

Proteomic Analysis of Dendritic Filopodia-Rich Fraction Isolated by Telencephalin and Vitronectin Interaction

Yutaka Furutani^{1*†} and Yoshihiro Yoshihara^{1,2*}

¹ Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama, Japan, ² Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama, Japan

Dendritic filopodia are thin, long, and highly mobile protrusions functioning as spine precursors. By contrast with a wealth of knowledge on molecular profiles in spines, little is known about structural and functional proteins present in dendritic filopodia. To reveal the molecular constituents of dendritic filopodia, we developed a new method for biochemical preparation of proteins enriched in dendritic filopodia, by taking advantage of specific and strong binding between a dendritic filopodial membrane protein, telencephalin, and its extracellular matrix ligand, vitronectin. When vitronectin-coated magnetic microbeads were added onto cultured hippocampal neurons, phagocytic cup-like membrane protrusions were formed on dendrites through the binding to telencephalin. Magnetically purified membrane protrusion fraction was subjected to comprehensive mass spectrometric analysis and 319 proteins were identified, many of which were confirmed to be localized to dendritic filopodia. Thus, this study provides a useful resource for studying molecular mechanisms underlying dendritic development, synapse formation, and plasticity.

Keywords: telencephalin, ICAM-5, vitronectin, proteomics, dendritic filopodia

INTRODUCTION

Neuronal dendrites are equipped with two morphologically and functionally distinct types of tiny protrusions: filopodia and spines. Dendritic filopodia are long, thin and highly dynamic protrusions mainly observed in developing neurons. They continue elongation and retraction flexibly as if to search for appropriate presynaptic partners (Ziv and Smith, 1996; Fiala et al., 1998; Portera-Cailliau et al., 2003). Upon making a contact with an appropriate axon, dendritic filopodia is transformed and stabilized into a spine. Thus, dendritic filopodia is an important neuronal compartment functioning as a spine precursor. Also in adult brain, plastic changes of synapses are frequently associated with emergence of dendritic filopodia (Zuo et al., 2005; Pan and Gan, 2008; Yoshihara et al., 2009). Furthermore, morphological abnormalities of dendritic protrusions are often observed in patients' brains with mental disorders such as autism spectrum disorders, schizophrenia, Alzheimer's disease, Down syndrome, and Rett syndrome (Kaufmann and Moser, 2000; Penzes et al., 2011). A number of causal candidate genes responsible for these disorders have been identified and many of them turned out to have defined roles in spine and synapse development. Dysfunction of these molecules sometimes leads to abnormal dendritic morphology with less spines and more dendritic filopodia even in adulthood (Penzes et al., 2011).

OPEN ACCESS

Edited by:

Christian Gonzalez-Billault, Universidad de Chile, Chile

Reviewed by:

Kwok-On Lai, The University of Hong Kong, Hong Kong Jaewon Ko, Daegu Gyeongbuk Institute of Science and Technology (DGIST), South Korea

*Correspondence:

Yutaka Furutani yfurutani@riken.jp Yoshihiro Yoshihara yoshihiro.yoshihara@riken.jp

[†]Present address:

Yutaka Furutani, Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Saitama, Japan

Received: 21 December 2017 Accepted: 19 July 2018 Published: 10 August 2018

Citation:

Furutani Y and Yoshihara Y (2018) Proteomic Analysis of Dendritic Filopodia-Rich Fraction Isolated by Telencephalin and Vitronectin Interaction. Front. Synaptic Neurosci. 10:27. doi: 10.3389/fnsyn.2018.00027

Abbreviations: DIV, days in vitro; ERM, ezrin/radixin/moesin; TLCN, Telencephalin; VN, vitronectin.

In the last decade, many researchers successfully uncovered molecular organization of dendritic spines by a combinatorial approach with biochemical purification of the postsynaptic density fraction and mass spectrometry-based comprehensive proteomic analysis (Walikonis et al., 2000; Satoh et al., 2002; Peng et al., 2004; Bayes et al., 2011; Bayes et al., 2012). Thus we currently have a wealth of knowledge on structural and signaling proteins enriched in spines that play pivotal roles in synapse formation and plasticity (Benson et al., 1998). In striking contrast, molecular constituents of dendritic filopodia remain largely unknown, except for a few molecules such as a telencephalon-specific cell adhesion molecule TLCN (ICAM-5) and phosphorylated ERM family actin-binding proteins (Matsuno et al., 2006; Furutani et al., 2007). So far, there has been no report on proteomics analysis of dendritic filopodia, because of the lack of an efficient purification method for filopodia-enriched fraction.

In this study, by taking advantage of specific and strong binding between TLCN and its extracellular ligand, VN, we developed a unique biochemical method for enrichment of functional molecules present in dendritic filopodia. Proteomics analysis of the purified fraction identified 319 proteins, many of which were abundantly localized to dendritic filopodia.

MATERIALS AND METHODS

Antibodies

Anti-TLCN-C (Sakurai et al., 1998), Anti-TLCN/Fc (Mitsui et al., 2007), anti-vitronectin (Furutani et al., 2012), anti-actin (1:1000, A-5060, Sigma-Aldrich), anti-α-actinin (1:100, A-5044, Sigma-Aldrich), anti-BAIAP2L1 (1:100, GTX109453S, GeneTex), anti-CaMKIIa (1:1000, MAB8699, Chemicon), anti-CD98 (1:200, sc7094, Santacruz), anti-eEF1y (1:1000, NB100-2262, Novus Biologicals), anti-EPS8L1 (1:100, AV42491, Sigma-Aldrich), anti-EFA6C (1:100, 17404-1-AP, ProteinTech Group), anti-EFA6D (1:100, ab36165, Abcam), anti-Gao (1:100, Santacruz), anti-Gαq (1:200, sc-393, Santacruz), anti-Gβ2 (1:100, ab81272, Abcam), anti-JIP4 (1:50, NB110-82383, Novus Biologicals), anti-MAP1S (1:100, 15695-1-AP, ProteinTech Group), anti-MRCKa (1:100, ab38356, Abcam), anti-myosin VA (1:100, #3402, Cell Signaling), Na⁺/K⁺ ATPase α3 (1:1000, MA3-915, Thermo Scientific), anti-NR3A,B (1:100, GTX22639, GeneTex), anti-PLCB3 (1:200, sc-403, Santacruz), anti-PSD95 (1:1000, MA1-046, ABR), anti-ribosomal protein S16 (1:100, LS-C30572, Lifespan Bioscience), anti-SAP97 (1:1000, PA1-741, Affinity Bioreagents), anti-septin7 (1:100, 18991, IBL), anti-spectrin β (1:1000, MAB1622, Chemicon), and anti-α-tubulin (1:1000, T-9026, Sigma-Aldrich) antibodies were used in this study. Cy3- and horseradish peroxidase (HRP)-conjugated secondary antibodies were purchased from Jackson ImmunoResearch. Alexa488- and Alexa647-conjugated secondary antibodies were purchased from Life Technology.

Cell Culture and Immunostaining

Cultured hippocampal neurons were prepared and maintained as described previously (Fiala et al., 1998; Furutani et al., 2007).

Briefly, the hippocampus was dissected from embryonic days 16 mice and cultured in 35 mm-glass bottom dishes (P35G-0-10-C: Mattek or 3911-035-10: Asahi glass) coated with 0.2 mg/ml of poly-L-lysine hydrobromide (Nacalai tesque) at 5.6 \times 10⁴ cells/dish. The neurons were cultured in minimum essential medium containing 5% FBS, 2% B27supplement (Life Technology: 0080085SA), 0.5 mM glutamine, and penicillin/streptomycin. After 2.5 days, 10 μM cytosine β-D-arabinofuranoside (Ara-C) was added to the medium for the inhibition of glial cell growth. Cultured hippocampal neurons (14 DIV) were fixed with 4% PFA or 100% methanol for 10 min. After permeabilization with 0.25% Triton X-100 and blocking with 10% FBS, the neurons were incubated with primary antibodies or Alexa488-conjugated phalloidin (Life Technology) overnight at 4°C and visualized with Alexa Fluor or Cy dye-conjugated secondary antibodies. Single plane images or Z-stacked images (0.6 µm interval) were acquired with FV1000 confocal laser scanning microscopy (Olympus). The animal experiment was approved by RIKEN Institutional Animal Use and Care Administrative Advisory Committee.

Purification of the Dendritic Phagocytic Cup Fraction

The hippocampus was dissected from wild-type (WT) and TLCN-deficient mice at embryonic day 16 and cultured on 35mm plastic cell culture dishes (Corning; 430165) coated with 0.2 mg/ml of poly-L-lysine hydrobromide at 7×10^4 cells/dish. Magnetic polystyrene microbeads (3 \times 10⁶ particles/dish; 2.0-2.9 μ m in diameter; PM-20-10; Sperotech) were added to 20 dishes containing the cultured neurons at 13 DIV. After 1 day, the neurons were washed with PBS 3 times and lyzed with 500 μ l/dish of lysis buffer [PBS containing 0.01% Triton X-100, Complete EDTA free protease inhibitor cocktail (Roche), and PhosSTOP phosphatase inhibitor cocktail (Roche). The lysates were collected with a cell scraper and applied to silicone-coated microtubes, and then the magnetic beads were collected with a magnet apparatus. The supernatant was collected and used as an unbound fraction in silver staining and Western blot analysis. The beads collected in a silicone-coated microtube were washed 10 times using vortex mixer for 15 s each time with the lysis buffer. Proteins bound to the beads (bound fraction) were eluted by the addition of 50 µl of 1x SDS sample buffer (62.5 mM Tris HCl, pH 6.8, 2.5% SDS, and 10% glycerol) and boiling at 98°C for 5 min. Protein concentrations of the unbound and bound fractions were measured with BCA protein assay kit (Thermo Scientific).

Silver Staining and Western Blot Analysis

The bound and unbound fractions (50 ng) were separated by SDS-PAGE, followed by silver staining (Silver staining kit II; Wako) or Western blotting.

Mass Spectrometry Analysis

About 5 μ g of bound fraction proteins prepared from 10 dishes (35 mm) of cultured hippocampal neurons were diluted in 1x SDS sample buffer containing 50 mM dithiothreitol, boiled at 98°C, separated in 5–20% SDS-polyacrylamide gel,

fixed with 50% methanol and 7% acetic acid for 20 min, stained with SYPRO Ruby protein gel stain (Life technologies) overnight at room temperature, and washed with MilliQ water. The entire lane was divided into 24 gels and subjected to in-gel trypsin digestion according to the following procedure. The gels were further cut into small pieces and washed 3 times with 500 µl of MilliQ water for 10 min at 37°C. To remove SYPRO Ruby, the pieces were incubated with 100 µl of 50 mM NH₄HCO₃ and 50% CH₃CN for 10 min at 37°C. The destained pieces were dehydrated with 50 µl of CH₃CN for 10 min at 37°C and dried in a vacuum centrifuge. The pieces were reduced with 50 µl of 10 mM dithiothreitol in 100 mM NH₄HCO₃ for 15 min at 50°C and alkylated with 2 µl of 250 mM iodoacetamide in 100 mM NH4HCO3 for 15 min at room temperature. The pieces were washed with 50 µl of 100 mM NH4HCO3, 50 µl of 50 mM NH4HCO3 in 50% CH₃CN, and dried in a vacuum centrifuge. The dried pieces were immersed with 20 µl of 10 ng/µl modified trypsin (Promega) in 50 mM acetic acid overnight at 37°C. The trypsin-digested peptides were extracted from the pieces by the incubation with 50 μl of 50% CH_3CN and 1% TFA for 10 min at 37°C, 50 µl of 25% CH₃CN, 20% HCOOH, 15% isopropanol in MilliQ water for 15 min at 37°C, and 50 μ l of 80% CH₃CN for 2 min at 37°C. The extracts were mixed and dried in a vacuum centrifuge. The resulting peptides from individual pieces were dissolved into 2% CH₃CN and 0.1% TFA. Each of the samples was loaded onto a C18 reverse-phase capillary column (L-column2 ODS, 0.1 × 150 mm, particle size; 3 µm, Chemicals Evaluation and Research Institute). The peptides were separated with a liner gradient (30 min, 5-65% CH₃CN/0.1% HCOOH) at a flow rate of 0.5 µl/min. Eluted peptides were ionized under 1.8 kV of ion spray voltage and detected in a scanned mass range from 400 and 2000 m/z

on an LTQ linear ion trap mass spectrometer (Thermo Fisher Scientific).

Data Analysis

Protein identification from the resulting MS and MS/MS data was performed by searching the mouse protein subset of the NCBI non-redundant protein database using Mascot software (Matrix Science). For protein identification by Mascot, quantified peptides with a mascot ion score ≥ 15 were used. We used the NCBI non-redundant multiple protein database for description of proteins that have several names and IDs. To integrate several protein names and IDs, Ingenuity Pathway Analysis software (Ingenuity systems) was used. Proteomic analysis experiments were performed 3 times with WT hippocampal neurons and once with TLCN-deficient hippocampal neurons. To remove nonspecifically bound proteins, we selected the proteins that were reproducibly detected in three independent experiments with WT neurons and that were not observed from TLCN-deficient neurons.

To compare the amount of protein in the dendritic phagocytic cup fraction, an abundance index was calculated (Peng et al., 2004). An abundance index of each protein was derived based on the number of peptides identified for each protein. It was calculated by the formula: (the total number of peptides identified/molecular weight) \times 50,000, assuming that the average mass of proteins is 50 kDa.

GO Term and Pathway Analysis

To examine whether particular proteins were enriched in the dendritic phagocytic cup fraction, DAVID Web tool was used for GO terms analysis (Huang et al., 2009). It was performed against DAVID's GO biological process FAT category and only GO terms with a *P*-value $< 1 \times 10^{-3}$ were considered enriched.

