIOLOGICAL
PROPERTIES, HISTOLOGICAL PARAMETERS, AND EFFICIENCY OF STDP
We used modified sucrose media (Budde et al., 2005) with lower
concentration of sucrose, and without any sodium chloride for
slice preparation, and also conventional ACSF preparation solu-
tion, for our STDP experiments. To explore changes in viability
of slices due to preparation conditions, histological analyses of
somata and apical dendrites of single CA1 pyramidal neurons
were performed (see Figure 9). However, no gross morphologi-
cal differences in cresyl violet stained hippocampal slices between
sucrose and ACSF conditions were evident, and both groups
revealed hippocampal morphology as described previously (Rice
et al., 1994; Aitken et al., 1995). Sucrose-based ACSF preparation
is thought to support viability of neurons during preparation,
and to improve accessibility of cells for patch clamp recordings.
Furthermore sucrose-based media can be used for weakening of
perineuronal nets in brain slice preparations (Morales et al., 2004).
The resulting reduced tension by the partially destroyed neuronal
nets might account for the increases in soma size of individual
CA1 pyramidal neurons and in pyramidal layer thickness, whereas

cell numbers remained unchanged. Also the similar total apical
dendritic length of CA1 pyramidal neurons in both groups speaks
against a relevant change in postsynaptic cell properties following
sucrose preparation (see Figure 9F).

Good viability of neurons in our sucrose prepared slices is also
evident from the measured intrinsic electrophysiological prop-
erties (see Table 1: ACSF vs. Sucrose). Although the RMP was
slightly different between the two groups, all values are clearly in
the expected range for CA1 pyramidal cells in patch clamp record-
ings (Spigelman et al., 1992; Spruston and Johnston, 1992; Staff
et al., 2000). Furthermore, during experiments all cells were held at
−70 mV in the current clamp mode, such that the slightly different
RMPs prior to the start of the recording, cannot directly account
for the observed sucrose-dependent STDP deficit. Other electro-
physiological and synaptic properties (see Tables 1 and 2, compare
ACSF vs. Sucrose) were identical in the two groups, and efficient
repetitive spike firing could be observed also in the sucrose group.

Overall, the observed cell properties of CA1 neurons in our
sucrose prepared slices cannot easily be reconciled with an
unhealthy status of neurons under these conditions, which are
also routinely used in many other studies investigating LTP. Fur-
thermore, the differences we observe cannot directly explain the
sucrose-dependent STDP deficit in our recordings.

POSSIBLE CORRELATION BETWEEN FIDELITY OF ACTION POTENTIAL
FIRING AND STDP
The action potential frequency in response to constant cur-
rent injection was enhanced, whereas spike frequency adapta-
tion was decreased in neurons from sucrose prepared slices
(Figures 5A–D). Although other interpretations are possible, it
is conceivable that higher excitability (e.g., higher AP frequency)
could lead to facilitated LTP induction. In contrast, our results
clearly show decreased rather than facilitated LTP under these
conditions (Figure 2), making such a direct connection between
excitability and t-LTP induction rather unlikely. Alternatively, it
could be argued that increased firing rates in sucrose prepared
neurons could lead to saturated EPSP amplitudes already prior
to STDP stimulation. This interpretation is not supported by our
data, since we found similar maximal EPSPs, and used comparable
synaptic output values (i.e., 30–50% of maximal EPSP amplitudes
prior to STDP induction), both speaking in favor of comparable
basal synaptic strength in the two experimental groups.

Interestingly, spike rise times, either induced by long-lasting
depolarization (see Figure 5E) or during STDP induction (see
Figure 6E) were significantly slower in sucrose prepared neurons.
Although fast rise times of APs (as seen in neurons after ASCF
preparation) are generally accepted to be a good indicator for
physiological intact and healthy neurons, other synaptic and action
potential properties as well as histological parameters tested in our
study do not favor the interpretation that cells in sucrose prepared
slices were not in good condition (see Tables 1 and 2; Figure 9).
Given the importance of spike timing in STDP, it is tempting to
speculate, however, that the more slowly (by a factor of 1.5–3) ris-
ing action potentials in the sucrose group can somehow interfere
with the ability of backpropagating action potentials to sufficiently
depolarize postsynaptic structures just in time with the incoming
EPSP. However, since dopamine and isoproterenol both shortened
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rise times, but only dopamine restored STDP (see below), spike
rise times in sucrose prepared slices do not seem to affect STDP
induction.

