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Dendritic spines are small protrusive structures on dendritic surfaces, and function
as postsynaptic compartments for excitatory synapses. Plasticity of spine structure
is associated with many forms of long-term neuronal plasticity, learning and memory.
Inside these small dendritic compartments, biochemical states and protein-protein
interactions are dynamically modulated by synaptic activity, leading to the regulation
of protein synthesis and reorganization of cytoskeletal architecture. This in turn causes
plasticity of structure and function of the spine. Technical advances in monitoring
molecular behaviors in single dendritic spines have revealed that each signaling
pathway is differently regulated across multiple spatiotemporal domains. The spatial
pattern of signaling activity expands from a single spine to the nearby dendritic area,
dendritic branch and the nucleus, regulating different cellular events at each spatial
scale. Temporally, biochemical events are typically triggered by short Ca2+ pulses
(∼10–100 ms). However, these signals can then trigger activation of downstream
protein cascades that can last from milliseconds to hours. Recent imaging studies
provide many insights into the biochemical processes governing signaling events of
molecular assemblies at different spatial localizations. Here, we highlight recent findings
of signaling dynamics during synaptic plasticity and discuss their roles in long-term
structural plasticity of dendritic spines.

Keywords: dendritic spine, calcium signaling, synaptic plasticity, actin cytoskeleton, CaMKII, small GTPase, FRET
FLIM, LTP

INTRODUCTION

The dendritic spine is a small protrusive structure that typically houses a single excitatory
postsynapse. The spine is made of a head (∼0.01–1 fL) and a narrow neck (∼0.1 µm in
diameter) that connects the head and dendritic surface. This structure spatially restricts electrical
and biochemical access from the spine head to the dendritic shaft (Svoboda et al., 1996;
Bloodgood and Sabatini, 2005; Gulledge et al., 2012; Yuste, 2013). This rather unusual structure
is maintained by a network of actin cytoskeleton (Hotulainen and Hoogenraad, 2010; Colgan
and Yasuda, 2014). The actin network also acts as a scaffold for stably positioning channels, cell
adhesion proteins and sub-spine structure such as endosomes and postsynaptic densities (PSD;
Spence and Soderling, 2015).

While dendritic spines can be stable for months to years (Grutzendler et al., 2002; Trachtenberg
et al., 2002), which perhaps is important for stable function of neuronal circuits, structural
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plasticity of dendritic spines are known to be correlated with
circuit plasticity during learning (Trachtenberg et al., 2002;
Yang et al., 2009, 2014; Hayashi-Takagi et al., 2015; Li et al.,
2017). Importantly, models of long-term synaptic plasticity
such as long-term potentiation (LTP) and long-term depression
(LTD) also are associated with long-term enlargement and
shrinkage of dendritic spines, respectively (Matsuzaki et al.,
2004; Zhou et al., 2004). These forms of plasticity, termed
structural LTP (sLTP) and structural LTD (sLTD), are thus
perhaps the basis of long-term circuit reorganization during
learning and memory (Kasai et al., 2010). Structural plasticity
of dendritic spines is associated with molecular reorganization.
For example, the actin cytoskeletal mesh, which maintains the
spine structure, needs to be rearranged. In addition, PSD size
and the number of glutamate receptors on the spine also changes
(Makino and Malinow, 2009; Bosch et al., 2014; Meyer et al.,
2014).

sLTP is perhaps the most studied form of spine structural
plasticity. It has been shown that plasticity has several
temporal phases with distinct sensitivity to pharmacological
and genetic perturbations (Matsuzaki et al., 2004; Murakoshi
et al., 2011). Immediately after induction (either by electrical
stimulation or glutamate uncaging), spines undergo a rapid
and large volume increase. This is called the transient
phase, and the exact physiological role of this phase is
unknown. The volume decreases over several minutes but
stabilizes at a level higher than the original volume. This
is called the sustained phase, and continues for more than
an hour. This phase is associated with an increase in the
postsynaptic sensitivity to glutamate (Matsuzaki et al., 2004;
Harvey et al., 2008; Lee et al., 2009; Murakoshi et al.,
2011). Depending on the conditions, the sustained phase can
be protein-synthesis dependent (Nguyen and Kandel, 1997;
Kelleher et al., 2004; Tanaka et al., 2008; Govindarajan et al.,
2011).