FIGURE 2 | Purification of proteins enriched in dendritic phagocytic cups. (A) A dendritic phagocytic cup induced by a magnetic microbead attached onto a neuronal dendrite and immunostained with anti-VN antibody (blue in merged images of A), anti-TLCN antibody (red in merged images of A), and phalloidin (green in merged images of A). Scale bar, 2 µm in (A). (B) A schematic diagram illustrating the purification procedure of dendritic phagocytic cup fraction. Magnetic microbeads were added onto cultured hippocampal neurons to induce the formation of dendritic phagocytic cups. After 1 day of incubation, neurons was solubilized with lysis buffer containing 0.01% Triton X-100. The beads were separated from unbound fraction using a magnet. After washing, bound proteins were eluted with SDS-containing buffer. Red: VN, green: TLCN, other colors: bound proteins. (C) Silver staining of proteins in the microbeads-unbound and bound fractions. Same amount (50 ng) of proteins in the unbound and bound fractions purified from wild-type (WT) and TLCN-deficient (TLCN KO) hippocampal neurons were separated by SDS-PAGE and visualized with silver staining. (D) Western blot analysis of the unbound and bound fractions. Same amount (50 ng) of proteins were separated by SDS-PAGE and subjected to Western blot analysis using anti-TLCN, anti-VN, anti-actin, anti-PSD-95, anti-a-actinin, and anti-a-tubulin antibodies. Molecular weights of individual proteins were estimated from molecular weight markers and shown on the right. Note that TLCN, VN (arrow heads), and actin are observed in the dendritic phagocytic cup fraction.

RESULTS

Morphological and Molecular Resemblance Between Dendritic Filopodia and Phagocytic Cups

The cell adhesion molecule, TLCN, is highly present in dendritic filopodia and shafts (**Figure 1A**) and regulates dendritic morphology through the interaction with its extracellular matrix ligand, VN, and its intracellular binding partners, ERM proteins (Matsuno et al., 2006; Furutani et al., 2007, 2012). Interestingly, when polystyrene microbeads are put into

culture medium of hippocampal neurons, they immediately adsorb VN, an extremely adhesive protein abundantly present in the serum, and then bind onto neuronal dendrites to induce unique membranous protrusions, phagocytic cups, in a TLCN-dependent manner (Esselens et al., 2004; Furutani et al., 2012) (Figures 1B,C). In the phagocytic cups, dendritic plasma membranes protrude from dendritic shafts, almost covering the lateral surface of the microbeads (Figure 1D). Notably, intracellular signaling molecules downstream of TLCN cascade in dendritic filopodia accumulate also in phagocytic cups, including F-actin (Figure 1C), phosphorylated ERM, and $PI(4,5)P_2$ (Furutani et al., 2012). Thus, both dendritic filopodia and phagocytic cups are membranous protruding structures on neuronal dendrites and they significantly share functional molecular constituents. We hence reasoned that the TLCNaccumulating phagocytic cups on dendrites can serve as a substitute for dendritic filopodia and performed the following purification and proteomics analyses.

Purification of Proteins Enriched in Dendritic Phagocytic Cups

By taking advantage of the specific and strong binding of VNcoated beads onto TLCN localized to neuronal dendrites, we devised a unique method for purification of proteins enriched in dendritic phagocytic cups. Similar to polystyrene microbeads, the addition of magnetic microbeads to cultured hippocampal neurons efficiently induced the formation of phagocytic cups on dendrites (Figure 2A). The neurons with those phagocytic cups were solubilized with lysis buffer containing mild detergent (0.01% Triton X-100) and then the magnetic beads were collected using a magnet. The proteins bound to the microbeads were eluted with 2.5% SDS-containing solution (Figure 2B). Silver staining of protein constituents following SDS-PAGE could not reveal any marked differences between the microbeads-bound and -unbound fractions prepared from both WT and TLCNdeficient hippocampal neurons (Figure 2C). However, Western blot analysis validated the high abundance of TLCN and VN, as well as the significant presence of actin, in the microbeadsbound fraction (Figure 2D). In contrast, PSD-95, α-actinin, and β-tubulin were not detected in the microbeads-bound fraction (Figure 2D and Supplementary Figure S1). Thus, the proteins associated with TLCN in the dendritic phagocytic cups were efficiently concentrated in the microbeads-bound fraction, which was next subjected to a comprehensive proteomic analysis.

Proteomics Analysis of Dendritic Phagocytic Cups

To uncover molecular constituents in the dendritic filopodia, proteins in the purified phagocytic cup fraction were separated by SDS-PAGE, stained with SYPRO Ruby, divided into 24 gel pieces, and then trypsinized. The resulting peptide fragments were analyzed by liquid chromatography-tandem mass spectroscopy (LC-MS/MS). As a negative control, we used cultured hippocampal neurons prepared from TLCN-deficient mice, onto which the magnetic microbeads non-specifically and weakly bound without forming any phagocytic cups. As