Our results also revealed a significantly longer latency for induc-
tion of the first action potential in neurons of the ACSF group
(Figure 5F). As shown by Spruston et al. (1995) latency to spike
peak increases with distance from soma, and differences in the
shape of dendritic action potentials are of tremendous impor-
tance in deciding whether t-LTP or t-LTD can be observed (Dan
and Poo, 2006; Remy and Spruston, 2007). If the AP latency was
critical for t-LTP induction in our recordings, the shorter latency
of APs in sucrose should have shifted the optimal time window for
t-LTP to more positive values, which we did not observe. Thus, in
spite of the observed strong correlation, the shortened AP latency
cannot directly explain the STDP deficit in sucrose prepared slices.
However, our observation that, both, spike latency and STDP are
rescued by exogenous DA within 10–20 min., while isoproterenol
fails to rescue either of these effects (see below), leads us to suggest
that DA (most likely via regulation of K+ channels in dendrites)
regulates the efficiency of STDP induction in CA1.

Alternatively or synergistically, biochemical signaling cascades
downstream of D1 receptors, possibly affecting the balance of
cAMP dependent phosphatase/kinase signaling, which can affect
AMPA receptor trafficking (see, e.g., Gao et al., 2006) or back-
propagation of dendritic spikes (Hoffman and Johnston, 1999;
Hamilton et al., 2010) might account for D1 dependent restora-
tion of t-LTP in our experiments. Interestingly, PKA dependent
endocytosis of synaptic SK2 channels (Lin et al., 2010) can regu-
late, both, the efficiency of LTP induction and firing patterns in
the postsynaptic neuron (Faber, 2009). Similar to our observation
of parallel modulation of spike properties and t-LTP efficiency,
these data indicate that cAMP dependent regulation of action
potential properties and efficiency of LTP induction can occur
in parallel, although both processes are not necessarily causally
connected.

INCUBATION WITH DOPAMINE, BUT NOT ISOPROTERENOL, RESCUES
T-LTP IN SUCROSE PREPARED SLICES
Dopamine and noradrenaline seem to be essential neuromodu-
lators for STDP in different brain regions (reviewed in Pawlak
et al., 2010). Therefore, in an attempt to rescue the STDP deficit in
sucrose prepared slices, we focused our experiments on dopamine
and noradrenaline. Our data show that short-term incubation
(10–20 min) with 20 μM dopamine, a concentration that is com-
monly used for in vitro studies and is comparable to the effective
in vivo concentration for dopamine (Zhang et al., 2009), rein-
states the induction of t-LTP in sucrose prepared slices, whereas
inhibition of signaling of endogenous dopamine via D1 receptors
inhibits t-LTP in ACSF slices (Figures 6 and 8). This is to our
knowledge the first description of dependence of STDP in hip-
pocampal CA1 pyramidal neurons in brain slices, on endogenous
dopamine signaling. Of note, an additional involvement of the D1
like antagonist SCH23390 that we used, in inhibition of G-Protein
coupled inwardly rectifying potassium channels has been reported
(e.g., Kuzhikandathil and Oxford, 2002). However, this effect was
not evident from our experiments, since membrane potential and
action potential frequency remained unchanged in SCH23390.

