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It has been recognized for some time that different subtypes of cortical inhibitory
interneurons innervate specific dendritic domains of principal cells and release GABA at
particular times during behaviorally relevant network oscillations. However, the lack of
basic information on how the activity of interneurons can be controlled by GABA released
in particular behavioral states has hindered our understanding of the rules that govern the
spatio-temporal organization and function of dendritic inhibition. Similar to principal cells,
any given interneuron may receive several functionally distinct inhibitory inputs that target
its specific subcellular domains. We recently found that local circuitry of the so-called
interneuron-specific (IS) interneurons is responsible for dendritic inhibition of different
subtypes of hippocampal interneurons with a great impact on cell output. Here, we will
review the properties and the specificity of connections of IS interneurons in the CA1
hippocampus and neocortex, and discuss their possible role in the activity-dependent
regulation of dendritic inhibition received by pyramidal neurons.
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INTRODUCTION
In neocortical and hippocampal networks, a large diversity of
GABAergic inhibitory inputs converges onto the dendrites of
glutamatergic principal cells. Many of them may overlap within
the same dendritic domain but remain segregated temporally
due to specific inhibitory mechanisms that evolved to control
the activity of dendrite-targeting interneurons. The vasoactive
intestinal polypeptide (VIP) and/or calretinin (CR) expressing
interneurons have been consistently associated with cortical
dendritic disinhibition. For example, in the CA1 hippocampal
area, three types of the so-called interneuron-specific (IS)
interneurons have been shown to make symmetric contacts
with interneurons selectively (Acsády et al., 1996; Gulyás et al.,
1996). Type 1 (IS1) cells express CR and have a soma located
in the oriens/alveus (O/A), stratum pyramidale (PYR) or
radiatum (RAD). Type 2 (IS2) interneurons express VIP but
lack CR: they have a soma located between the RAD and
lacunosum-moleculare (LM), a dendritic arbor restricted to LM
and axonal projections in the RAD targeting cholecystokinin
(CCK)/VIP coexpressing basket cells. Type 3 (IS3) interneurons
coexpress CR and VIP and may also express enkephalins
with a soma located at the PYR and RAD border and
dendrites extending into LM (Blasco-Ibáñez et al., 1998). IS3
cells have been reported to contact preferentially somatostatin
(SOM)- and metabotropic glutamate receptor 1a (mGluR1a)-
positive oriens–lacunosum moleculare (OLM) cells that are
responsible for distal dendritic inhibition of CA1 pyramidal
neurons (Acsády et al., 1996). In a second example, the
majority of VIP+ terminals in the somatosensory cortex are
made onto SOM-/mGluR1a- and calbindin (CB)-expressing

interneurons that provide dendritic inhibition to the layer II/III
and layer V pyramidal cells (Dalezios et al., 2002; Staiger
et al., 2004). However, the physiological properties, functional
connectivity, recruitment during network activity, and role of
IS interneurons in cortical computations remained until recently
unknown.

In the past several years, advances in transgenic and optical
technologies have converged to enable researchers to target
and manipulate specific cell types within highly heterogeneous
inhibitory circuits. Using VIP-GFP mice, it became possible to
characterize the properties and connectivity of VIP+ interneurons
in acute hippocampal slices (Chamberland et al., 2010; Tyan
et al., 2014), while mice expressing Cre recombinase and
channelrhodopsin (ChR) or halorhodopsin under the control
of the VIP or CR promoters have been successfully used to
manipulate VIP+ and CR+ interneurons in slices and in awake
mice (Lee et al., 2013; Pfeffer et al., 2013; Pi et al., 2013; Tyan
et al., 2014). Here, we summarize current knowledge about the
properties, connectivity and function of VIP+ interneurons in
the hippocampus and neocortex. In particular, we concentrate
on hippocampal CA1 IS3 cells that control the level of dendritic
inhibition received by CA1 pyramidal neurons. It is not our
intention to discuss CR+ cells in cortical circuits, as they represent
a highly heterogeneous population of interneurons and have been
thoroughly discussed in a recent review (Cauli et al., 2014).