4			
4	aven guidance melecules (1%)		
	Cell autresion & ECIVI (476)		
	channels & receptors (2%	6)	
	36		
	C		
	S.		
	Ne cho		
	others (21%)		
	on other		
	skeleto!		
	Cytosi. (110)	nape	rone (1%)
translatio	n (8%) GTPase & regulators		
	(8%)		
	kinas		
	12º101 4505 & DI		
	iption (Itosph		
. an	sol 38 1%) "diases		
11-			
	S D D		
	See See		
	S S		
scaffolds (2	2%)		
3			
-	mitochondria (2%) metabolism (3%)	*1	dentical proteir
Symbol	Protein Name (UniProt ID) Abun	dance	Similarity
axon quidan	no molecules (1%)	dex	(PSD
and guidant			fraction)
SEMA3C	semaphorin 3C (Q6NXW7)	4.8	
SEMA3D	semaphorin 3D (Q8BH34)	2.6	
SEMA3E	semaphorin 3E (Q9QX23)	2.3	
cell adhesion	1 & ECIVI (4%)		
COL9A2	collagen, type IX, α2 (Q07643)	2.5	
COL6A3	collagen, type VI, α3 (E9PWQ3)	1.6	
COL7A1	collagen, type VII, α1 (Q78EC6)	1.5	
COL13A1	collagen, type XIII, α1 (Q9R1N9)	2.6	
HMMR	hyaluronan-mediated motility receptor (Q00547)	3.5	
ICAM5	telencephalin; ICAM-5 (Q3UY19)	8.6	*
L1CAM	L1 (P11627)	2.4	*
LAMA4	laminin, α4 (P97927)	0.8	
LAMB2	laminin, β2 (Q61292)	0.5	
LAMC1	laminin, γ1 (P02468)	2.8	
LSAMP	LSAMP (Q8BLK3)	3.5	*
TNC	tenascin C (Q80YX1)	0.5	
channels & r	eceptors (2%)		
ATP1A3	Na ⁺ /K ⁺ ATPase g3 (O6PIC6)	24.2	*
CACNAIA	calcium channel, voltage-dependent, P/O type (P97445)	20	*
CELSR1	Celsr1 (035161)	2.0	
GRINBA	NR 34: GluN34 (424IR4)	1.8	
ITPR2	IP3R type2 (Q9Z329)	0.8	
ITPR3	IP3R type3 (P70227)	1.9	
cytoskeleton	- actin (6%)		
AMOT	angiomotin (Q8VHG2)	1.6	
ANK3	ankynn 5 (G5E6K5)	2.1	*
ANKRD17			
	A(p2 (P61161)	1.0	
ACTR2		1.0 8.5	*
ACTR2 BAIAP2	BAI1-associated protein 2 (Q8BKX1)	1.0 8.5 2.9	*
ACTR2 BAIAP2 BAIAP2L1	BAI1-associated protein 2 (Q8BKX1) BAI1-associated protein 2-like 1 (Q9DBJ3) disphaseus bemolog 3: mDI/2 (O9Z207)	1.0 8.5 2.9 2.9	*
ACTR2 BAIAP2 BAIAP2L1 DIAPH3	BAI1-associated protein 2 (USBKX1) BAI1-associated protein 2-like 1 (Q9DBJ3) diaphanous homolog 3; mDIA2 (Q9Z207) disbavalled associated activator of morphogenesis 1 (Q8BPM0)	1.0 8.5 2.9 2.9 1.3	*
ACTR2 BAIAP2 BAIAP2L1 DIAPH3 DAAM1 DRP2	BA1-associated protein 2 (QBBKX1) BA1-associated protein 2 (Ikie 1 (Q9DBJ3) diaphanous homolog 3; mDIA2 (Q92207) dishevelled associated activator of morphogenesis 1 (Q8BPM0) divstrophin related protein 2 (OD5A6)	1.0 8.5 2.9 2.9 1.3 2.1 1.7	* *
ACTR2 BAIAP2 BAIAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1	BAI-associated protein 2 (Q3BKA1) BAI-associated protein 2 (A0BKA1) diaphanous homolog 3; mD/A2 (Q9Z207) dishevelled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2	* *
ACTR2 BAIAP2 BAIAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1 EPS8L1	BAIT-associated protein 2 (USBKAT) BAIT-associated protein 2 (USBKAT) diaphanous homolog 3; mDIA2 (OB2207) dishevelled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) ervthrockte membrane protein band 4.1 (P48193)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4	* *
ACTR2 BAIAP2 BAIAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1 EPB41 EPB41	BAI-associated protein 2 (Q3BKAT) BAI-associated protein 2 (He 1 (Q9DBJ3) diaphanous homolog 3; mDIA2 (Q9Z207) dishevelled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q0SAA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flinhtles 1 homolog (Q9JJ28)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3	* *
ACTR2 BAIAP2 BAIAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1 EPB41 FLII FLII FMN1	BAI1-associated protein 2 (QBBKA1) BAI1-associated protein 2 (MBKA1) diaphanous homolog 3; mDIA2 (QB2207) dishevelled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EFS8-like 1 (Q8RFS6) erythrocyte membrane protein band 4.1 (P48193) flightless I homolog (Q9JJ28) formin 1 (Q05860)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9	*
ACTR2 BAIAP2 BAIAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1 EPB41 FLII FMN1 NCKIPSD	BAI-associated protein 2 (QBBKAT) BAI-associated protein 2 (WBKAT) diaphanous homolog 3; mD/A2 (QB2207) dishevelled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless I homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5	*
ACTR2 BAIAP2 BAIAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1 EPB41 FLII FMN1 NCKIPSD NEB	BAIT-associated protein 2 (USBKAT) BAIT-associated protein 2 (USBKAT) diaphanous homolog 3; mDIA2 (092207) dishevelida associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (08R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless I homolog (09JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin (E90 IW3)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9	* * *
ACTR2 BAIAP2 BAIAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1 EPB41 FLII FMN1 NCKIPSD NEB NRAP	BAI-associated protein 2 (QBBKAT) BAI-associated protein 2 (MBBKAT) diaphanous homolog 3; mDIA2 (QB2207) dishevelled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless I homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin; (E9Q1W3) nebulin; (E9Q1W3)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1	* * *
ACTR2 BAIAP2L1 DIAPH3 DIAPH3 DAAM1 DRP2 EPS8L1 EPS8L1 EPB41 FLII FLII NCKIPSD NEB NRAP SHROOM3	BAIT-associated protein 2 (QBBKAT) BAIT-associated protein 2 (Hz (QSDBJ3) diaphanous homolog 3; mDIA2 (QS2207) dishevelida associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) EPS8-like 1 (Q8R5F8) fightless I homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 1.4	* * *
ACTR2 BAIAP2 BAIAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1 EPB41 FLI FMN1 NCKIPSD NEB NRAP SHROOM3 SPTBN1	BAI-associated protein 2 (QBBKAT) BAI-associated protein 2 (ABBKAT) diaphanous homolog 3; mDIA2 (QB2207) dishevelled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless I homolog (Q9JJ28) formin 1 (Q05660) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin (E9Q1W3) nebulin (E9Q1W3) entouring morber 3 (Q9QXN0) spectrin, 8, non-erythrocytic 1 (Q62261)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 1.4 19.3	* * *
ACTR2 BAIAP2L BAIAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1 EPS8L1 FMN1 FKII FMN1 NCKIPSD NEB NRAP SHROOM3 SPTBN1 SPTBN4	BAI-associated protein 2 (USBKAT) BAI-associated protein 2 (USBKAT) diaphanous homolog 3; mDIA2 (Q32207) dishevelied associated activator of morphogenesis 1 (Q3BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless I homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin; (E9Q1W3) nebulin; (E9Q1W3) nebulin; G9Q1W3) sprotm, β, non-erythrocytic 1 (Q62261) spectrin, β, non-erythrocytic 4 (Q3YUH8)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 1.4 19.3 1.2	* * * *
ACTR2 BAIAP2 BAIAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1 EPB41 FMN1 NCKIPSD NEB NRAP SHROOM3 SPTBN1 SPTBN4 SPIRE1	BAI-associated protein 2 (QBBKA1) BAI-associated protein 2 (IdBBKA1) Glahvascidated protein 2 (IdBBKA1) Glahvaelida dassociated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrin, β, non-erythrocytic 1 (Q52261) spire homolog 1 (Q62KF3)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 1.4 19.3 1.2 2.9	* * * *
ACTR2 BAIAP2L BAIAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1 EPB41 FMI1 FMI1 NCKIPSD NEB NRAP SHROOM3 SPTBN4 SPTBN4 SPTBN4 SPTB15 SYNPO	BAI-associated protein 2 (USBKAT) BAI-associated protein 2 (USBKAT) BAI-associated protein 2 (USBKAT) diaphanous homolog 3; mDIA2 (Q32207) dishevelled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless I homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-feldet anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrin, β , non-erythrocytic 4 (D3YWH8) spire homolog 1 (Q8C255)	1.0 8.5 2.9 2.3 2.1 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 1.4 19.3 2.2	* * * *
ACTR2 BAIAP2L BAIAP2L1 DIAPH3 DRP2 EPS8L1 EPS8L1 EPB41 FLII FMN1 NCKIPSD NEB NRAP SHROOM3 SPTBN1 SPTBN4 SPIRE1 SYNPO SNTB1	BAI-associated protein 2 (QBBKA1) BAI-associated protein 2 (HzBKA1) diaphanous homolog 3; mDIA2 (QB2207) dishevelida associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS3-like 1 (Q8BFS6) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q05R660) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrin, β , non-erythrocytic 1 (Q62261) spectrin, β , non-erythrocytic 4 (D3YWH8) syntepohin (2 (G25K5) syntepohin (2 (G25K5) syntepohin (2 (G25K5))	1.0 8.5 2.9 2.3 2.1 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 1.4 19.3 2.2 2.9 2.2 2.6	* * * *
ACTR2 BAIAP2 BAIAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1 EPS8L1 EPB41 FLII FLII NCKIPSD NRAP SHROOM3 SPTBN4 SPIRE1 SYNPO SNTB1 TLN2	BAI-associated protein 2 (QBBKAT) BAI-associated protein 2 (ABBKAT) Glahassociated activator of morphogenesis 1 (Q8BPM0) dishevelled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless I homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin (E9Q1W3) nebulin (E9Q1W3) nebulin (E9Q1W3) nebulin (E9Q1W3) spectrin, β, non-erythrocytic 4 (Q32WH) spectrin, β, non-erythrocytic 4 (Q32WH8) spire homolog 1 (Q52KF3) syntaptopodin (Q8CC35) syntaptopodin (Q8CC35)	1.0 8.5 2.9 2.3 2.1 1.3 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 1.4 19.3 2.5 2.2 2.6 1.3	* * * *
ACTR2 BAIAP2 BAIAP2 DIAPH3 DAAM1 DRP2 EPS8L1 EPS8L1 EPS8L1 FMN1 NCKIPSD NEB NRAP SHR00M3 SPTBN1 SPTBN4 SPTBN4 SPTR1 SYNPO SNTB1 TLN2	BAI-associated protein 2 (QBBKAT) BAI-associated protein 2 (Hz (QBDBJ3) diaphanous homolog 3; mDiA2 (QB2207) dishevelida associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) EPS8-like 1 (Q8R5F8) flightless I homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin (E9Q1W3) nebulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrin, β, non-erythrocytic 4 (Q3YWH8) spice homolog 1 (Q52KF3) synaptopodin (Q8CC35) syntpohin, β (QSC35) syntpohin, β (QSC35) context (Q71LX4)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 1.4 19.3 1.2 2.9 2.2 2.6 1.3	* * * *
ACTR2 BAAP2 BAAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 STRPN SHROM3 SPTBN1 SYTBN4	BAI-associated protein 2 (QBBKA1) BAI-associated protein 2 (MBBKA1) Galvassociated protein 2 (MBBKA1) Galsevelid associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrin, β, non-erythrocytic 1 (Q52261) syneptopodin (Q8CC35) syntrophin, β1 (Q99L88) talin 2 (Q71LX4) - others (7%)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 1.4 19.3 2.2 2.2 2.6 1.3	* * * * *
ACTR2 BAAP2 BAAP2 DAAP1 DAAP13 DAAM1 DRP2 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 SPR0 NRAP SHRO0M3 SPTBM1 SPTBM1 SPTBM1 SPTBM1 SPTBM1 SPTBM1 SPTBM1 CLIP1 TLN2 CUP4 CLIP1	BAI-associated protein 2 (QBBKA1) BAI-associated protein 2 (RBBKA1) Galvassociated protein 2 (RBBKA1) Galvassociated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8RSF6) erythrocyte membrane protein band 4.1 (P48193) flightless I homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin (E9Q1W3) enbulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrin, β, non-erythrocytic 4 (D3YWH8) spire homolog 1 (Q52KF3) synaptopolin (Q8CC35) syntrophin, β 1 (Q9EL88) tatin 2 (Q71LX4) - others (7%) CAP-GLV domain containing linker protein 1 (Q922J3) CDK5 regulatory subunit associated ordein 2 (OB230)	1.0 8.5 2.9 1.3 12.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 1.4 19.3 2.2 2.6 1.3 1.2 2.9 2.9 1.3 1.2 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.3 1.2 1.1 1.7 1.2 2.9 1.3 1.3 1.2 1.1 1.7 1.2 2.9 1.3 1.3 1.2 1.1 1.7 1.2 2.9 1.3 1.3 1.2 1.1 1.7 1.2 2.9 1.3 1.3 1.2 1.1 1.7 1.2 2.9 1.3 1.3 1.2 1.1 1.7 1.2 2.9 1.3 1.2 1.1 1.7 1.2 2.9 1.3 1.3 1.2 1.2 1.1 1.7 1.2 2.9 1.3 1.2 1.2 1.2 1.1 1.7 1.2 2.9 1.3 1.2 2.1 1.3 1.2 2.5 0.9 1.3 1.2 2.5 1.2 2.2 1.1 1.2 2.5 0.9 1.1 1.2 2.2 1.1 1.2 2.5 0.9 1.1 1.2 2.2 2.1 1.1 1.2 2.5 0.9 1.1 1.2 2.2 1.1 1.2 2.2 1.1 1.2 2.5 0.9 1.1 1.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	* * * * *
ACTR2 BAAP2 BAAP2 BAAP2L1 DAPH3 DAAM1 DRP2 EPS8L1 EPS8L1 EPS41 FMN1 NCKIPSD NEB NRAP SHROMS SPTBM1 SPTBM1 SPTBM1 SPTBM1 SYNPO SYNPO SVTB1 CVCSkeleton CULP1 CDKSRAP2 CPE0120	BAI-associated protein 2 (QBBKA1) BAI-associated protein 2 (ABBKA1) BAI-associated protein 2 (ABBKA1) Gishweiled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS3-like 1 (Q8BFS6) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q08F676) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrin, β , non-erythrocytic 4 (Q62261) spectrin, β , non-erythrocytic 4 (Q502H3) syntpohin (2 (G22F3) syntpohin (2 (G22F3) syntpohin (2 (G22F3) syntpohin (2 (G22F3) syntpohin (2 (G22F3) corters (7%)) CDK5 regulatory subunit associated protein 2 (Q8K389) centrosenal protein 170KD4 (CR6A0F5)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 2.5 0.9 1.1 1.4 19.3 2.2 2.6 1.3 2.9 2.2 2.6 1.3 0.9 2.9 2.9 2.9 2.9 2.9 2.9 1.3 0.9 2.9 1.9	* * * * *
ACTR2 BAIAP2 BAIAP2 DIAPH3 DAAM1 DRP2 EPS8L1	BAI-associated protein 2 (USBKAT) BAI-associated protein 2 (USBKAT) diaphanous homolog 3; mDiA2 (Q32207) dishevelied associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrin, β, non-erythrocytic 4 (Q52261) spectrin, β, non-erythrocytic 4 (Q52261) syntrophin, β 1 (Q52KF3) syntrophin, β 1 (Q99L88) talin 2 (Q71LX4) • others (7%) CAP-GLY domain containing linker protein 1 (Q922J3) CDK5 regulatory subunit associated protein 2 (Q8K89) centrosomal protein 170KDa (Q60952)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 1.4 19.3 1.2 2.9 2.2 6 1.3 1.2 2.9 1.1 1.4 19.3 1.2 2.9 1.3 1.2 2.9 1.3 1.3 1.3 2.9 1.3 2.9 1.3 2.9 2.9 1.3 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	* * * * *
ACTR2 BAAP2 BAAP2 DAAP13 DAAP13 DAAM1 DRP2 EPS8L1 EPS4L1 FINU FINU FINU KEB NRAP SPIR5 SHROOM3 SPTBN1 SPIR5 SYNPO SYNPO Cytoskeleton CLIP1 CDK5RAP2 CEP170 CEP250	BAI-associated protein 2 (GBBKAT) BAI-associated protein 2 (HzBFKAT) diaphanous homolog 3; mDiA2 (QB2207) dishevelida associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8BR5F8) FPS8-like 1 (Q8BR5F8) flightiess I homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrn, β, non-erythrocytic 4 (Q82261) spectrn, β, non-erythrocytic 4 (Q32VH8) spire homolog 1 (Q52KF3) synaptopodin (Q8CC55) syntrophin, g1 (Q921A8) tatin 2 (Q71LX4) - others (7%) CDKF regulatory subunit associated protein 2 (Q8X89) centrosomal protein 170Kba (Q6A065) centrosomal protein 5 (A2ACT5)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 1.4 19.3 2.2 2.2 2.6 1.3 0.9 2.9 2.9 2.9 1.0 2.9 2.9 1.3	* * * * * *
ACTR2 BAAP2 BAAP2 BAAP2L1 DIAPH3 DAAM1 DRP2 EPS8L1 EPS4L1 EPS4L1 EPS4L1 FLI EPS4L1 FLI EPS4L1 FLI EPS4L1 EPS4L1 EPS4L1 NCKPSD NKB SPTBM1 SYRPO SYRPO SYRPO SYRPO SYRPO CLIP1 CDKSRAP2 CEP170 CCEP250 CKAP5 CKAP5 CKAP5 CKAP5 CKAP5	BAI-associated protein 2 (QBBKA1) BAI-associated protein 2 (ABBKA1) Galvassociated protein 2 (ABBKA1) Galvasociated protein 2 (ABBKA1) (ABBPM0) dystrophin related protein 2 (QOSAA6) EPS8-like 1 (QBR5F8) erythrocyte membrane protein band 4.1 (P48193) flightless I homolog (Q9JJ28) formin 1 (QOS860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-related anchoring protein (Q80X84) shroom family member 3 (Q9QXN0) spectrin, β, non-erythrocytic 1 (Q62261) spectrin, β, non-erythrocytic 1 (Q62261) spectrin, β, non-erythrocytic 1 (Q62261) syntpohin (21 (Q25K3)) synaptopodin (Q8CC35) syntpohin, G1 (Q9BL88) talin 2 (Q71LX4) - others (7%) CCAP-GLY domain containing linker protein 1 (Q922J3) CDK5 regulatory subunit associated protein 2 (Q8X89) centrosomal protein 250K0a (Q600552) cytoskeleton associated protein 5 (A2AGT5) cytopalsmic linker associated protein 1 (Q80TV8)	1.0 8.5 2.9 2.9 1.3 12.1 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 1.4 19.3 1.2 2.2 2.6 1.3 0.9 2.9 1.3 1.2 1.1 1.7 2.4 1.3 1.9 2.5 2.9 2.9 2.9 2.9 1.3 2.4 2.9 2.9 1.3 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	* * * * * * *
ACTR2 BAAP2 BAAP2 DIAPH3 DAAM1 DRP2 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 EPS8L1 SPR0 NRA SPIR1 SPIR SPIR1 SPIR1 SPIR1 SPIR1 SP	BAI-associated protein 2 (QBBKA1) BAI-associated protein 2 (ABBKA1) Glahassociated activator of morphogenesis 1 (Q8BPM0) disheveled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless I homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin (E9Q1W3) nebulin (E9Q1W3) nebulin (E9Q1W3) spectrin, β, non-erythrocytic 4 (Q32W4) spectrin, β, non-erythrocytic 4 (Q32W4) synaptopodin (Q8CC35) syntpopodin (Q8CC35) syntpopodin (Q8CC35) syntpopodin (Q8CC35) cohters (7%) CAP-GLY domain containing linker protein 1 (Q922J3) CDK5 regulatory subunit associated protein 2 (Q8K389) centrosomal protein 170kDa (Q60952) cytoskelton associated protein 1 (Q82T8) cytoskelton associated protein 1 (Q87T8) cytoskelton associated protein 1 (Q87T8)	1.0 8.5 2.9 2.9 1.3 12.1 1.7 2.4 1.3 1.9 2.5 0.9 1.1 1.4 19.3 1.2 2.9 2.2 2.6 1.3 1.9 2.9 2.9 1.1 1.4 19.3 1.2 2.9 2.9 5.3	* * * * * *
ACTR2 BAAP2 BAAP2L1 DAPH3 DAAM1 DRP2 EPS8L1 EPS4L1 EPS4L1 FINI FINI FINI FINI SPIRE1 SYNPO SYTBM1 SPTR1 SYNPO SYTBM1 SPTR1 SYNPO Cytoskeleton CLIP1 CDK5RAP2 CCH270 CKAP5 CCASP1 CRWP2	BAI-associated protein 2 (GBBKAT) BAI-associated protein 2 (HzBFKAT) Gishveelide associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (HzBFKAT) EPS-8-like 1 (Q6BR5F8) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q6BR5F8) mebulin (E9Q10W3) nebulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrin, β, non-erythrocytic 4 (Q62261) spectrin, β, non-erythrocytic 4 (Q62261) spectrin, β, non-erythrocytic 4 (Q62261) systhrophing 1 (Q52KF3) syntpohing 1 (Q52KF3) syntpohing 1 (Q52KF3) systhrophing 1 (Q52KF3) collapsing 1 (Q52KF3) systhrophing 1 (Q52KF3) systhrophing 1 (Q52KF3) systhrophing 1 (Q52KF3) collapsing 1 (Q52KF3) spectring 1 (Q52KF3) systhrophing 1 (1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.5 2.5 2.9 1.1 1.4 1.2 2.5 2.9 2.9 1.1 1.4 1.2 2.5 2.9 1.3 1.9 1.2 2.9 2.9 1.3 2.9 2.9 1.3 2.9 2.9 1.3 2.1 2.1 1.7 1.2 2.5 2.5 2.9 1.3 2.1 2.1 1.7 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	* * * * * * *