Recent studies suggested that STDP can be regulated by differ-
ent neuromodulatory transmitter systems in other preparations:
STDP in slices from visual cortex has been shown to depend on
exogenous application of acetylcholine (acting via M1 receptors)
and noradrenaline (via β-adrenergic receptors), respectively (Seol
et al., 2007). STDP in the prefrontal cortex is favored by activation
of nAChRs (Couey et al., 2007). Similarly, exogenous dopamine
acting via D1 receptors has been suggested to be a modulating fac-
tor for induction of STDP in dissociated cultures of hippocampal
neurons (Zhang et al., 2009), and application of noradrenaline has
been shown to regulate conditions for induction of t-LTP in CA1
of hippocampal slices (Lin et al., 2003). Only in slices from stria-
tum, endogenous dopamine acting mainly via D1 receptors has
been shown previously to be a limiting factor for eliciting t-LTP
(Pawlak and Kerr, 2008; Shen et al., 2008). Since all the above men-
tioned studies (including our own) were performed in the presence
of inhibitors of GABAergic synaptic transmission, the modulating
action of dopamine can in all cases not be attributed to altered
synaptic inhibition (thereby favoring conditions for the induction
of STDP), as has been described previously for dopamine depen-
dent modulation of STDP in amygdalar neurons (Bissiere et al.,
2003).

To evaluate the specificity of dopamine for successful induc-
tion of STDP and the concomitant modulation of AP parameters,
we also tested the effects of noradrenergic activation by stimula-
tion with the β-adrenergic agonist isoproterenol (see Figure 6).
In contrast to Lin et al. (2003), we did not observe a restoring or
facilitating effect of isoproterenol on STDP in neurons of sucrose
prepared hippocampal slices (see Figures 6B–D). This might be
explained by the different starting conditions in their experiments:
while Lin et al. (2003) tried to extent the effective time win-
dow for STDP induction by application of isoproterenol (spike
timings 20 < Δt < 40 ms) under conditions of functional STDP,
we reasoned that isoproterenol might facilitate STDP (spike tim-
ing Δt ≤ 10 ms) in our sucrose-induced STDP deficit situation.
Together these results suggest that the efficiency of isoproterenol
to regulate STDP is critically dependent on basal conditions for
synaptic plasticity.

Seol et al. (2007) described an effect of β-adrenergic ago-
nists (e.g., isoproterenol) on STDP in slices from visual cortex,
which was – similar to our own results with DA – essential for
functional STDP. Since we did not observe this effect for acute
hippocampal slices, further experiments are necessary to clarify
if isoproterenol effects on STDP differ between brain regions, as
suggested previously (Swanson-Park et al., 1999).

Modifications in the ability of a given stimulus to induce synap-
tic plasticity (so-called metaplasticity; including conversion of a
LTP stimulus to elicit LTD, and vice versa), as observed in our
study, are dependent on numerous changes affecting neurotrans-
mitter signaling and neuronal excitability (for recent reviews see,
e.g., Turrigiano and Nelson, 2004; Abraham, 2008). A-type as well
as Ca2+ activated K+ channels, and hyperpolarization induced
cation channels (I h) are considered as potential targets medi-
ating such changes in intrinsic excitability. Future experiments
should elucidate whether the sucrose/dopamine effect observed
in our study can be attributed to changed properties of these
conductances (compare below).
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A metaplasticity change leading to inhibition of LTP can often
be overcome by increasing the intensity of the LTP inducing stim-
ulus. While stronger STDP induction protocols were not able to
overcome our impaired t-LTP (compare Figure 4), theta-burst
stimulation induced LTP of synaptic population responses could
still be evoked after sucrose preparation (compare Figure 3).
Although these findings are in general consistent with the concept
of metaplasticity, future studies aiming at investigating LTD and
LTP in responses to a wide time/frequency window of induction
protocols will be required to determine, whether the sucrose-
induced changes fulfill the concept of metaplasticity. Specifically,
these studies will be needed to reveal whether sucrose-induced
changes correspond to the unmasking of a second window for
t-LTD (compare Nishiyama et al., 2000).

Overall, although few studies have addressed the issue of neu-
romodulatory transmitters in STDP directly (for a recent review
see Pawlak et al., 2010), their action on STDP is not surprising,
given the well-known modulation of synaptic plasticity by these
transmitters in different brain areas (Jay, 2003; Lisman and Grace,
2005; Hasselmo, 2006; Sara, 2009; Wickens, 2009).