The rapid and sustained structural remodeling of spines
depends crucially on intracellular signaling networks to
orchestrate posttranslational modifications and nascent
protein synthesis. In this review article, we highlight recent
findings demonstrating intracellular and extracellular
molecular interactions regulating actin cytoskeleton as a
structural basis of spine remodeling as well as implications of
activity-dependent local translation for long-lasting synaptic
plasticity.

STRUCTURAL REGULATION OF
DENDRITIC SPINES

The principal architectural component of the spine is the actin
cytoskeleton (Korobova and Svitkina, 2010). Long- and short-
branched filamentous actin (F-actin) are connected through
multiple actin-binding proteins (ABPs), forming a highly
branched network (Hotulainen and Hoogenraad, 2010; Colgan
and Yasuda, 2014). Therefore, dynamic remodeling of actin
networks within dendritic spines is essential for activity-
dependent structural changes of spines (Okamoto et al., 2004;
Honkura et al., 2008; Frost et al., 2010).

FIGURE 1 | Schematic of actin and actin-binding proteins (ABPs) in a
dendritic spine. Filamentous actin (F-actin) is formed by polymerization of
globular actin (G-actin). The constant process of polymerization of ATP-bound
G-actin (magenta oval) at barbed (plus) end and depolymerization of
ADP-bound G-actin (cyan oval) at pointed (minus) end is called actin
tread-milling. Profilin (yellow square) binds to monomeric G-actin and
accelerates exchange of its nucleotide from ADP to ATP, as the result
enhancing actin polymerization. ADF/cofilin (black oval) binds to ADP-bound
actin and accelerates actin depolymerization at a low concentration.
Arp2/3 complex (white oval) nucleates actin branching. The function of
Arp2/3 complex is activated by Wiskott-Aldrich syndrome family protein
(WASP) and inhibited by WASP family verprolin-homologous protein (WAVE).
Epidermal growth factor receptor kinase substrate 8 (Eps8), binds to
barbed-end and stabilizes actin filaments. Cross-linking proteins including
actinin, CaMKIIβ and drebrin stabilize F-actin and form actin network. Active
vesicular transport along F-actin is regulated by myosin.