ACTR2 BAAP2 BAAP2 BAAP2 DAAP1 DRP13 DAAM1 DRP2 EPS8.11 EPS41 FLII FLII FLII FLII FNN1 NCKPSD NK2P SHRO0M3 SHROM3 SHROM3 SHROM3 SHROM3 SHROM3 SHROM3 CLIP1 CLIP1 CDK5RAP2 CEP170 CCLSP1 CCLSP1 CRMP1 CRMP2 CRMP3	BAI-associated protein 2 (USBKAT) BAI-associated protein 2 (USBKAT) diaphanous homolog 3; mDiA2 (Q32207) dishevelied associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8B5F8) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin: (P901W3) nebulin: (P901W3) nebulin: related anchoring protein (Q80XB4) shroom family membra 3 (Q9QXN0) spectrin, β, non-erythrocytic 1 (Q62261) spectrin, β, non-erythrocytic 4 (D3YWH8) synaptopoini g1 (Q52KF3) syntrophin, g1 (Q92L88) tatin 2 (Q71LX4) - others (7%) CAP-GLY domain containing linker protein 1 (Q922J3) CDK5 regulatory subunit associated protein 2 (Q8K389) centrosomal protein 170KDa (Q60952) cytoplasmic linker associated protein 1 (Q82TV) cytoplasmic linker associated protein 1 (Q82CV3) cytoplasmic linker associated protein 1 (Q82CV3) collapsin response mediator protein 1 (Q87427) collapsin response mediator protein 1 (Q87427) collapsin response mediator protein 3 (Q6508)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 1.9 2.9 1.1 1.2 2.4 1.3 1.9 2.9 1.1 1.4 19.3 2.9 2.9 1.1 1.4 19.2 2.9 2.9 1.3 1.2 1.7 1.2 2.4 1.3 1.2 1.7 1.2 2.4 1.3 2.9 2.9 1.3 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	* * * * * * * * *
ACTR2 BAAP2 BAAP2 BAAP2 DAAP1 DAAP1 DRP2 EPS&L1 EPS	BAI-associated protein 2 (GBBKAT) BAI-associated protein 2 (HzBFKAT) Gishvesled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q6BR5F8) FPS8-like 1 (Q6BR5F8) FPS8-like 1 (Q6BR5F8) flightiess 1 homolog (Q9JJ28) flightiess 1 homolog (Q9JJ28) flightiess 1 homolog (Q9JJ28) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin (E9Q1W3) nebulin-related anchoring protein (Q80XB4) shroon family member 3 (Q9QXN0) spectrn, β, non-erythrocytic 4 (Q82Z61) spectrn, β, non-erythrocytic 4 (Q32VH8) spire homolog 1 (Q52KF3) synaptopodin (Q8CC55) syntrophin, B (Q91L88) talin 2 (Q71LX4) • others (7%) CAP-GLY domain containing linker protein 1 (Q922J3) CDK5 regulatory subunit associated protein 2 (Q8K389) centrosomal protein 170Kba (Q6A065) centrosomal protein 170Kba (Q6A065) cotrosomal protein 1 (Q8CT8) cytoplasmic linker associated protein 1 (Q80TV8) collapsin response mediator protein 1 (Q8253) collapsin response mediator protein 3 (Q35098) keratin 20 (Q8D312)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.3 2.5 0.9 1.1 1.4 1.9 2.5 0.9 1.1 1.4 1.9 2.2 2.6 1.3 1.2 2.9 2.9 1.3 1.2 2.9 1.4 1.9 2.9 2.9 2.9 1.3 1.7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 7 1.2 2.4 1.3 1.9 2.5 0.9 1.1 7 1.2 2.5 0.9 1.1 7 1.2 2.5 0.9 1.3 1.7 1.2 2.5 0.9 1.3 1.7 2.5 0.9 1.3 1.7 2.5 0.9 1.3 1.9 2.5 0.9 1.1 7 1.2 2.5 0.9 1.1 1.7 1.2 2.5 0.9 1.1 1.7 1.2 2.5 0.9 1.1 1.7 1.2 2.5 0.9 1.1 1.4 1.5 2.5 2.6 1.3 1.5 2.5 1.5 1.5 2.5 1.5 2.5 2.6 1.5 1.5 2.5 2.6 1.5 1.5 2.5 2.6 1.5 1.5 2.5 1.5 2.5 1.5 2.5 1.5 2.5 2.6 2.6 1.5 1.5 2.5 2.6 2.6 1.5 1.5 2.5 2.6 2.6 1.5 2.5 2.6 1.5 2.5 2.6 1.5 2.5 2.6 1.5 2.5 2.6 2.5 1.5 2.5 2.6 2.5 2.5 2.6 1.5 2.5 2.6 2.5 2.6 2.5 1.5 2.5 2.6 1.5 2.5 2.6 2.5 1.5 2.5 2.6 2.5 2.6 2.5 2.5 2.6 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	* * * * * *
ACTR2 BAAP2 BAAP2 BAAP2L DAAP1 DAAP1 DRP2 EPS8L1 EPS4L1 EPS4L1 FMN1 NCKPSD NEB NRAP SPTBN4 SPTBN4 SPTBN4 SPTBN4 SPTBN4 SYNPO SYNPO SYNPO SYNPO CKAP5 CLIP1 CDKSRAP2 CEP170 CCFP250 CKAP5 CCLASP1 CRWP1 CRWP1 CRWP2 CRWP1 CRWP3 KRT20	BAI-associated protein 2 (USBKAT) BAI-associated protein 2 (USBKAT) diaphanous homolog 3; mDiA2 (Q32207) dishvelided associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-likel 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-related anchoring protein (Q80X84) shroom family member 3 (Q9QXN0) spectrin, β, non-erythrocytic 1 (Q52261) synaptopodin (Q8CC35) synaptopodin (Q8CC35) synaptopodin (Q8CC35) syntrophin, g1 (Q39L88) talin 2 (Q71LX4) - others (7%) CDAFS (Pd) CDAFS (Q80L88) talin 2 (Q71LX4) - others (7%) CDAFS (Q80L88) talin 2 (Q71LX4) - others (7%) CDAFS (Q80L88) centrosomal protein 170KDa (Q6A065) centrosomal protein 250KDa (Q60952) cytoskelotn associated protein 1 (Q82743) collapsin response mediator protein 3 (Q35098) keratin 20 (Q9D312) kinase D-interacting subtrate, 220KDa (B2RXL7)	1.0 8.5 2.9 1.3 2.1 1.3 2.1 1.7 1.2 2.4 1.3 2.5 0.9 1.1 1.4 19.3 1.2 2.9 2.2 2.6 1.3 0.9 2.2 2.6 1.3 0.9 2.2 3.4 5.3 4.8 0.9	* * * * * * * *
ACTR2 BAAP2 BAAP2 DAAP1 DAAP1 DAAP1 DRP2 EPS8L1 EPS41 FILI FIN1 FIN1 FIN1 FIN1 NCKIPSD NEB NRAP SHROOM3 SPTBN1 SPTBN1 SPTBN1 SPTBN1 SPTBN1 SPTBN1 SPTBN1 CLIP1 CDK5RAP2 CLF170 CLSP17 CCKAP5 CLASP1 CCKAP5 CLASP1 CRMP2 CRMP3 KTR20 KIDIN5220 MAP1A	BA1-associated protein 2 (USBKA1) BA1-associated protein 2 (IABKA1) BA1-associated protein 2 (IABKA1) BA1-associated protein 2 (IABKA1) (IABKA1) BA1-associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless I homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin (E9Q1W3) nebulin (E9Q1W3) nebulin (E9Q1W3) spectrin, β, non-erythrocytic 4 (Q32W4) spectrin, β, non-erythrocytic 4 (Q32W4) synaptopodin (Q8CC35) syntpophin, β 1 (Q92L88) tatin 2 (Q71LX4) • others (7%) CAP-GLY domain containing linker protein 1 (Q922J3) CDK5 regulatory subunit associated protein 2 (Q8K389) centrosomal protein 170KDa (Q60952) cytoskeleton associated protein 1 (Q82C45) scrotosmal protein 120KDa (Q6055) cotolasmic linker associated protein 1 (Q82C47) collapsin response mediator protein 3 (Q35098) keratin 20 (Q9D312) kinase 0 -interacting substrate, 220KDa (B2RXL7) MAP 1A (Q9QYR6)	1.0 8.5 2.9 2.9 1.3 2.1 1.7 1.2 2.4 1.9 2.5 0.9 1.1 1.4 19.3 2.5 0.9 1.1 1.4 19.3 2.2 2.6 1.3 1.9 2.9 1.3 1.2 2.9 2.9 3.4 1.3 1.2 2.5 0.9 1.3 1.3 1.2 2.5 0.9 1.3 1.3 1.2 2.5 1.3 1.3 1.2 2.5 0.9 1.3 1.4 1.7 1.2 2.5 0.9 1.3 1.3 1.4 1.7 1.2 2.5 0.9 1.3 1.4 1.7 1.2 2.5 0.9 1.3 1.4 1.7 1.2 2.5 0.9 1.3 1.4 1.7 1.2 2.5 0.9 1.3 1.4 1.7 1.2 2.5 0.9 1.3 1.4 1.4 1.4 2.5 2.6 1.3 1.4 1.4 2.5 2.6 1.3 1.4 1.4 2.5 2.9 2.9 1.3 1.4 1.4 2.5 2.9 2.9 1.3 1.4 1.4 2.5 2.2 2.1 1.4 1.4 2.5 2.2 2.2 2.5 1.5 1.5 1.5 1.5 1.5 1.5 2.5 2.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	* * * * * * *
ACTR2 BAAP2 BAAP2 BAAP2L1 DAP13 DAAM1 DRP2 EPS8L1 EPS4L1 FIM1 FIM1 FIM1 NCKIPSD NEB NRAP SPTBM1 SPTBM1 SPTBM1 SPTBM1 SPTBM1 SPTBM1 SVTPO CKIP5 CVoskeleton CLIP1 CDKSRAP2 CFAP3 CF250 CFAP5 CFAP5 CRWP2 CRWP3 KRT20 KRT20 KRT20 KRT20 KRT20 KMP13 KRT20 KMP13 KMP15	BA1-associated protein 2 (GBBKA1) BA1-associated protein 2 (HzBFKA1) Giabrabous homolog 3; mDiA2 (QB2207) Giabrabelled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8BFS6) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q05R656) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrin, β, non-erythrocytic 1 (Q62261) spectrin, β, non-erythrocytic 1 (Q62261) spectrin, β, non-erythrocytic 4 (D3YVH8) syntpophin (2 (G25K73) syntpophin (2 (G25K73)) centrosomal protein 2 (Q80XB4) talin 2 (Q71LX4) - others (7%) CCAP-GLY domain containing linker protein 1 (Q922J3) CDK5 regulatory subunit associated protein 2 (Q8X889) centrosomal protein 250kDa (Q60052) cytoskeleton associated protein 1 (P87427) collapsin response mediator protein 3 (Q35098) keratin 2 (Q91B2) kinase D-interacting substrate, 220kDa (B2RXL7) MAP 16 (Q620E2)	1.0 8.5 2.9 2.9 1.3 1.7 1.2 2.4 1.7 1.2 2.4 1.9 2.5 0.9 1.1 1.4 19.3 2.9 2.9 2.9 1.1 1.4 19.3 2.2 2.6 1.3 1.2 1.1 1.4 19.2 2.9 2.9 2.9 1.3 1.3 1.2 1.1 1.7 1.2 2.4 1.3 1.2 1.1 1.7 1.2 2.4 1.3 1.2 1.1 1.7 1.2 2.4 1.3 1.2 1.1 1.7 1.2 2.4 1.3 1.2 1.1 1.7 1.2 2.4 1.1 1.7 2.5 1.1 1.7 2.5 1.1 1.7 2.5 2.9 1.3 1.2 1.1 1.7 2.5 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	* * * * * *
ACTR2 BAAP2 BAAP2 BAAP2 DAAP1 DAAP1 DRP2 EPS8L1 EPS41 FILI FIN1 FIN1 FIN1 FIN1 FIN1 NCKIPSD NEB NRAP SHROOM3 SPTBM1 SPTBM1 SPTBM1 SPTBM1 SPTBM1 SPTBM1 CLIP1 CDK5RAP2 CCH570 CEP170 CEP170 CEP170 CCKAP5 CLASP1 CRMP2 CRMP3 KRT20 KIDN5220 MAP15 MAP15 MAP15	BAI-associated protein 2 (USBKAT) BAI-associated protein 2 (IABKAT) Glahvasciotated protein 2 (IABKAT) Glahvaelid dessociated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin: (F9Q10W3) nebulin: (F9Q10W3) nebulin: (F9Q10W3) spectrin, β, non-erythrocytic 1 (Q62261) spectrin, β, non-erythrocytic 4 (Q32WH8) synaptopodin (Q8CC35) syntrophin, β 1 (Q99L88) talin 2 (Q71LX4) • Others (7%) CAP-GLY domain containing linker protein 1 (Q922J3) CDK5 regulatory subunit associated protein 2 (Q8K389) centrosomal protein 170kDa (Q60952) cytoskeleton associated protein 1 (Q8278) collapsin response mediator protein 1 (Q87C78) collapsin response mediator protein 1 (Q87C78) collapsin response mediator protein 1 (Q87C77) collapsin response mediator protein 1 (Q87C77) collapsin response mediator protein 1 (Q85C78) collapsin response mediator protein 1 (Q87C77) collapsin response mediator protein 1 (Q87C77) collapsin response mediator protein 1 (Q87C78) collapsin response mediator protein 3 (Q35098) keratin 20 (Q9D312) kinase D-interacting substrate, 220kDa (B2RXL7) MAP 1A (Q9QYR6) MAP 15 (Q8C052)	1.0 8.5 2.9 2.9 1.3 1.7 1.2 2.4 1.7 1.2 2.4 1.3 1.9 2.5 0.9 2.5 0.9 1.1 1.4 19.3 1.2 2.2 2.6 1.3 1.2 9 2.9 2.9 1.3 1.7 1.2 2.4 1.3 1.2 1.1 7 1.2 2.4 1.3 1.2 2.5 0.9 1.3 1.2 1.1 1.7 2.5 0.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2	* * * * * * * *
ACTR2 BAAP2 BAAP2 BAAP2 DAAP1 DAAP1 DRP2 EPS8L1 EPS4L1 FINI FINI FINI FINI NCKIPSD NEB NRAP SPTBN4 SPTBN4 SPTBN5 SPTBN4 SPTBN5 SPTBN4 SPTBN5 SPTBN4 SPTBN1 SPTBN1 SPTBN1 SPTBN1 SPTBN1 SPTBN1 SPTBN1 CKKP5 CIASP1 CKR5 CLIP1 CDK5RAP2 CCFP170 CCR4P5 CLASP1 CRMP3 KTP2 CRMP3	BAI-associated protein 2 (GBBKAT) BAI-associated protein 2 (HzBFKAT) Gishveiled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS3-like 1 (Q8BFSF8) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q08FSF8) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q08FSF8) nebulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrin, β, non-erythrocytic 4 (Q62261) spectrin, β, non-erythrocytic 4 (Q62261) spectrin, β, non-erythrocytic 4 (Q62261) syntrophin, β (Q52KF3) syntpophin (2 (Q52KF3) syntpophin (2 (Q52K53) syntpophin (2 (Q52K53) controsomal protein 170KD4 (Q6A065) centrosomal protein 170KD4 (Q6A065) centrosomal protein 170KD4 (Q6A065) centrosomal protein 170KD4 (Q6A065) collapsin response mediator protein 3 (Q35098) krain 2 (Q31L2) kinase 0-interacting substrate, 220KDa (B2RXL7) MAP 1A (Q9QYR6) MAP 15 (Q62052) Tau (P10637) enpripakin (Q9R266)	1.0 8.5 2.9 2.9 1.3 1.2.1 1.7 1.2 4.1 3 1.9 2.5 1.3 1.9 2.5 1.1 1.4 19.3 2.9 2.2 6 2.9 2.9 2.2 1.3 1.2 1.1 1.2 2.9 2.2 5.3 4.8 2.4 4.5 2.9 2.9 2.9 1.3 1.3 1.2 1.1 1.2 1.2	* * * * * * * *
ACTR2 BAAP2 BAAP2 BAAP2 DAAP1 DAAP1 DRP2 EPS8L1 EPS41 FILI FINI FILI FINI FINI NCKIFSD NRA SHROOM3 SPTBM1 SPTR1 SYTBM3 SPTBM1 SPTR1 SYTBM3 CLIP1 CLIP1 CVOSkEleton CLIP1 CDK5RAP2 CEP170 CEP250 CLASP1 CASP1 CRMP2 CRMP3 CRMP1 CRMP2 CRMP1 CRMP2 CRMP1 MAP1S MAP1S MAP1S	BAI-associated protein 2 (USBKAT) BAI-associated protein 2 (USBKAT) diaphanous homolog 3; mDiA2 (Q32207) dishveled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8R5F8) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-related anchoring protein (Q80X84) shroom family member 3 (Q9QXN0) spectrin, β, non-erythrocytic 1 (Q62261) synaptopodin (Q8CC35) synaptopodin (Q8CC35) synaptopodin (Q8CC35) syntrophin, g1 (Q39L88) talin 2 (Q71LX4) • others (7%) CAP-GLY domain containing linker protein 1 (Q922J3) CDK5 regulatory subunit associated protein 2 (Q8K389) centrosomal protein 170Kb2 (Q60952) cytoskieton associated protein 1 (Q872A) collapsin response mediator protein 1 (Q87427) collapsin response mediator protein 1 (Q87427) collapsin response mediator protein 1 (Q35098) keratin 20 (Q9D312) kinase D-interacting substrate, 220kDa (B2RXL7) MAP 14 (Q90YR6) MAP 15 (Q6C52) Tau (P10637) periplakin (Q3R2269) pieckstrin homology-like domain, family B, member 2 (Q8K1N2)	1.0 1.0 2.9 2.9 2.9 1.3 1.2.1 1.7 1.2.4 1.3 1.9 0.9 1.14 1.9.3 1.2.2 2.6 1.3 0.9 2.9 1.9 1.09 3.4 5.3 4.8 0.9 2.2 3.4 5.3 2.4 6.8 0.97 1.4 2.2 3.4 5.3 2.4 6.8 0.97 1.4 2.8 1.4 2.8 1.4 2.2	* * * * * * * * * * *
ACTR2 BAAP2 BAAP2 BAAP21 DAPH3 DAAM1 DRP2 EPS8L1 EPS4L1 EPS4L1 FIN1 KCKIPSD NRAP KIN1 NCKIPSD NRAP SPIR1 SHROOM3 SPTBN1 SPTBN1 SPTBN1 SPTBN1 SPTBN1 SPTBN1 SPTBN1 SPTBN1 SPTBN1 SPTBN1 CKIPSD CKIP5 CLSP1 CCKP5 CLSP1 CCKAP5 CLSP1 CRMP2 CCKAP5 CLSP1 CRMP2 CRMP3 KTR20 KIDIS220 MAP1A MAP1S MAP1S MAP1S MAP1 PHLD2 SLMAP	BAI-associated protein 2 (GBBKAT) BAI-associated protein 2 (HzBKAT) Gishvezled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q6BR5F8) FPS8-like 1 (Q6BR5F8) FPS8-like 1 (Q6BR5F8) FORM1 (Q6BR5F8) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin (E9Q1W3) nebulin-related anchoring protein (Q80XB4) shroon family member 3 (Q9QXN0) spectrn, β, non-erythrocytic 4 (Q82261) spectrn, β, non-erythrocytic 4 (Q32VH8) spite homolog 1 (Q52KF3) synaptopodin (Q8CC35) syntrophin, 91 (Q92188) talin 2 (Q71LX4) • others (7%) CAP-GLY domain containing linker protein 1 (Q922J3) CDK5 regulatory subunit associated protein 2 (Q8K389) centrosomal protein 170K0 (Q6A065) centrosomal protein 170K0 (Q6A065) cytoplasmic linker associated protein 1 (Q80TV8) collapsin response mediator protein 3 (Q35098) keratin 20 (Q9312) kinase D-interacting substrate, 220kDa (B2RXL7) MAP 1A (Q92R6) MAP 15 (Q8C052) Tau (P10637) percipakin homology(Re domain, family B, member 2 (Q8K1N2) sercolegnin associated protein 2 (Q8K2K7) MAP 15 (Q8C052) Tau (P10637) percipakin homology(Re domain, family B, member 2 (Q8K1N2) sarcolemma associated protein (Q3URD3)	1.0 8.5 2.9 2.9 2.9 1.2 1.3 1.2 1.7 1.2 2.4 1.3 1.9 5.0 9 1.1 1.4 1.2 2.9 2.6 1.3 1.2 1.2 2.2 2.6 1.3 1.2 1.2 1.2 1.2 1.2 1.3 1.2 1.2 1.3 1.2 2.4 1.3 1.2 5 0.9 1.2 1.3 1.2 2.4 1.3 1.2 5 2.9 2.9 2.9 2.9 2.4 1.3 1.2 2.2 2.2 2.6 1.3 1.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	* * * * * * * * * * * *
ACTR2 BAAP2 BAAP2 BAAP2L1 DAP13 DAAM1 DRP2 EPS8L1 EPS4L1 FIM1 FIM1 FIM1 NCKIPSD NEB NRAP SPTBM1 SPTBM1 SPTBM1 SPTBM1 SPTBM1 SPTBM1 STMPO STBM1 CNCKIPSD NRAP CVCKIPSD CKIP5 CCIP17 CEP250 CCIP17 CEP250 CCASP1 CCIASP1 CRWP2 CRWP3 KRT20 CRWP2 CRWP3 KRT20 KRT20 KRT20 SLIMAP SLIMAP SLIMAP SLIMAP SLIMAP	BAI-associated protein 2 (USBKX1) BAI-associated protein 2 (USBKX1) BAI-associated protein 2 (USBKX1) BAI-associated protein 2 (USBKX1) BAI-associated protein 2 (USBK2) BSS-like 1 (USBK5E) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (USJZ8) formin 1 (USBK5E) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (USJZ8) formin 1 (USBK5E) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (USJZ8) flightless 1 homolog (USJZ8) flightless 1 homolog (USJZ8) stromin 1 (USBK5E) stromin 1 (USBK5E) stromin 1 (USBK5E) stromin 1 (USBK5E) stromin 1 (USBK5E) spectrin, β, non-erythrocytic 1 (USBC261) spectrin, β, non-erythrocytic 1 (USBC261) spectrin, β, non-erythrocytic 4 (US3VVH8) syntpophin (J (US2K73) syntpophin (J (US2K73)) syntpophin (J (US2K73)) coltapsin tempolar (USBK5E) centrosomal protein 170kDa (USBC5E) centrosomal protein 170kDa (USBC5E) collapsin response mediator protein 1 (US8753) collapsin response mediator protein 3 (USS553) collapsin resp	1.0 1.0 2.9 2.9 2.9 2.1 1.3 1.2.1 1.7 2.4 1.3 1.9 1.12 2.4 1.3 1.9 1.1 1.2.2 2.6 1.3 0.9 2.9 1.0 2.2 2.6 1.3 2.9 1.0 2.2.2 2.6 1.3 2.9 1.0 2.2.3 4.8 2.4 6.9 3.7 2.8 2.7 16.1	* * * * * * * * * * * * *
ACTR2 BAAP2 BAAP2 BAAP2 DAAP1 DAAP1 DRP2 EPS8L1 EPS41 EPS41 FILI FINI FINI FINI FINI SHROOMS SPTBM SPTBM SPTBM SPTBM SPTBM SPTBM SPTBM CLIP1 CDK5RAP2 CCH570 CEP170 CEP170 CCKAP5 CLASP1 CRMP2 CRMP3 KRT20 KIDNS220 MAP1S MAP1S MAP1S MAP1S MAP1S SHPLDB2 SLMAP	BAI-associated protein 2 (USBKAT) BAI-associated protein 2 (USBKAT) diaphanous homolog 3; mDiA2 (Q32207) diaphanous homolog 3; mDiA2 (Q32207) dishvelied associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q8B5F8) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q9JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrin, β, non-erythrocytic 1 (Q62261) spectrin, β, non-erythrocytic 4 (D32VWH8) synaptopodin (Q8CC35) syntrophin, β 1 (Q99L88) tatin 2 (Q71LX4) - others (7%) CAF-GLY domain containing linker protein 1 (Q922J3) CDK5 regulatory subunit associated protein 2 (Q8K389) centrosomal protein 170Kba (Q60952) cytopalamic linker associated protein 1 (Q80TW) collapsin response mediator protein 3 (Q509B) keratin 20 (Q9D312) kinase D-interacting substrate, 220kDa (B2RXL7) MAP 1A (Q9QYR6) MAP 15 (Q8CC52) Tau (P10637) periplakin (Q9R269) petckstrin homology-like domain, family B, member 2 (Q8K1N2) septin 7 (D55131) septin 8 (Q8CHH9)	1.0 1.0 1.0 1.7 2.9 2.9 2.1 1.7 2.4 1.3 2.5 0.9 1.7 2.4 1.9 2.5 0.9 1.14 19.2 2.2 2.13 1.2 0.9 2.9 2.9 2.9 2.9 2.4 5.3 4.8 0.3.7 1.4 2.2 2.7 16.1 2.4 2.4 1.3 2.2 1.6 2.4 1.3	* * * * * * * * * * * * * * * * * * * *
ACTR2 BAAP2 BAAP2 BAAP2 DAAP1 DAAP1 DRP2 EPS8L1 EPS4L1 EPS4L1 FINI EPS41 FINI NCKIPSD NRAP SPIR5 SHROOM3 SPTBN1 SPIR5 SYNPO SSHROM3 SPTBN1 SPIR5 SYNPO CKIP5 CISS CISS CISS CISS CISS CISS CISS CIS	BAI-associated protein 2 (USBKAT) BAI-associated protein 2 (USBKAT) diaphanous homolog 3; mDiA2 (092207) dishvelled associated activator of morphogenesis 1 (Q8BPM0) dystrophin related protein 2 (Q05AA6) EPS8-like 1 (Q68F5F8) erythrocyte membrane protein band 4.1 (P48193) flightless 1 homolog (Q0JJ28) formin 1 (Q05860) NCK interacting protein with SH3 domain (Q9ESJ4) nebulin-related anchoring protein (Q80XB4) shroom family member 3 (Q9QXN0) spectrin, β, non-erythrocytic 4 (Q62261) spectrin, β, non-erythrocytic 4 (Q62261) spectrin, β, non-erythrocytic 4 (Q62261) systrophin, β, non-erythrocytic 4 (Q62261) systrophin (202165) systrophin (202165) controsomal protein (70K0) CAP-GLY domain containing linker protein 1 (Q922J3) CDK5 regulatory subunit associated protein 2 (Q8K389) centrosomal protein 170K04 (Q6A065) centrosomal protein 170K04 (Q6A065) collapsin response mediator protein 3 (Q35098) keratin 20 (Q9312) kinase 0-interacting substrate, 220kDa (B2RXL7) MPA 1A (Q9QTK8) MAP 1A (Q9QTK8) MAP 1S (Q8C052) Tau (P10637) pierjakin (Q9R269) pieckstrin homology-like domain, family B, member 2 (Q8K1N2, sarcolemma associated protein (30URD3) septin 7 (Q55131) septin 3 (Q7014/E)	1.0 1.0 2.9 2.9 2.1 1.7 2.4 1.3 2.5 0.9 1.1.7 2.4 1.9 2.5 0.9 1.1 1.2 2.2 2.6 1.3 0.9 2.9 1.0 2.24 5.3 4.8 0.9 2.9 1.0 2.4 5.3 4.8 0.2 2.7 16.1 1.3 2.2.7 16.1 2.4 2.3	* * * * * * * * * * * * * * * * * * * *