PROPERTIES AND CONNECTIVITY OF IS3 CELLS
MORPHOLOGICAL AND NEUROCHEMICAL FEATURES
The hippocampal CA1 IS3 cells have small round somata
(13–18 µm) located in PYR or RAD with 2–3 primary dendrites
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of unipolar or bipolar orientation extending towards LM or LM
and O/A, respectively (Figures 1A,B). In most cells, the primary
dendrite extending to LM is particularly thick resembling that
of pyramidal neurons (Figure 1A upper panel). Dendritic spines
can be observed occasionally on proximal and distal branches.
These cells send their axon primarily to the O/A but random
collaterals can be found in PYR or RAD (Figure 1B upper panel).
Accordingly, the major postsynaptic targets of IS3 cells reside
in the O/A and correspond to O/A interneurons (Figure 1C).
On the basis of immunohistochemistry, IS3 interneurons are
defined as GABAergic cells that co-express the Ca2+-binding
protein CR and neuropeptide VIP (Figure 1A lower panel)
(Acsády et al., 1996; Freund and Buzsáki, 1996; Gulyás et al.,
1996).

PHYSIOLOGICAL PROPERTIES
In acute hippocampal slices, IS3 cells have a resting membrane
potential of −64 to −75 mV, suggesting that these cells are likely
silent under basal conditions. However, compared with other
interneuron subtypes, IS3 interneurons have a particularly high
input resistance (400–600 M�) and a small rheobase (30–50 pA),
which makes them one of the most excitable interneuron subtypes
in the hippocampus. The properties of the action potential,
including the spike threshold, the amplitude and the half-
width are similar to those in other types of neurons (Tyan
et al., 2014). Nevertheless, IS3 interneurons can distinguish
themselves by a characteristic “irregularly spiking” firing pattern
with an inter-spike interval varying broadly upon membrane
depolarization (Figure 1B lower panel) (Chamberland et al.,
2010).

CONNECTIVITY
The IS3 axon shows extensive arborization within O/A with a
cumulative axonal length of a single interneuron going up to
11 mm. Data from anatomical analysis (Acsády et al., 1996)
and paired electrophysiological recordings (Tyan et al., 2014)
showed that IS3 cells contact several distinct subtypes of O/A
interneurons, including OLM, bistratified and basket cells as
well as some other interneurons with somata, dendrites and
axon located within stratum oriens [the so-called oriens–oriens
cells]. The OLM cell is the preferential target of IS3 interneurons
while the oriens–oriens and bistratified cells share most of the
remaining IS3 inputs with a minor proportion of inputs made
onto basket cells (Tyan et al., 2014). Taken together, these
data indicate that the major role of IS3 interneurons is in
coordinating the level of inhibition converging onto different
dendritic domains of CA1 pyramidal neurons.

PROPERTIES OF IS3 SYNAPSES
The properties of IS3 synapses made on different targets have
been examined using paired patch-clamp recordings (Tyan et al.,
2014). In all dendrite-targeting interneurons, unitary inhibitory
postsynaptic currents (uIPSCs) recorded at 0 mV at near-
physiological temperature (32 ± 1◦C) had a high failure rate
of ∼60%, small amplitude (10–25 pA) and varying kinetics
(uIPSC rise time: 0.7–1.3 ms; uIPSC decay τ: 5–12 ms). The
latter could result from the different dendritic location of IS3

synapses in distinct targets, although a target-specific GABAA

receptor composition cannot be excluded (Salesse et al., 2011).
Variance-mean analysis has been performed at IS3–OLM synapses
(Tyan et al., 2014). It revealed that an IS3 cell contacts an
OLM through multiple release sites and produces uIPSCs with
a quantal size of 5–6 pA. Repetitive firing of IS3 cells at
10–100 Hz does not result in any form of short-term plasticity
at IS3–OLM synapses. However, efficient summation of slow
uIPSCs occurring during 100-Hz firing of IS3 cells leads to a large
inhibitory response in OLMs with a potential impact on their
firing.