F-actin is formed by polymerization of monomeric globular
actin (G-actin). These two forms of actin undergo a cycle
called tread-milling: ATP-bound G-actin is added to the fast-
growing end (barbed end or plus end) and ADP-bound G-actin
is dissociated from the other side (pointed end or minus end) of
F-actin (Figure 1). The cycle of tread-milling in spines is fast: on
average, most actin monomers in a filament are replaced every
minute. However, it was found that a small population of actin
near the base of the spine neck is much more stable (Honkura
et al., 2008). This actin population remains in filaments for more
than tens of minutes. The balance between actin polymerization
and depolymerization plays a major role in structural plasticity
of dendritic spines (Hotulainen and Hoogenraad, 2010). For
example, during spine volume increases associated with sLTP,
the balance is shifted toward actin polymerization, thereby
elongating actin filaments and expanding the actin network
(Okamoto et al., 2004; Honkura et al., 2008; Bosch et al., 2014).
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Changes in the actin network are regulated by multiple ABPs
(Figure 1). These proteins play roles in many different aspects
of actin dynamics: actin polymerization, depolymerization,
nucleation, branching, capping, cross-linking and trafficking.
For example, the actin-related protein-2/3 (Arp2/3) complex
nucleates the formation of actin filaments that branch off
existing filaments at a specific angle (70 degrees). Thus, it is an
important component for producing the mesh-like structure of
actin filaments. It is activated and inhibited by members of the
Wiskott-Aldrich syndrome family protein (WASP) and WASP
family verprolin-homologous protein (WAVE), respectively
(Soderling and Scott, 2006). Disruption of the Arp2/3 complex
results in an increase in immature spines and abnormal behavior
(Kim et al., 2013). Another ABP, profilin, plays an important
role for actin polymerization by binding G-actin and accelerating
the exchange of ADP to ATP, enhancing the rate of tread-
milling (Ackermann and Matus, 2003; Neuhoff et al., 2005).
At the plus-end of actin filaments, actin-capping proteins
such as epidermal growth factor receptor kinase substrate 8
(Eps8), bind to and stabilize actin filaments (Menna et al.,
2013). The function of Eps8 is downregulated by MAPK/ERK-
dependent phosphorylation (Menna et al., 2009). Another
important ABP for synaptic plasticity is ADF/cofilin (Zhou
et al., 2004; Bosch et al., 2014; Rust, 2015). The action of
ADF/cofilin family proteins is known to be concentration-
dependent. While it induces depolymerization at the minus-end
at a low concentration, ADF/cofilin can co-polymerize with
actin filaments, stabilizing filamentous structure at a high
concentration (Andrianantoandro and Pollard, 2006). LIM
kinase (LIMK)-dependent phosphorylation inhibits its action.
During LTP, ADF/cofilin shows biphasic phosphorylation:
transient increase followed by decrease in the stimulated spine
(Chen et al., 2007). This dynamic regulation of phosphorylation
causes a persistent accumulation of ADF/cofilin at the neck
of the stimulated spine (Chen et al., 2007; Bosch et al., 2014;
Noguchi et al., 2016). During this process, ADF/cofilin appears
to form the polymerized structure, stabilizing actin cytoskeleton
for a long time (more than ∼30 min). For formation and
stabilization of complex actin networks, cross-linking proteins
such as drebrin, α-actinin and Calcium/calmodulin-dependent
protein kinase type II subunit β (CaMKIIβ) play a key role
for bundling F-actin (Hotulainen and Hoogenraad, 2010; Kim
et al., 2015). The transient exit and reentry of drebrin A in
the spine head is thought to be important for spine remodeling
(Bosch et al., 2014; Mizui et al., 2014; Shirao et al., 2017). In
addition, myosin, a superfamily of ATP-driven motor proteins,
regulates spine structure via its multiple functions including
protein trafficking and contractile bundling of F-actin networks
(Ryu et al., 2006; Correia et al., 2008; Wang Z. et al., 2008;
Korobova and Svitkina, 2010). Thus, structural plasticity of
dendritic spines requires spatiotemporal coordination of ABPs.
While exact actin dynamics during synaptic plasticity remains
elusive, it has been proposed that actin network becomes fluid
in the initial phase of structural changes, perhaps due to the
dissociation of ABPs, allowing actin to be reorganized, and then
subsequently stabilized by the re-binding of ABPs (Okamoto
et al., 2004; Kim et al., 2015).

TRANSIENT Ca2+ ELEVATION: THE
TRIGGER OF MULTIPLE SIGNALING
CASCADES FOR SPINE REMODELING

Since regulation of actin cytoskeleton is tightly coupled with
changes in spine structure, the signaling system connecting
synaptic activity and various ABPs plays an important role in
spine structural plasticity. Indeed, recent studies using molecular
imaging, such as FRET-based fluorescence lifetime microscopy
(FLIM) imaging have revealed the spatiotemporal dynamics of
key signalingmolecules regulating actin cytoskeleton in dendritic
spines (Nishiyama and Yasuda, 2015).