Symbol Chaperone (1 CCT7 HSPD1 HSPA12A	Protein Name (UniProt ID) Ab	Index	Similarity
CCT7 HSPD1 HSPA12A		macx	(PSD
HSPD1 HSPA12A	chaperonin containing TCP1, subunit 7 (n) (P80313)	3.0	fraction)
HSPA12A	HSP60 (Q8C2C7)	4.5	÷
GTPase & re	HSP70 (Q8K0U4) coulators (8%)	4.2	*
	ARE(CEE2 (A2A5R2))	0.9	
CHM	choroideremia; Rab escort protein 1 (Q9QXG2)	3.1	
DMXL2	Dmx-like 2; Rabconnectin-3 (Q8BPN8)	1.3	*
GPRIN1	G protein regulated inducer of neurite outgrowth 1 (Q3UNH4)	2.1	*
GBF1	golgi-specific brefeldin A resistant GEF (Q6DFZ1)	1.3	
G3BP1 GNAO1	Ras G Pase-activating protein-binding protein 1 (P97855) Gαo (P18872)	4.8	*
GNAZ	Gaz (070443)	5.5	*
GNB2	Gβ2 (P62880) Gca (P21279)	10.1	*
MCF2	MCF.2 cell line derived transforming sequence (Q8BLE2)	1.0	*
MLPH	melanophilin (Q91V27)	2.3	
NF1 PSD2	neurotibromin 1 (Q04690) pleckstrin and Sec7 domain containing 2: EFA6C (O6P1I6)	1.3	
PSD3	pleckstrin and Sec7 domain containing 3; EFA6D (Q2PFD7)	22.0	*
RANBP2	RAN binding protein 2 (Q9ERU9) RanGEE2 (O8CHG7)	1.9	
RAPGEF2 RAPGEF6	RapGEF6 (Q5NCJ1)	1.1	
RGS3	regulator of G-protein signaling 3 (Q9DC04)	1.0	
ARHGAP29	RhoGEF12 (Q8CGF1) RhoGEF12 (Q8R4H2)	0.8	
ARHGEF28	RhoGEF28 (P97433)	0.8	
TBC1D4	TBC1 domain family, member 4 (Q8BYJ6)	2.9	
kinases & pl	hosphatases (11%)	1.3	
AKAP6	A kinase (PRKA) anchor protein 6 (Q2VEB4)	1.2	
CAMK2A CAMK2B	Calviκιια (P11798) CaMKIB (P28652)	5.5 5.2	*
CAMK2D	CaMKII8 (P28652)	2.1	*
CARD10	caspase recruitment domain family, member 10 (P58660)	1.3	
CDC42BFA CDKL5	cyclin-dependent kinase-like 5 (Q3UTQ8)	1.9	*
DGKG	diacylglycerol kinase, γ (Q91WG7)	2.4	
DGKZ DCLK2	doublecortin-like kinase 2 (Q800P3)	2.2	*
HISPPD2A	histidine acid phosphatase domain containing 2A (A2ARP1)	1.6	
MAP3K4	MAPKKK 4 (008648)	0.8	
MAP3K6 MAP4K4	MAPKKK 6 (Q9W1R2) MAPKKKK 4 (P97820)	2.0	*
MTMR9	myotubularin related protein 9 (Q9Z2D0)	2.4	
PI4KA DEKM	phosphatidylinositol 4-kinase (O08662)	0.9	*
PIK3R4	phosphoinositide-3-kinase (Q8VD65)	3.2 1.5	*
PKM2	pyruvate kinase (P52480)	2.9	*
PPFIA4	liprin α4 (B8Ql36) liprin β1 (O8C8U0)	1.7	*
PPP1R12C	protein phosphatase 1, regulatory subunit 12C (Q3UMT1)	2.6	
PPP2R1A	PP2, regulatory subunit A, α isoform (Q76MZ3)	1.8	*
PPP2R1B PTK2B	protein tyrosine kinase 2β (Q9QVP9)	1.7	
PTPRD	protein tyrosine phosphatase, receptor type, D (Q64487)	0.9	*
RET	ret proto-oncogene (P35546)	1.7	
ROS1	c-ros oncogene 1 (Q78DX7)	0.8	
RPS6KB1	ribosomal protein S6 kinase β1 (Q8BSK8)	4.5	
RPS6KA5 MTOR	ribosomal protein S6 kinase α5 (Q8C050) Serine/threonine-protein kinase mTOR (Q9JLN9)	1.6	
TAOK1	TAO kinase 1 (Q5F2E8)	2.0	*
TLK1	tousled-like kinase 1 (Q8C0V0)	1.5	
AP2A2	AP2 α2 (P17427)	2.4	*
AP2M1	AP2 µ1 (P84091)	10.3	*
ANXA6	annexin A6 (P14824) CAPS1 (O80T.I1)	1.5	*
CADPS2	CAPS2 (Q8BYR5)	1.8	
DNM1	dynamin 1 (P39053)	2.3	*
EXOC2 EXOC3	exocyst complex component 2 (Q9D4HT)	2.5	*
EXOC4	exocyst complex component 4 (O35382)	2.1	*
EXOC6	exocyst complex component 6 (Q8R313) exocyst complex component 68 (A6H573)	1.7	+
GCC2	GRIP and coiled-coil domain containing 2 (Q8CHG3)	2.2	^
HDLBP	high density lipoprotein binding protein (Q8VDJ3)	2.5	*
HIP1R	LPS-responsive and beige-like anchor protein (Q9ESE1)	1.5	*
SNIP	SNAP25-interacting protein	2.9	
SPAG9	sperm associated antigen 9; JIP-4 (Q58A65)	1.0	
SYT1	synaptotagmin I (P46096)	17.4	*
SYT5	synaptotagmin V (Q9R0N5)	5.0	*
SYTL2 STX16	synaptotagmin-like 2 (Q99N50) syntaxin 16 (Q8BVI5)	2.3	+
STXBP1	syntaxin binding protein 1 (O08599)	7.0	÷
metabolism (3%)		
ACACA	acetyl-Coenzyme A carboxylase alpha (Q5SWU9)	0.9	
	aldolase C (P05063)	5.9	
ALDOC	glucosamine (N-acetyl)-6-sulfatase (Q8BER4)	2.8	
ALDOC ENO1 GNS	3		
ALDOC ENO1 GNS GAA	glucosidase, alpha; acid (P70699)	0.8	
ALDOC ENO1 GNS GAA GPD1	glucosidase, alpha; acid (P70699) glycerol-3-phosphate dehydrogenase 1 (P13707) klotho (O35082)	0.8 4.4	
ALDOC ENO1 GNS GAA GPD1 KL MTHFD1	glucosidase, alpha; acid (P70699) glycerol-3-phosphate dehydrogenase 1 (P13707) klotho (O35082) methylenetetrahydrofolate dehydrogenase 1 (Q922D8)	0.8 4.4 3.7 1.9	
ALDOC ENO1 GNS GAA GPD1 KL MTHFD1 ST6GALNAC1	glucosidase, alpha; acid (P70699) glycerol-3-phosphate dehydrogenase 1 (P13707) klotho (O35082) methylenetertarhydrofolate dehydrogenase 1 (Q922D8) I ST6GalNAc 1 (Q902C9) gwletene 0 (Q902C9)	0.8 4.4 3.7 1.9 3.3	