COMPARISON WITH VIP+ INTERNEURONS IN THE NEOCORTEX
In neocortical regions, VIP+ interneurons have been classified as a
sub-group of interneurons that express the 5-hydroxytryptamine
3a receptor (5HT3aR+), making up ∼40% of 5HT3aR+
interneurons (Rudy et al., 2011). Similar to hippocampal IS3
interneurons, most neocortical VIP+ interneurons have a bipolar/
bitufted orientation with soma and dendrites located primarily
in layers II/III or V (Figure 1D; Pi et al., 2013). These cells
have dendrites located perpendicularly to the pial surface and
branching within layers I and V. The axon of bipolar VIP+
interneurons originates from a primary dendrite and makes an
extensive arborisation within layers V/VI (Figure 1E; Porter et al.,
1998). A sub-population of neocortical VIP+ interneurons co-
express CR (35% of VIP+ cells) and, therefore, may be similar
to the hippocampal IS3 interneurons (Figure 1G; Kawaguchi
and Kubota, 1997; Porter et al., 1998; Gonchar et al., 2008; Xu
et al., 2010). It is to be noted that a fraction of neocortical
VIP+ interneurons may also co-express CCK and, therefore, may
correspond to VIP+ basket cells (Galarreta et al., 2004; Sugino
et al., 2006).

Similar to hippocampal IS3 interneurons, neocortical
CR+/VIP+ interneurons recorded in slices in vitro are
hyperpolarized with a resting membrane potential of −62
to −74 mV (Porter et al., 1998). These cells have a high input
resistance (240–2200 MΩ) and exhibit “irregularly spiking”
firing pattern (Figure 1F; Cauli et al., 1997, 2000; Porter
et al., 1998; Galarreta et al., 2004; Lee et al., 2010; Miyoshi
et al., 2010). In support of their interneuron-selectivity, the
results of ultrastructural, physiological and optogenetic analysis
revealed that VIP+ interneurons prefer to contact several distinct
subtypes of neocortical interneurons, including CB+, SOM+,
VIP+ and parvalbumin-positive (PV+) cells (Figure 1H). In
particular, electron microscopy studies have shown that VIP+
boutons onto PV+, CB+, SOM and VIP+ interneurons are
homogeneously distributed across layers II to VI (Dalezios et al.,
2002; Staiger et al., 2004; Dávid et al., 2007). Moreover, paired
whole-cell recordings from neocortical layer II/III CR+/VIP+
interneurons showed that these cells prefer to contact several
types of interneurons rather than pyramidal cells, including
the multipolar CR+/VIP– cells (with a connectivity rate of
80%), fast spiking cells (30%), and PV+ multipolar bursting
cells (27%) (Caputi et al., 2009). Furthermore, optogenetic
studies using a VIP-Cre mouse model have shown that SOM+
interneurons represent the major target of VIP+ interneurons;
in particular, the inhibition provided by VIP+ interneurons was
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FIGURE 1 | Properties of IS3 interneurons in the hippocampus and
CR/VIP co-expressing interneurons in the neocortex. (A) Two-photon
image (maximal projection of a z-stack) of the CA1 area from an acute
hippocampal slice (300 µm) of a VIP-eGFP mouse showing the
morphological features of VIP-positive interneurons in the CA1 area.
Lower panel represents confocal images showing CR expression by IS3
interneurons in the CA1 area. (B) Anatomical reconstruction (the axon
is shown in red, the dendrites are shown in black) of an IS3 cell that
was recorded and filled with biocytin. Inset illustrates representative
voltage responses of an IS3 interneuron to positive (50 pA) and
negative (−100 pA) current injections (Modified from Tyan et al., 2014).
(C) EM image showing VIP+ boutons of two neurons (b1 and b2)
forming symmetrical synaptic contacts (arrows) on the same dendrite
which is shown to be immunoreactive for GABA by the accumulation
of gold particles (small arrows) (Data are from Acsády et al., 1996).
(D) Confocal image of the auditory cortex (ACx) with the morphological