Strong excitatory synaptic inputs induce postsynaptic Ca2+

elevation through NMDA receptors and/or voltage-gated Ca2+

channels (VGCCs) in the activated spine (Sabatini et al., 2002).
Ca2+ elevation in spines triggers signaling cascades for long-term
synaptic plasticity including LTP and sLTP. Ca2+ binds to
calmodulin (CaM), a Ca2+-binding protein and Ca2+ bound
CaM (Ca2+/CaM) subsequently activates Ca2+/CaM-dependent
kinases and phosphatases such as CaMKII and calcineurin
(CaN; Lee et al., 2009; Fujii et al., 2013; Chang et al., 2017).
Traditionally, it has been considered that CaMKII and CaN
are exclusively activated during postsynaptic activation and
plays roles in LTP and LTD, respectively (Malenka and Bear,
2004). Consistent with this, it has been shown that CaMKII
is activated during the induction of sLTP (Lee et al., 2009;
Chang et al., 2017). Also, CaN was shown to be necessary
for sLTD (Zhou et al., 2004; Oh et al., 2015). However, a
recent study suggested that CaN is activated in LTP-inducing
stimuli, as well as LTD-inducing stimuli (Fujii et al., 2013).
Furthermore, it has been reported that CaMKII activity is
required for inducing LTD as well as LTP (Coultrap et al.,
2014; Goodell et al., 2017). Both CaMKII and CaN activity
rapidly decay over a few seconds (Fujii et al., 2013; Chang et al.,
2017).

It should be worth mentioning that CaMKII activation
has been proposed to act as a biochemical memory lasting
more than hours (Lisman et al., 2002). Upon Ca2+/CaM
binding, active CaMKII can undergo autophosphorylation at
Thr286 (for CaMKIIα or Thr287 for CaMKIIβ), which makes
the kinase activity independent of Ca2+/CaM binding. This
Ca2+/CaM-independent activation, which is often referred to
as ‘‘autonomous’’ activity, could persist for a long time after
Ca2+ decays. Indeed, it has been found that autophosphorylation
at Thr286 persists for more than ∼1 h after LTP induction
(Barria et al., 1997). Furthermore, transgenic mice bearing a
single point mutation at Thr286 (T286A) of CaMKIIα showed
deficits in LTP and learning. However, pharmacological studies
showed that, while inhibition of CaMKII during the induction
inhibits the induction of LTP, inhibition after the induction of
LTP does not reverse LTP, suggesting that CaMKII is required
for induction, but not for the maintenance, of LTP (Buard
et al., 2010). Similarly, CaMKII is found to be necessary for the
formation, but not for the maintenance or retrieval, of amygdala-
dependent fear memory (Buard et al., 2010). More recent
study with optogenetic inhibitor of CaMKII further refined the
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temporal window of CaMKII action (Murakoshi et al., 2017).
This study showed that CaMKII activation is necessary only
for the first ∼1 min of LTP induction. In addition, CaMKII
activation in amygdala during the training (∼3 min), but not
after the training, is required for fear memory formation in
the inhibitory avoidance task (Murakoshi et al., 2017). This
apparent inconsistency between the early biochemical studies
and the results from pharmacological and optogenetic inhibition
could be because autophosphorylation does not correlate with
CaMKII activation under some conditions (Lengyel et al.,
2004).

During sLTP, short CaMKII activation is relayed to
diverse downstream signaling molecules including small GTPase
proteins. The activity of these downstream signals lastsmore than
tens of minutes, reorganizing actin cytoskeleton over this time
period (Yasuda, 2017). The process of small GTPase signaling
will be discussed in the ‘‘Rapid Structural Remodeling of the
Spine’’ section.

RAPID STRUCTURAL REMODELING OF
THE SPINE

Intracellular Signaling Networks for Rapid
Cytoskeletal Restructuring
Cytoskeletal remodeling during structural plasticity of spines
requires activation of small GTPase proteins (Harvey et al.,
2008; Murakoshi et al., 2011; Bosch et al., 2014; Hedrick
et al., 2016; Figure 2A). RhoA, Cdc42, Rac1 and Ras are