FIGURE 3 | Continued

Symbol	Protein Name (UniProt ID)	Index	Similarity (PSD	Symbol	Protein Name (UniProt ID) At	Index	Similarit (PSD
mitochondria	a (2%)	aux	fraction)	transcription-	continued		fraction
GLS2	glutaminase 2 (Q571F8)	2.2		JARID1A	jumonji (Q3UXZ9)	0.7	
GCDH	glutaryl-Coenzyme A dehydrogenase (Q60759)	2.0		MAGED1	melanoma antigen family D, 1 (Q9QYH6)	2.7	
LETM1	Mitochondrial proton/calcium exchanger protein (Q9Z2I0)	1.6	*	MTA1	metastasis associated 1 (Q8K4B0)	1.7	
NDUFA10	NADH dehydrogenase 1 α subcomplex, 10 (Q99LC3)	21	*	MCRS1	microspherule protein 1 (Q99L90)	1.3	
NNT	nicotinamide nucleotide transhydrogenase (Q61941)	15		MORC2	MORC family CW-type zinc finger 2 (Q692X6)	1.2	
PDHB	pyruvate dehydrogenase β (Q9D051)	3.6	*	MYEF2	myelin expression factor 2 (Q8C854)	7.4	
TDAD1	The recenter accepted protein 1 (OCON1)	3.0	~	MLL	myeloid/lymphoid ormixed-lineage leukemia (P55200)	0.9	
IRAPI	The receptor-associated protein r (Q9CQNT)	2.1		NCOR2	nyelolo/iympholo omnxed-inteage leukemia 2 (QOPDK2)	0.5	
matar protoi	ine (69/)			PHE20	PHD finger protein 20 (O8BLG0)	3.5	
motor protei	ins (0%)			SAFR2	scaffold attachment factor B2 (Q80YR5)	2.8	
DNAH11	dynein, axonemal, heavy chain 11 (E9Q7N9)	0.8		SMG6	Smg-6 homolog, nonsense mediated mRNA decay factor (P6140)	6) 1.6	
DNAH3	dynein, axonemal, heavy chain 3 (Q8BW94)	1.0		SPEN	spen homolog, transcriptional regulator (Q62504)	0.6	
DNAH8	dynein, axonemal, heavy chain 8 (Q91XQ0)	1.9		SMARCA4	Transcription activator BRG1 (Q3TKT4)	1.3	
KIF13B	KIE 13B (Q35063)	13		SMARCC1	SWI/SNF complex subunit SMARCC1 (P97496)	1.7	
KIF1B	KIE 1B (060575)	2.5		TARDBP	TAR DNA binding protein (Q921F2)	3.7	
KIEIC	KIF 10 (000373)	2.5		TP53BP1	tumor protein p53 binding protein 1 (P70399)	1.6	
KIFIC	KIF 10 (035071)	1.6		WRN	Werner syndrome ATP-dependent helicase homolog (O09053)	2.1	
KIF5A	KIF 5A (P33175)	2.4	*	ZC3H13	zinc finger CCCH-type containing 13 (E9Q784)	1.0	
KIFC3	KIF C3 (O35066)	3.9		ZFC3H1	zinc finger, C3H1-type containing (Q6P7T8)	1.0	
KIF2A	KIF 2A (P28740)	5.8	*	others (21%)			
MYO5A	myosin VA (Q99104)	11.8	*	YWHAZ	14-3-3((P63101)	11.3	*
MYO5C	myosin VC (Q6P6F3)	0.9		ALMS1	Alstrom syndrome 1 (Q8K4E0)	0.9	-
MYO6	myosin VI (Q64331)	14	*	ABCB1	ATP-binding cassette, sub-family B (MDR/TAP), member 1 (P06795	5)1.2	
MYO9A	$m_{VOSin} IXA (OBC170)$	1.4		BRD2	bromodomain containing 2 (Q7JJ13)	2.7	
MYOOP	myosin IXR (000 1/0)	1.2		CASC5	cancer susceptibility candidate 5 (Q66JQ7)	0.6	
WITU9B	myosin IXB (Q9QY06)	1.9		CA11	carbonic anhydrase XI (Q9CR36)	3.7	
MYO10	myosin X (F8VQB6)	0.9		CASP4	caspase 4 (P70343)	6.1	
MYO15A	myosin XVA (Q9QZZ4)	0.7		C10RF103	chromosome 1 open reading frame 103 (Q8CDD9)	4.5	
MYH7B	myosin, heavy chain 7B (A2AQP0)	1.9		F8	coagulation factor VIII (QU6194)	0.6	
MYH8	mvosin, heavy chain 8 (P13542)	12		ODE10	CDE10 (D07727)	5.0	
				H3E3A	H3 histone family 34 (P8/2//)	16.2	
scattolds (20	%)			IGEBP5	IGERP5 (007079)	3.2	
CASKIN1	CASK interacting protein 1 (Q6P9K8)	2.0	*	ITIH3	inter-α (alobulin) inhibitor H3 (Q61704)	1.5	
DLG1	SAP97 (Q811D0)	1.7	*	ITIH5	inter-α (globulin) inhibitor H5 (Q8BJD1)	1.6	
DLG2	chapsyn-110 (Q91XM9)	1.7	*	IL411	interleukin 4 induced 1 (O09046)	1.7	
DLGAP2	SAPAP2 (Q8BJ42)	1.4	*	KIAA0774	KIAA0774 (Q3UHD3)	2.3	
SHANK2	SHANK2 (Q80Z38)	1.2	*	KIAA1881	KIAA1881 (O88492)	1.9	
translation (8%)			LAP3	leucine aminopeptidase 3 (Q9CPY7)	6.3	
ADAR	adenosine deaminase, RNA-specific (Q99MU3)	5.9		MAD1L1	MAD1 mitotic arrest deficient-like 1 (Q9WTX8)	1.9	
BICC1	bicaudal C homolog 1 (Q99MQ1)	1.6		MAGED2	melanoma antigen family D, 2 (Q9ER67)	5.7	
CPSF1	cleavage and polyadenylation specific factor 1 (Q9EPU4)	1.4		MB1	Mindbomb homolog 1 (Q80SY4)	1.6	
DDX3X	DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked (Q6216	57) 7.4	*	MELIE	muts homolog 6 (B54276)	1.7	
DDX27	DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 (Q921N6)	2.3		NOS2	nitric ovide synthese 2: NOS 2 (P29477)	1.4	
EEF1G	eukaryotic translation elongation factor 1%, eEF1% (C9D8N0)	63	-	NARG1	NMDA receptor regulated 1 (Q80UM3)	2.7	
EIE4G2	eukaryotic translation initiation factor 4 v2: eIF4v2 (062448)	2.5	*	NUP153	nucleoporin 153kDa (E9Q3G8)	1.3	
EWSR1	Ewing sarcoma breakpoint region 1 (Q61545)	2.4		NUP205	nucleoporin 205kDa (Q6PDG0)	0.7	
HNRPDI	heterogeneous nuclear ribonucleoprotein D-like (O97130)	12.7	_	NUP210	nucleoporin 210kDa (Q9QY81)	0.7	
IARS	isoleucyl-tRNA synthetase (Q8BU30)	1.1		NUP214	nucleoporin 214kDa (Q80U93)	1.2	
MPHOSPH10	M-phase phosphoprotein 10 (Q810V0)	34		PDS5B	PDS5, regulator of cohesion maintenance, homolog B (Q4VA53)	1.1	
NOP14	NOP14 nucleolar protein homolog (Q8R3N1)	17		PDE4D	phosphodiesterase 4D (Q01063)	1.2	
RPL3	ribosomal protein L3 (P27659)	2.2		PLCB3	phospholipase C, β3 (P51432)	2.9	
RPL18	ribosomal protein L18 (P35980)	15.7		PLEKHA6	pieckstrin homology domain containing, family A member 6 (Q7TQG	1.1(1	*
RPS14	ribosomal protein S14 (P62264)	10.1	*		pieckstrin homology domain interacting protein (Q8VDD9)	1.3	
RPS15A	ribosomal protein S15a (P62245)	20.1	*	RAD50	RAD50 homolog (P70388)	1.0	
RPS16	ribosomal protein S16 (A4FUS1)	6.1		RGN	regucalcin (O64374)	2.9	
RBMX	RNA binding motif protein, X-linked (Q9WV02)	15.2		RP1	retinitis pigmentosa 1 (P56716)	0.7	
SNRNP200	small nuclear ribonucleoprotein 200kDa (Q6P4T2)	2.0		SASH1	SAM and SH3 domain containing 1 (P59808)	1.7	
SF3B1	splicing factor 3b, subunit 1, 155kDa (Q99NB9)	2.9		SEC23IP	SEC23 interacting protein (Q6NZC7)	1.2	
SFRS8	splicing factor, arginine/serine-rich 8 (Q3USH5)	2.2		SETDB1	SET domain, bifurcated 1 (O88974)	1.4	
UPF2	UPF2 regulator of nonsense transcripts homolog (A2AT37)	1.2		SFXN3	sideroflexin 3 (Q91V61)	9.3	*
UPF3B	UPF3 regulator of nonsense transcripts homolog B (Q80UI8) 2.8		SLC1A2	solute carrier family 1 member 2 (P43006)	3.9	*
ZNF598	zinc finger protein 598 (Q80YR4)	1.1		SLC3A2	solute carrier family 3 member 2; CD98hc (P10852)	3.7	*
ZINF638	zinc tinger protein 638 (Q61464)	1.0		SLC8A1	solute carrier family 8 member 1 (P70414)	1.1	
ranscription	(12%)			SLC8A2	solute carrier family 8 member 2 (Q8K596)	1.1	
ADNP	activity-dependent neuroprotector homeobox (Q97103)	1.2		SSFA2	sperm specific antigen 2 (Q922B9)	1.5	
ASH1L	Histone-lysine N-methyltransferase ASH1L (Q99MY8)	1.0		SPTY2D1	stremal antiaca 1 (Q0D2E6)	2.9	
BDP1	B double prime 1 (Q571C7)	1.4		SMC1A	structural maintenance of chromosomos 14 (OOCU62)	2.0	
BAZ1A	bromodomain adjacent to zinc finger domain, 1A (O88379)	0.6		SMC3	structural maintenance of chromosomes 3 (Q9CU02)	1.3	
BAZ2B	bromodomain adjacent to zinc finger domain, 2B (B9EKB5)	2.1		SMC4	structural maintenance of chromosomes 4 (O8CG47)	1.0	
BRWD1	bromodomain and WD repeat domain containing 1 (Q921C	3) 0.9		SMC6	structural maintenance of chromosomes 6 (0924W5)	2.5	
BRD1	bromodomain containing 1 (E9PZ26)	1.1		SYCP1	synaptonemal complex protein 1 (Q62209)	1.1	
BTAF1	BTAF1 RNA polymerase II (E9QAE3)	1.5		TTC28	tetratricopeptide repeat domain 28 (Q80XJ3)	1.0	
CHD2	chromodomain helicase DNA binding protein 2 (E9PZM4)	1.9		TTC3	tetratricopeptide repeat domain 3 (O88196)	1.8	
CHD3	chromodomain helicase DNA binding protein 3 (Q8K0T3)	0.7		TG	thyroglobulin (O08710)	0.4	
CHD5	chromodomain helicase DNA binding protein 5 (A2A8L1)	1.0		TRIP12	thyroid hormone receptor interactor 12 (G5E870)	1.1	
CNOT1	CCR4-NOT transcription complex, subunit 1 (Q6ZQ08)	0.7		TOPBP1	topoisomerase (DNA) II binding protein 1 (Q6ZQF0)	1.7	
DENND4A	DENN/MADD domain containing 4A (E9Q8V6)	1.0		TSPYL1	TSPY-like 1 (O88852)	3.5	
DRG1	developmentally regulated GTP binding protein 1 (P32233)	11.0		USP19	ubiquitin specific peptidase 19 (Q3UJD6)	0.9	
DNMT1	DNA (cytosine-5-)-methyltransferase 1 (P13864)	2.3		UHRF2	ubiquitin-like with PHD and ring finger domains 2 (Q7TMI3)	2.1	
EDVI 11	F-box and leucine-rich repeat protein 11 (P59997)	2.2		WDFY3	WD repeat and FYVE domain containing 3; Alfy (Q6VNB8)	0.4	
FDALII							