features and layer distribution of VIP+ somata; arrow indicates a VIP+
interneuron in the first layer. Scale bar, 100 µm (Data are from Pi
et al., 2013). (E) Anatomical reconstruction of a VIP+ interneuron with
dendrites shown in white and axon shown in black. The arrow indicates
the initiation point of a descending axon arborizing in the sixth cortical
layer (Data are from Porter et al., 1998). (F,G) Electrophysiological and
molecular properties of CR/VIP coexpressing interneurons in the
neocortex. (F) Voltage responses to depolarizing pulses of 50 (lower
trace) and 200 (upper trace) pA. The response consists of an initial
burst followed by intermittent action potentials at an irregular frequency.
(G) Single-cell RT-mPCR analysis showing the expression of ChAT,
GAD65 and GAD67 mRNAs in CR/VIP coexpressing neocortical
interneurons (Data are from Porter et al., 1998). (H) EM images of
symmetric synapses (indicated by arrows) formed by VIP- presynaptic
boutons (b1 and b2) with the soma of CB+ interneuron. Scale bars,
0.5 µm (Data are from Staiger et al., 2004).

much larger in SOM+ cells compared with PV+ interneurons
in the visual and somatosensory cortices (Lee et al., 2013;
Pfeffer et al., 2013). A similar observation was reported in the
auditory and medial prefrontal areas (Pi et al., 2013), where
activation of ChR2-expressing VIP+ interneurons elicited IPSCs
primarily in SOM+ cells; albeit no difference in the amplitude
of the ChR2-evoked IPSCs appeared between SOM+ and

PV+ interneurons. In addition, optogenetic silencing of VIP+
interneurons strongly reduced the IPSCs recorded in neocortical
SOM+ cells (Lee et al., 2013). Finally, CR+/VIP+ interneurons
are coupled through gap junctions (with a connectivity rate of
63%) (Caputi et al., 2009), which may play an important role
in synchronizing the activity of CR+/VIP+ interneurons with
a great impact on the output of SOM+ interneurons. Taken
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together, these studies show that VIP+/CR+ IS interneurons are
well positioned to modulate primarily the activity of local SOM+
circuits, providing dendritic disinhibition to cortical pyramidal
neurons.

FUNCTIONAL ROLE OF DISINHIBITORY CIRCUITS
In the CA1 hippocampus, dendritic inhibition provided by the
IS3 interneurons controls the firing rate and timing of OLM cells.
The latter may be possible because of the dendritic initiation of
the action potential in OLM interneurons (Martina et al., 2000).
Furthermore, it has been shown that SOM+ dendrite-targeting
OLM as well as bistratified cells may be responsible for gating the
active dendritic conductances and burst firing of pyramidal cells
through initiation of dendritic spikes (Lovett-Barron et al., 2012;
Müller and Remy, 2014). From this perspective, IS3 inhibition of
SOM+ cells appears to be crucial in coordination of dendritic
inhibition of pyramidal neurons with a direct impact on their
input-output conversion and firing behavior.