all activated by CaMKII, and required for sLTP (Harvey
et al., 2008; Murakoshi et al., 2011; Bosch et al., 2014;
Hedrick et al., 2016). In addition, knockout of Rac1 and
Cdc42 from excitatory neurons causes impaired LTP and
memory formation (Haditsch et al., 2009; Kim et al., 2014). RhoA
activation controls spine remodeling through the activation of
downstream effectors such as Rho-associated protein kinase
(ROCK). Activated ROCK phosphorylates LIMK, which further
phosphorylate ADF/cofilin (Arber et al., 1998). Cdc42 and
Rac1 promote actin polymerization through activating WASP
and WAVE, respectively. The activated WASP and WAVE
bind to and upregulate Arp2/3 complex, which induces actin
nucleation and thus spine enlargement (Hlushchenko et al.,
2016). Cdc42 and Rac1 also stabilizes actin cytoskeleton
by inhibiting ADF/cofilin-mediated actin depolymerization
through downstream effectors p21-activated kinase (PAK)-
LIMK pathway and the PAK-phosphatases slingshot (SSH)
pathway (Zhou et al., 2012; Bosch et al., 2014). Recent studies
suggest that Copine-6, a Ca2+-binding molecule is another
upstream regulator of the Rac1-PAK-LIMK pathway (Reinhard
et al., 2016; Burk et al., 2018).

The contributions of small GTPase activation to the transient
and sustained phases of sLTP are distinctive. Activations of
RhoA is relatively required for the transient phase of sLTP, while
Cdc42 and Ras are required only for the sustained phase and
Rac1 is required for both transient and sustained phases of sLTP
(Harvey et al., 2008; Murakoshi et al., 2011; Oliveira and Yasuda,
2014; Hedrick et al., 2016; Figure 2B). Furthermore, they show
different time courses of activity during sLTP. While activities

FIGURE 2 | Intracellular signal regulation during structural long-term potentiation (LTP). (A) Signaling pathways controlling actin binding proteins (ABPs) in dendritic
spines. Black arrows represent downstream activation and red lines represent downstream inhibition. (B) Different contributions of small GTPase activations in
transient and sustained structural LTP (sLTP) in stimulated spines. Red dot represents a single spine stimulation by glutamate uncaging. (C) Schematic time course
of small GTPase activation profiles in stimulated spines (Murakoshi et al., 2011; Oliveira and Yasuda, 2014; Hedrick et al., 2016).
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of these GTPases remain elevated over 20 min, Rac1 displays
prominently slower inactivation than those of RhoA, Cdc42 and
Ras (Figure 2C). In addition, their spatial profiles are different:
RhoA, Rac1 and Ras activities spread out from stimulated spine
to the dendritic shaft and adjacent spines, whereas Cdc42 activity
is restricted to the stimulated spine compartment (Harvey
et al., 2008; Murakoshi et al., 2011; Oliveira and Yasuda, 2014;
Hedrick et al., 2016; Figure 3). The spreading of Ras, RhoA and
Rac1 facilitates sLTP in surrounding spines (Harvey et al., 2008;
Hedrick et al., 2016; Hedrick and Yasuda, 2017). Although the
regulatory mechanism of spatial constraint of Cdc42 activation
is not clear, differential distributions of Cdc42 or interacting
proteins such as Cdc42-specific GTPase activating protein (GAP)
in dendritic shaft could limit the spreading of Cdc42 activity
(Yasuda and Murakoshi, 2011; Yasuda, 2017).

In addition to these rapid actin remodeling, another major
cytoskeletal protein, microtubules also may undergo large
structural changes. Microtubules are formed by polymerization
of tubulin monomers (Nogales et al., 1998). Usually they are
localized in the dendritic shafts and excluded from dendritic
spines (Korobova and Svitkina, 2010). However, microtubule
tips frequently enter dendritic spines transiently, in an activity-
dependent manner (Hu et al., 2008; Jaworski et al., 2009;
Merriam et al., 2011). Microtubule tip entry is correlated