FIGURE 3 | Classification of proteins identified in the dendritic phagocytic cups. (A) Pie chart showing functional categories of the proteins in the dendritic phagocytic cups. Axon guidance (1%), cell adhesion and ECM (4%), channels and receptors (2%), cytoskeleton-actin (8%), cytoskeleton-others (7%), chaperone (1%), GTPase and regulators (8%), kinase and phosphatase (11%), membrane trafficking (7%), metabolism (3%), mitochondria (2%), scaffolds (2%), transcription (12%), translation (8%), and others (21%) are shown. (B) Protein components in the dendritic phatocytic cup fraction. Symbol, protein name, UniProt ID, abundance index, and similarity with the 984 proteins in mouse PSD fraction described by Bayes et al. (2012) are indicated in the table. An abundance index for each protein was calculated from number of fragments detected by LC-MS/MS and normalized with molecular weight. The proteins identified in both dendritic phagocytic cup and PSD fractions are marked with asterisks.

Rank	Symbol	Entrez gene name	Abundance index	Functional categories	Dendritic filopodia localization
1	GNAO1	Gαo	24.4	GTPase and regulators	++
2	ATP1A3	Na^+/K^+ ATPase $\alpha 3$	24.2	Transportor	++
3	PSD3	Pleckstrin and Sec7 domain containing 3 (EFA6D)	22.0	GTPase and regulators	++
4	RPS15A	Ribosomal protein S15a	20.1	Translation	+
5	SPTBN1	Spectrin, β, non-erythrocytic 1	19.3	Cytoskeleton actin	++
6	SYT1	Synaptotagmin I	17.4	Membrane trafficking	-
7	H3F3A	H3 histone, family 3A	16.2	Others	-
8	SEPT7	Septin 7	16.1	Cytoskeleton others	++
9	RPL18	Ribosomal protein L18	15.7	Translation	+
10	RBMX	RNA binding motif protein, X-linked (hnRNP G)	15.2	Translation	N.D.
11	HNRPDL	Heterogeneous nuclear ribonucleoprotein D-like	12.7	Transcription	N.D.
12	MYO5A	Myosin VA	11.8	Motor proteins	++
13	YWHAZ	14-3-3ς	11.3	Others	-
14	DRG1	Developmentally regulated GTP binding protein 1	11.0	Transcription	N.D.
15	AP2M1	Adaptor-related protein complex 2, μ 1 subunit (AP2 μ 1)	10.3	Membrane trafficking	N.D.
16	GNAQ	Gαq	10.2	GTPase and regulators	++
17	RPS14	Ribosomal protein S14	10.1	Translation	+
18	GNB2	Gβ2	10.1	GTPase and regulators	++
19	SFXN3	Sideroflexin 3	9.3	Transporter	N.D.
20	ICAM5	Intercellular adhesion molecule 5, telencephalin	8.6	Cell adhesion	++
21	ACTR2	Arp2	8.5	Cytoskeleton actin	++
22	MYEF2	Myelin expression factor 2	7.4	Transcription	N.D.
23	DDX3X	DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked	7.4	Others	N.D.
24	STXBP1	Syntaxin binding protein 1	7.0	Membrane trafficking	-
25	KRT20	Keratin 20	6.8	Cytoskeleton others	-
26	EEF1G	Eukaryotic translation elongation factor 1 γ (eEF1 $\!\gamma)$	6.3	Translation	++
27	LAP3	Leucine aminopeptidase 3	6.3	Protease	N.D.
28	CASP4	Caspase 4, apoptosis-related cysteine peptidase	6.1	Protease	N.D.
29	RPS16	Ribosomal protein S16	6.1	translation	++
30	ADAR	Adenosine deaminase, RNA-specific	5.9	Translation	-
31	ALDOC	Aldolase C, fructose-bisphosphate	5.9	Others	-
32	KIF2A	Kinesin heavy chain member 2A	5.8	Motor proteins	-
33	MAGED2	Melanoma antigen family D, 2	5.7	Others	N.D.
34	GDF10	Growth differentiation factor 10	5.7	Extracellular	N.D.
35	GNAZ	Gαz	5.5	GTPase and regulators	N.D.
36	CAMK2A	CaMKIIα	5.5	Kinase	++
37	CRMP1	Collapsin response mediator protein 1	5.3	Others	N.D.
38	CAMK2B	CaMKIIβ	5.2	Kinase	++
39	SYT5	Synaptotagmin V	5.0	Membrane trafficking	-
40	G3BP1	GTPase activating protein (SH3 domain) binding protein 1	4.8	GTPase and regulators	N.D.

The identified 319 proteins are sorted by abundance index, and then top 40 proteins are shown. TLCN is ranked at 20th. Proteins localized to dendritic filopodia in this study are marked by (++). Arp2 and CaMKII β are localized to dendritic filopodia in previous studies (Shen et al., 1998; Hotulainen and Hoogenraad, 2010) and also marked by (++). Proteins that make complex with ribosomal proteins and possibly localized to dendritic filopodia are marked by (+). Proteins that are not localized to dendritic filopodia and not determined the localization are marked by (-) and N.D., respectively.

a result, 731 proteins were reproducibly observed in three independent experiments from WT neurons, while 412 proteins among them were detected also from TLCN-deficient mice (**Supplementary Data Sheet S1**). Thus, the subtracted 319 molecules were identified as proteins enriched in the TLCN-containing phagocytic cups (**Figure 3**).

The identified proteins were classified into the following functional categories: axon guidance molecules (1%), cell adhesion and ECM (4%), channels and receptors (2%),

cytoskeleton-actin (8%), cytoskeleton-others (7%), chaperone (1%), GTPase and regulators (8%), kinases and phosphatases (11%), membrane trafficking (7%), metabolism (3%), mitochondria (2%), scaffolds (2%), transcription (12%), translation (8%), and others (21%) (Figure 3A). Abundance index for each protein was calculated from the number of peptide fragments detected by LC-MS/MS and normalized with its molecular weight. Eighty-four proteins were commonly present in both dendritic phagocytic cups and PSD fractions

GO identifier	Term	Count	Fold enrichment	P-value	Benjamini
0007010	Cytoskeleton organization	22	3.7	4.96E-07	7.14E-04
0006887	Exocytosis	12	6.0	4.82E-06	0.002
0030029	Actin filament-based process	14	4.4	1.90E-05	0.007
0007017	Microtubule-based process	15	3.9	3.04E-05	0.009
0032940	Secretion by cell	14	4.1	3.41E-05	0.008
0030030	Cell projection organization	18	3.1	7.18E-05	0.011
0046903	Secretion	14	3.5	1.96E-04	0.028
0030036	Actin cytoskeleton organization	12	4.0	2.08E-04	0.027
0051056	Regulation of small GTPase mediated signal transduction	14	3.4	2.67E-04	0.031
0051493	Regulation of cytoskeleton organization	9	5.0	4.27E-04	0.046
0046578	Regulation of Ras protein signal transduction	12	3.6	4.60E-04	0.046
0007018	Microtubule-based movement	9	4.9	4.89E-04	0.046
0033043	Regulation of organelle organization	11	3.9	4.95E-04	0.044
0044275	Cellular carbohydrate catabolic process	7	6.4	7.32E-04	0.060
0048666	Neuron development	15	2.8	8.90E-04	0.069
0051495	Positive regulation of cytoskeleton organization	5	10.6	0.001	0.083

The table shows GO terms that are enriched in the dendritic filopodia fraction and identified by DAVID functional annotation software. The top ranked GO terms (p < 0.001) are selected from Biological Process of GO terms. Count is number of cluster proteins annotated with a given GO term. Fold Enrichment shows enrichment of cluster proteins based on proteins present in mouse genome. P-values are adjusted by Benjamini–Hochberg procedure in DAVID.

(Bayes et al., 2012) (**Figure 3B**, asterisks). The 319 proteins were sorted according to their abundance indices, and the top 40 proteins are shown in **Table 1**. G α o, Na⁺/K⁺ ATPase α 3, and EFA6D were most abundantly present in the fraction. TLCN was ranked at 20th with abundance index of 8.6, demonstrating the successful purification of proteins contained in TLCN-containing phagocytic cups.

To find out biological meanings behind the list of proteins enriched in phagocytic cups, we used DAVID functional annotation software that can identify over-represented Gene Ontology (GO) terms (Huang et al., 2009). This analysis revealed several important cellular pathways including cytoskeletal organization, exocytosis, secretion, actin filament-based process, microtubule-based process, small GTPase regulation, and neuronal development (**Table 2**), all of which are closely related to structural and functional properties of both dendritic filopodia and phagocytic cups.

Localization of Identified Proteins in Dendritic Filopodia and Phagocytic Cups

We next asked whether the proteins identified by the proteomics analysis are actually present in dendritic filopodia and phagocytic cups by immunostaining of cultured hippocampal neurons with specific antibodies. Among 46 proteins examined, 21 proteins were abundantly present in dendritic filopodia as well as in phagocytic cups (**Figures 4A,B**). Eleven proteins were localized to axon, dendritic shaft, and cell body. Localizations of the remaining 14 proteins could not be determined because of poor quality of antibodies. Many of the proteins showed unique localization patterns in both dendritic filopodia and phagocytic cups. For example, GTP-binding proteins and downstream effector enzymes such as G α o, G α q, G β 2, CaMKII α , and PLC β 3 were mostly found in punctates along dendritic filopodia (Figures 4A1,A7,A8,A11,A15), indicating the presence of "hot spots" for intracellular signaling cascades. Different cytoskeletal proteins displayed distinct localizations along the proximo-distal axis of dendritic filopodia: myosin VA in the distal region (Figure 4A6), spectrin in the proximal region (Figure 4A4), and septin 7 at the filopodial base (Figure 4A5). Also in phagocytic cups, septin 7 showed a characteristic pattern of localization at the interface between microbeads and dendritic shaft (Figure 4B5). Molecules involved in phagocytosis were strongly accumulated in phagocytic cups as well as dendritic filopodia, including MRCKa, and EPS8L1 (Figures 4A,B16,B20). Unexpectedly, ribosomal protein S16 and elongation factor eEF1y were abundantly present in dendritic filopodia (Figures 4A9,A10). Together with the fact that other ribosomal subunits S14, S15a, and L18 were contained in the top 40 list, it is conceivable that protein translation machinery exists in dendritic filopodia, as was demonstrated in dendritic spines. Thus, many of the identified proteins were verified to be present in dendritic filopodia and phagocytic cups and localized to distinct domains possibly for their proper functioning.