Under what network conditions might this happen in vivo?
Based on anatomical data, IS3 cells are likely to be driven
by the three major excitatory pathways in the CA1 area: the
perforant path, the Schaffer collaterals and the CA1 local
collaterals. Additionally, inhibitory input from the CR+ type
1 IS cells may control the activity of IS3 interneurons as
CR+ terminals make numerous contacts with CR+ and VIP+
cells (Gulyás et al., 1996). Therefore, the dynamic properties
and the relative weight of excitatory and inhibitory inputs
converging onto IS3 cells will determine their state-dependent
recruitment during ongoing network activity and, accordingly,
their role in the recruitment of OLM interneurons in vivo.
OLM interneurons demonstrate state-dependent fluctuations in
activity during network oscillations. In particular, the firing of
OLM cells can vary during different episodes or phases of sharp
wave ripples (SWRs). For example, in anesthetized animals, OLM
cells were quiet during SWRs (Klausberger et al., 2003), whereas
in awake, head-fixed animals, OLM cells could fire with a low
probability during some SWR episodes (Varga et al., 2012). In
freely moving rats, the firing rate of OLM interneurons decreased
significantly during sleep compared to awake states and was
low during the sleep-associated SWRs (Katona et al., 2014). In
addition, OLM cells recorded in slices in vitro could fire at a
later phase of SWRs (Pangalos et al., 2013). Moreover, both
OLM and bistratified cells are strongly modulated during theta
oscillations in anesthetized as well as freely-moving animals
(Klausberger et al., 2003, 2004; Royer et al., 2012; Varga et al.,
2012). In particular, optogenetic experiments revealed that SOM+
dendrite-targeting CA1 interneurons fire at the decay phase of
place field during spatial learning, and reduce the firing rate
of pyramidal cells without changing the theta phase (Royer
et al., 2012). Interestingly, firing of IS3 cells at theta frequency
resulted in theta synchronization of OLM cells (Tyan et al.,
2014). It is therefore plausible to suggest that IS3 interneurons
may increase their firing at specific stages of SWRs and/or theta
oscillations in vivo and, subsequently, modulate the activity of
OLM interneurons.

Recent experimental observations obtained from different
neocortical regions highlight the idea that disinhibitory VIP+

interneurons may be engaged in network activity during
specific behavioral states (Lee et al., 2013; Pi et al., 2013;
Fu et al., 2014). For example, in the somatosensory cortex,
the activation of VIP+ interneurons was increased during
whisking (Lee et al., 2013). In addition, in the auditory
cortex, VIP+ interneurons were strongly recruited by positive
and negative reinforcement signals during discrimination tasks
(Pi et al., 2013). Furthermore, in the primary sensory cortex, the
activity of VIP+ cells was highly increased during locomotion
(Fu et al., 2014). Together, these data indicate that VIP+
interneurons may be specialized in controlling the intracortical
gating of information during specific behavioral states. Such
brain-state-dependent recruitment of VIP+ interneurons points
to the important role of the modulatory systems in the
regulation of cortical disinhibition. The neuromodulatory
effects of dopamine (DA), acetylcholine, and serotonin on
pyramidal cells as well as different types of interneurons have
been explored in details in different cortical areas. Recent
studies have focused on the role of modulators in controlling
the recruitment of interneurons in specific behavioral states
(Letzkus et al., 2011; Leão et al., 2012; Kimura et al.,
2014; Lovett-Barron et al., 2014). For example, it has been
reported that dendrite-targeting SOM+ interneurons in the
hippocampal CA1 area were recruited by aversive stimuli
during contextual fear conditioning through activation of the
cholinergic input (Lovett-Barron et al., 2014). VIP+ interneurons
in the neocortex express nicotinic acetylcholine receptors
(nAChRs; Alitto and Dan, 2013), indicating the potential
role of acetylcholine in regulating VIP+ interneuron activity.
Indeed, nAChR antagonists strongly attenuated the activation
of VIP+ interneurons during behavioral tasks (Fu et al., 2014).
Considering the involvement of dopaminergic and cholinergic
systems in the reward-associated circuitry (Fukuda et al.,
1990; Morris et al., 2004), it is possible that the phasic
release of DA and/or acetylcholine, through modulation of
VIP+ interneuron activity, may increase their recruitment
during reinforcement tasks. Furthermore, in the hippocampus,
the dopamine 1 receptor is expressed by CR+ interneurons
(Gangarossa et al., 2012). Yet, the role of DA as well as
acetylcholine in the recruitment of hippocampal IS3 interneurons
remains unexplored.

In conclusion, recent studies from several laboratories
provided direct experimental evidence that cortical IS
interneurons may play a major role in the state-dependent
gating of information flow across cortical regions primarily
through dendritic disinhibition of principal neurons. By
controlling dendritic electrogenesis and firing mode of principal
cells, IS interneurons may determine the functional output
of intracortical processing during specific brain states. Future
experiments studying the impact of specific connections and
their modulation will be required to understand the role of
VIP+ interneurons in gating and consolidation of cortical
information.
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