FIGURE 3 | Intracellular and extracellular factors that regulate spine structural
plasticity. Activity-dependent autocrine brain-derived neurotrophic factor
(BDNF)-TrkB signaling activates Cdc42 and Rac1 in single spines. Ca2+ influx
through NMDA receptors or voltage gated Ca2+ channels (VGCCs) activates
CaMKIIα and its downstream signaling including Cdc42, Rac1, RhoA and
Ras. Activation of Rac1 and Cdc42 are regulated by autocrine BDNF-TrkB
signaling. Activities of RhoA, Rac1 and Ras spread to dendritic shaft and
adjacent spines from stimulated spines. MMP-9 and TIMP-1 are also released
from the postsynaptic cells. In addition, Ca2+ elevation induces lysosomal
fusion with the plasma membrane, releasing Cathepsin B to outside of the
cell. Extracellular Cathepsin B cleaves the tissue inhibitor of
metalloproteinases-1 (TIMP-1), an endogenous inhibitor of the matrix
metalloprotease 9 (MMP-9). Disinhibited MMP-9 cleaves cell adhesion
molecules (CAMs) and the extracellular matrix (ECM), which facilitate structural
remodeling of spines. Broken arrows represents signal spreading.

with spine enlargement, suggesting that this phenomenon
may be important for spine structural plasticity (Jaworski
et al., 2009; Merriam et al., 2011, 2013). Consistent with this,
microtubule dynamics has been implicated in LTP and spine
structural plasticity as well as maintenance of normal spine
structure (Hu et al., 2008; Jaworski et al., 2009; Merriam
et al., 2011, 2013). Microtubule tip entry recruit microtubule
tip binding protein EB3, which is usually used to monitor
microtubule tip, and EB-binding protein p140CAP, a regulator
of Src kinase activity, into spines (Jaworski et al., 2009;
Merriam et al., 2013). The entry of such protein complex
may play an important role in regulating actin dynamics in
dendritic spines and inducing spine structural plasticity (Dent,
2017).

Extracellular Factors Inducing Spine
Remodeling
In addition to the intracellular regulation of spine structure, spine
remodeling is also controlled by extracellular factors, such as
autocrine signaling of brain-derived neurotrophic factor (BDNF;
Harward et al., 2016; Hedrick et al., 2016) and proteolytic
cleavage of extracellular matrix (ECM) and trans-synaptic cell
adhesionmolecules (CAMs; Sonderegger andMatsumoto-Miyai,
2014; Reinhard et al., 2015; Figure 3).

BDNF has long been deemed crucial to LTP (Minichiello,
2009). Recent studies have further demonstrated that BDNF
can be released from dendritic spines during the induction of
LTP to activate TrkB receptors in the same spine to regulate
sLTP (Tanaka et al., 2008; Edelmann et al., 2015; Harward
et al., 2016). Thus, BDNF acts as autocrine loop signaling
through extracellular space of stimulated spines, which can
subsequently regulate structural reorganization at the spine
and adjacent spines via Rac1 and Cdc42 activities (Hedrick
et al., 2016). The autocrine BDNF may play additional roles
in protein synthesis (Tanaka et al., 2008), as BDNF can
induce the local synthesis of several molecules including Arc,
LIMK1 and CaMKIIα (Leal et al., 2014; Panja and Bramham,
2014).

Synaptic plasticity is also associated with restructuring of
the extracellular space through proteolytic cleavage of the
ECM and CAMs (Sonderegger and Matsumoto-Miyai, 2014;
Reinhard et al., 2015). Among several endopeptidases that
control synaptic functions, the matrix metalloprotease 9 (MMP-
9) has been recently implicated in spine morphogenesis and
synaptic plasticity (Wang X. et al., 2008; Sonderegger and
Matsumoto-Miyai, 2014; Gorkiewicz et al., 2015; Magnowska
et al., 2016). MMP-9 is released from dendritic spines, and
cleaves components of the ECM including brevican, laminin and
aggrecan, as well as CAMs such as N-cadherin and neuroligin-1
(Nagappan-Chettiar et al., 2017). In the visual cortex in adult
mice, sensory experience increases MMP-9 activity, which
mediates functional and morphological remodeling of synapses
by digesting the ECM (Murase et al., 2017). Furthermore, NMDA
receptor-mediated cleavage of intercellular adhesion molecule-5
(ICAM-5) via MMP appears to occur during LTP (Conant et al.,
2010). Since ICAM-5 is known to inhibit spine maturation
and enlargement by interacting with actin regulating proteins
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(Furutani et al., 2007), shedding of this molecule may play
an important role in spine enlargement during LTP (Furutani
et al., 2007; Conant et al., 2010). Interestingly, the proteolytic
activity of MMP-9 is usually suppressed by tissue inhibitor
of metalloproteinases-1 (TIMP-1), an endogenous inhibitor
(Stawarski et al., 2014). This inhibition can be suppressed in an
activity-dependent manner. Specifically, activity induces fusion
of lysosomes with the plasma membrane releasing Cathepsin B
extracellularly. Cathepsin B is then able to cleave TIMP-1. Thus,
it appears that both MMP-9 and TIMP-1 are released from the
postsynaptic cell to regulate spine structural plasticity (Padamsey
et al., 2017).