DISCUSSION

Despite multiple lines of evidence for the structural and functional significance of dendritic filopodia as the precursor of spines, it has been largely unknown what functional molecules are contained in the dendritic filopodia. This is because there is no effective method to selectively collect dendritic filopodiaenriched fraction from neurons. Instead, we made use of the specific and strong binding between the dendritic filopodia adhesion molecule TLCN and its extracellular ligand VN. TLCN is a key regulator for dendrite morphogenesis, playing a pivotal role in dendritic filopodia formation and maintenance as well

(B1-B21) at 14 DIV hippocampal neurons. The cultured neurons were immunostained with anti-TLCN antibody and specific antibodies against Gαo (A1,B1), Na⁺/K⁺ ATPase α3 (A2,B2), EFA6D (A3,B3), spectrin (A4,B4), septin7 (A5,B5), myosin VA (A6,B6), Gαq (A7,B7), Gβ2 (A8,B8), eEF1_γ (A9,B9), ribosomal protein S16 (A10,B10), CaMKIIα (A11,B11), CD98hc (A12,B12), EFA6C (A13,B13), BAIAP2L1 (A14,B14), PLCβ3 (A15,B15), MRCKα (A16,B16), NR3A/B (GluN3A/B) (A17,B17), SAP97 (SLC3A2) (A18,B18), MAP1S (A19,B19), EPS8L1 (A20,B20), and JIP-4 (SPAG9) (A21,B21). In merged images, the identified proteins and TLCN are shown in magenta and green, respectively. Single plane of images focused on dendritic filopodia (A1–A21) and center of microbeads (B1–B21) were acquired using a confocal microscopy. Scale bars, 5 μm in (A14,A21,B14,B21).

as filopodia-to-spine transition, together with its extracellular ligand VN (Matsuno et al., 2006; Furutani et al., 2007, 2012). VNcoated microbeads attached onto TLCN on neuronal dendrites and induced unique membrane protrusions called dendritic phagocytic cups, which was reminiscent of dendritic filopodia in respect with their protruding morphology and shared molecular constituents such as TLCN and phosphorylated ERM proteins (Furutani et al., 2012). In the present study, we succeeded in magnetically collecting proteins enriched in dendritic phagocytic cups on cultured hippocampal neurons and profiled the 319 proteins contained in it. Immunocytochemical analysis revealed that about half of the identified proteins are actually present in dendritic filopodia as well as in dendritic phagocytic cups. Thus, to the best of our knowledge, this is the first report describing the proteomics profile of dendritic filopodia.

We compared the 319 proteins in dendritic phagocytic cups identified in this study with the 984 proteins in mouse postsynaptic density fractions previously described by

Bayes et al. (2012). Although 84 proteins (26%) were observed in both dendritic spines and phagocytic cups, a larger number of proteins (74%) were detected specifically to the dendritic phagocytic cups or filopodia. Thus, it is obvious that the protein profile in the dendritic filopodia is remarkably different from that in the spines.

The dendritic spines are equipped with the translation machinery for local protein synthesis that is important for synaptic plasticity. The present proteome of dendritic filopodia also contains several molecules involved in protein translation, such as ribosomal protein subunits (L3, L18, S14, S15a, S16) and initiation/elongation factors (eIF4 γ 2, eEF1 δ , eEF1 γ). We have confirmed that some of these molecules ribosomal protein S16, eEF1 γ) are actually present in the dendritic filopodia. These results suggest that the local protein synthesis may occur also in the dendritic filopodia similar to the spines.

One of the most conspicuous differences in protein constituents between the dendritic filopodia and spines is

their repertoires of actin-binding molecules. Although both dendritic filopodia and spines are actin-rich protrusions, the structural modes of actin polymerization are different: unbranched, straight actin filaments in dendritic filopodia vs. mesh-like, highly branched actin filaments in spines. Interestingly, our analysis revealed that the dendritic phagocytic cups and filopodia contain several actin-binding proteins such as mDia2, DAAM1, formin 1, flightless 1 homolog, and spire homolog 1, all of which mediate the formation of unbranched, straight actin filaments (Campellone and Welch, 2010). In contrast, dendritic spines contain multiple subunits of Arp2/3 and cofilin1 that play crucial roles in polymerization and stabilization of branched filamentous actin (Bayes et al., 2012). Thus, the results of proteomic analyses faithfully reflect distinct morphology of actin filaments in dendritic protrusions.

Another clear difference between the filopodia and spines lies in their compositions of receptors and scaffold proteins. In the spines, the presence of 20 receptors and 25 scaffold proteins were reported (Peng et al., 2004). By contrast, only 2 receptors (NR3A, Celsr1) and 5 scaffold proteins (CASKinteracting protein 1, SAP97, PSD-93, SAPAP2, Shank 2) were detected in our proteomics analysis. These results are consistent with the notion that most of the synaptic receptors and scaffold proteins are incorporated into dendritic protrusions at relatively late stages of development. Noteworthy is the presence of a unique NMDA receptor subunit, NR3A, in the dendritic filopodia, whose ontogenic expression peaks during early postnatal period in parallel with dendrite morphogenesis (Ito, 2002). In addition, we identified an atypical microtubuleassociated protein, MAP1S, which was reported to interact with NR3A and to be present in β -tubulin III-negative filopodia-like protrusions in dendrites (Kayser et al., 2008). Interestingly, both NR3A- and TLCN-knockout mice display accelerated synapse maturation and enlarged spine heads (Matsuno et al., 2006; Kitanishi et al., 2010), suggesting that these two molecules in the dendritic filopodia may serve as physiological and morphological brakes of synaptogenesis, respectively (Ito, 2002; Matsuno et al., 2006).

In summary, our comprehensive analysis of dendritic filopodia will provide a useful resource for neuroscientists studying neural development and plasticity at molecular and cellular levels.

ETHICS STATEMENT

This study was carried out in accordance with the recommendations of RIKEN Institutional Animal experiment guideline, RIKEN Institutional Animal Use and Care

REFERENCES

Bayes, A., Collins, M. O., Croning, M. D., Van De Lagemaat, L. N., Choudhary, J. S., and Grant, S. G. (2012). Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins. *PLoS One* 7:e46683. doi: 10.1371/journal.pone.0046683 Administrative Advisory Committee. The protocol was approved by RIKEN Institutional Animal Use and Care Administrative Advisory Committee.

AUTHOR CONTRIBUTIONS

YF and YY: studied the conception, designed, and drafted the manuscript. YF: acquisition of data, analysis and interpretation of the data.

FUNDING

This work was supported by JSPS KAKENHI Grant Nos. JP20700307, JP22700354, and JP24500392. MEXT KAKENHI Grant Nos. JP23123525 to YF and JP20022046, JP18H04683, and JP18H05146 to YY.

ACKNOWLEDGMENTS

We thank Masayoshi Mishina for TLCN-deficient mice, Sachiko Mitsui and Momoko Shiozaki for technical assistance, and members of Yoshihara laboratory for helpful discussions. We also thank members of the Research Resources Division at RIKEN CBS for technical supports, especially Kaori Otsuki and Masaya Usui for help in mass spectrometry analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnsyn. 2018.00027/full#supplementary-material

FIGURE S1] Original images for Western blot analysis of the unbound and bound fractions. Proteins (50 ng) from unbound and bound fractions were separated by SDS-PAGE and subjected to Western blot analysis with anti-TLCN, anti-actin, anti-VN, anti-PSD-95, anti- α -actinin, and anti- α -tubulin antibodies. Positions of molecular weight markers are shown on the left.

DATA SHEET S1 Proteins detected in the dendritic phagocytic cup fraction. Symbol, gene name, abundance index, average of abundance index, and standard deviation (SD) are indicated in the table. The dendritic phagocytic cup fractions were purified three times from wild-type and once from TLCN-deficient (KO) hippocampal neurons. Each abundance index was calculated and shown as abundance 1, 2, 3, and KO, respectively. In three independent experiments, 731 proteins were reproducibly identified, while 412 proteins were also detected from TLCN-deficient neurons. Thus, 319 proteins were regarded as TLCN-dependent and dendritic phagocytic cup-enriched molecules, whereas the rest (412 proteins) were TLCN-independent, non-specific ones. n.d. means "not detected" and error indicates SD.

- Bayes, A., Van De Lagemaat, L. N., Collins, M. O., Croning, M. D., Whittle, I. R., Choudhary, J. S., et al. (2011). Characterization of the proteome, diseases and evolution of the human postsynaptic density. *Nat. Neurosci.* 14, 19–21. doi: 10.1038/nn. 2719
- Benson, D. L., Yoshihara, Y., and Mori, K. (1998). Polarized distribution and cell type-specific localization of telencephalin, an intercellular adhesion molecule.

J. Neurosci. Res. 52, 43–53. doi: 10.1002/(SICI)1097-4547(19980401)52:1<43:: AID-JNR5>3.0.CO;2-K

- Campellone, K. G., and Welch, M. D. (2010). A nucleator arms race: cellular control of actin assembly. *Nat. Rev. Mol. Cell Biol.* 11, 237–251. doi: 10.1038/ nrm2867
- Esselens, C., Oorschot, V., Baert, V., Raemaekers, T., Spittaels, K., Serneels, L., et al. (2004). Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. *J. Cell Biol.* 166, 1041–1054. doi: 10.1083/jcb.200406060
- Fiala, J. C., Feinberg, M., Popov, V., and Harris, K. M. (1998). Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911. doi: 10.1523/JNEUROSCI.18-21-08900. 1998
- Furutani, Y., Kawasaki, M., Matsuno, H., Mitsui, S., Mori, K., and Yoshihara, Y. (2012). Vitronectin induces phosphorylation of ezrin/radixin/moesin actinbinding proteins through binding to its novel neuronal receptor telencephalin. *J. Biol. Chem.* 287, 39041–39049. doi: 10.1074/jbc.M112.383851
- Furutani, Y., Matsuno, H., Kawasaki, M., Sasaki, T., Mori, K., and Yoshihara, Y. (2007). Interaction between telencephalin and ERM family proteins mediates dendritic filopodia formation. J. Neurosci. 27, 8866–8876. doi: 10.1523/ JNEUROSCI.1047-07.2007
- Hotulainen, P., and Hoogenraad, C. C. (2010). Actin in dendritic spines: connecting dynamics to function. J. Cell Biol. 189, 619–629. doi: 10.1083/jcb. 201003008
- Huang, W. L., Tung, C. W., Huang, H. L., and Ho, S. Y. (2009). Predicting protein subnuclear localization using GO-amino-acid composition features. *Biosystems* 98, 73–79. doi: 10.1016/j.biosystems.2009.06.007
- Ito, M. (2002). The molecular organization of cerebellar long-term depression. Nat. Rev. Neurosci. 3, 896–902. doi: 10.1038/nrn962
- Kaufmann, W. E., and Moser, H. W. (2000). Dendritic anomalies in disorders associated with mental retardation. *Cereb. Cortex* 10, 981–991. doi: 10.1093/ cercor/10.10.981
- Kayser, M. S., Nolt, M. J., and Dalva, M. B. (2008). EphB receptors couple dendritic filopodia motility to synapse formation. *Neuron* 59, 56–69. doi: 10.1016/j. neuron.2008.05.007
- Kitanishi, T., Sakai, J., Kojima, S., Saitoh, Y., Inokuchi, K., Fukaya, M., et al. (2010). Activity-dependent localization in spines of the F-actin capping protein CapZ screened in a rat model of dementia. *Genes Cells* 15, 737–747. doi: 10.1111/j. 1365-2443.2010.01411.x
- Matsuno, H., Okabe, S., Mishina, M., Yanagida, T., Mori, K., and Yoshihara, Y. (2006). Telencephalin slows spine maturation. J. Neurosci. 26, 1776–1786. doi: 10.1523/JNEUROSCI.2651-05.2006
- Mitsui, S., Saito, M., Mori, K., and Yoshihara, Y. (2007). A transcriptional enhancer that directs telencephalon-specific transgene expression in mouse brain. *Cereb. Cortex* 17, 522–530. doi: 10.1093/cercor/bhj177
- Pan, F., and Gan, W. B. (2008). Two-photon imaging of dendritic spine development in the mouse cortex. *Dev. Neurobiol.* 68, 771–778. doi: 10.1002/ dneu.20630

- Peng, J., Kim, M. J., Cheng, D., Duong, D. M., Gygi, S. P., and Sheng, M. (2004). Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. Biol. Chem. 279, 21003–21011. doi: 10.1074/ jbc.M400103200
- Penzes, P., Cahill, M. E., Jones, K. A., Vanleeuwen, J. E., and Woolfrey, K. M. (2011). Dendritic spine pathology in neuropsychiatric disorders. *Nat. Neurosci.* 14, 285–293. doi: 10.1038/nn.2741
- Portera-Cailliau, C., Pan, D. T., and Yuste, R. (2003). Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. *J. Neurosci.* 23, 7129–7142. doi: 10.1523/JNEUROSCI.23-18-07129. 2003
- Sakurai, E., Hashikawa, T., Yoshihara, Y., Kaneko, S., Satoh, M., and Mori, K. (1998). Involvement of dendritic adhesion molecule telencephalin in hippocampal long-term potentiation. *Neuroreport* 9, 881–886. doi: 10.1097/ 00001756-199803300-00022
- Satoh, K., Takeuchi, M., Oda, Y., Deguchi-Tawarada, M., Sakamoto, Y., Matsubara, K., et al. (2002). Identification of activity-regulated proteins in the postsynaptic density fraction. *Genes Cells* 7, 187–197. doi: 10.1046/j.1356-9597. 2001.00505.x
- Shen, K., Teruel, M. N., Subramanian, K., and Meyer, T. (1998). CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. *Neuron* 21, 593–606. doi: 10.1016/S0896-6273(00)80569-3
- Walikonis, R. S., Jensen, O. N., Mann, M., Provance, D. W. Jr., Mercer, J. A., and Kennedy, M. B. (2000). Identification of proteins in the postsynaptic density fraction by mass spectrometry. *J. Neurosci.* 20, 4069–4080. doi: 10.1523/JNEUROSCI.20-11-04069.2000
- Yoshihara, Y., De Roo, M., and Muller, D. (2009). Dendritic spine formation and stabilization. *Curr. Opin. Neurobiol.* 19, 146–153. doi: 10.1016/j.conb.2009. 05.013
- Ziv, N. E., and Smith, S. J. (1996). Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. *Neuron* 17, 91–102. doi: 10.1016/S0896-6273(00)80283-4
- Zuo, Y., Lin, A., Chang, P., and Gan, W. B. (2005). Development of long-term dendritic spine stability in diverse regions of cerebral cortex. *Neuron* 46, 181–189. doi: 10.1016/j.neuron.2005. 04.001

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Furutani and Yoshihara. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.