APPLICATION OF DOPAMINE, BUT NOT ISOPROTERENOL ALTERS SPIKE
FIRING IN SUCROSE PREPARED SLICES
Similar to what we observed for rescue of t-LTP, also the action
potential firing pattern of CA1 neurons in sucrose prepared
slices was changed dramatically by acute application of exoge-
nous dopamine. In contrast, isoproterenol only partially restored
AP properties under these conditions (compare Figure 7; Table 2).
Although this is just a correlation, it is well accepted that the shape
of dendritically propagating action potentials is a critical deter-
minant for the induction of STDP (see, e.g., Gulledge and Stuart,
2003; Waters et al., 2005; Sjostrom and Hausser, 2006; Froemke
et al., 2010). Dopamine as well as direct stimulation of PKA acting
downstream of D1/D5 and D2 receptors, respectively, have been
described previously to regulate different types of voltage gated
ion channels, leading to concomitant changes in action poten-
tial properties: for example Benardo and Prince (1982) observed
dopamine dependent modulation of calcium activated K+ con-
ductances yielding reduced firing rate and hyperpolarization of
the RMP in hippocampal CA1 pyramidal neurons, which is in
good agreement with the effects of dopamine on APs, as observed
in our study. Decreased AP firing rates in hippocampal neurons
by application of dopamine were also reported by others (Pock-
ett, 1985). Hoffman and Johnston (1999) described increased AP
amplitudes in dendrites of CA1 neurons in response to exoge-
nous dopamine and other neuromodulators. These effects can
be explained by actions of these neuromodulators on inactiva-
tion properties of voltage gated Na+ channels and modulation
of A-type K+ channels (Johnston et al., 1999). In addition, a
very recent report described a decrease of repetitive AP firing

by dopamine dependent modulation of T-type Ca2+ channels in
the axon initial segment (Bender et al., 2010). Given this multi-
tude of effects of dopamine on these different types of voltage
gated channels, it was beyond the scope of the present study to
pinpoint the conductances responsible for dopamine regulation
of APs in our cells. Nevertheless, analysis of frequency adapta-
tion, rise times, and latencies of APs turned out to be a sensitive
indicator of dopamine action on action potential firing in our
neurons.

Interestingly, while isoproterenol was able to restore spike rise
times, it failed to be similarly effective as DA in changing adapta-
tion and latencies of APs in sucrose prepared slices. Isoproterenol
has been described previously to influence time course and ampli-
tude specifically of dendritic APs (Hoffman and Johnston, 1999),
and isoproterenol couples to the same stimulatory G-proteins, thus
increasing cAMP, as dopamine (e.g., Swanson-Park et al., 1999).
Our observation that isoproterenol shortened AP rise times to the
same extent as DA, whereas spike latency (and spike adaptation)
remained in the range of the sucrose condition, together with the
fact that isoproterenol – unlike DA – was unable to restore STDP,
suggests a correlation between modulation of ionic conductances
regulating spike latency and spike adaptation and the efficiency to
induce STDP. In spite of this correlation, our data do not allow to
prove a causal connection between these AP parameters and STDP
induction (see above).

Although we measured AP properties with somatic recordings,
it is likely that the dopamine dependent changes we observed for
somatic APs lead qualitatively to similarly changed APs in the den-
drites. Importantly, using dendritic recordings of backpropagating
APs, previous studies have already shown that neuromodulatory
transmitters, can increase the amplitude of backpropagating APs
in dendrites of CA1 pyramidal neurons by altering dendritic con-
ductances (compare Hoffman and Johnston, 1999). Given that
altered AP parameters cannot directly account for our DA effects
on t-LTP (compare above), future studies should reveal the exact
role of DA in facilitating STDP in CA1 dendrites.

In conclusion, hippocampal learning rules for a specific STDP
paradigm are dependent on experimental conditions prior to
and during recording. Subtle differences in preparation (e.g.,
sucrose preparation) can dramatically influence the outcome of
STDP experiments. Several lines of evidence in our study sug-
gest that specifically decreased dopamine signaling interferes with
induction of t-LTP of rat hippocampal slices.
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