In addition to the release of proteins, recent studies provide
a novel concept of mRNA transmission between neurons via
exosomal vesicles (EVs; Ashley et al., 2018; Pastuzyn et al.,
2018). It has been known that the EV-mediated molecular
transmissions occurs between neurons in an activity-dependent
manner (Budnik et al., 2016). Interestingly, two studies identified
that Arc protein self-assembles viral capsid, group-specific
antigen (Gag)-like structure containing Arc mRNA. The EVs
load this virus-like assembly and release them into extracellular
space, received by other neurons (Ashley et al., 2018; Pastuzyn
et al., 2018). During the transmission, mRNA is encapsulated by
Arc protein and thus resistant to RNase. The received mRNA
is translated, thereby producing Arc protein in the receiving
neurons: even in Arc knockout neurons, application of the
virus-like capsids can result in Arc expression (Pastuzyn et al.,
2018). Since the expression of Arc, an immediate-early gene,
controls functional and structural plasticity of dendritic spines
(as discussed below), the EV-mediated transfer of Arc mRNA
between cells might play important roles in various forms of
synaptic plasticity (Pastuzyn et al., 2018).

Interestingly, Arc and viral Gag protein shares homologous
DNA sequences, as well as structural similarity, indicating
that Ty3/gypsy family of retrotransposon is presumably the
ancestral origin of Arc (Campillos et al., 2006; Zhang et al.,
2015). Arc and viral Gag share key functional features such as
membrane binding (Barylko et al., 2018), self-oligomerization
of capsid-like protein (Myrum et al., 2015; Ashley et al.,
2018; Pastuzyn et al., 2018), RNA-binding and EV-mediated
exosomal releases (Ashley et al., 2018; Pastuzyn et al., 2018;
Shepherd, 2018). It is still elusive whether other proteins and
mRNAs can be also transferred between neurons through
similar mechanisms. However, human genome contains at least
103 Gag-like protein sequences including mitogen-activated
protein kinase 1 (MAPK1) and retrotransposon-derived proteins
PEG10 and PEG3. Interestingly, some of them are implicated
in cellular development and apoptosis (Campillos et al., 2006).
Therefore, these Gag-like proteins may take advantages of similar
retrotransposon-like, intercellular communication systems for
their physiological functions.

PROTEIN SYNTHESIS-DEPENDENT
REMODELING OF THE SPINE

Some forms of sustained structural plasticity of dendritic spines
require activity-dependent protein synthesis (Tanaka et al., 2008;

Govindarajan et al., 2011; Bosch et al., 2014). Growing evidence
has suggested that local translation near the stimulated spines
occurs, and influences cytoskeletal remodeling during spine
morphogenesis (Jung et al., 2014; Rangaraju et al., 2017).We next
discuss molecular networks controlling local translation and its
implications for spine structural plasticity.

Local Translations in Dendrites
Among 2550 mRNAs localized in dendrites and axons of
hippocampal neurons (Cajigas et al., 2012), many of them,
such as β-actin, Arc, PSD-95, GluA1, CaMKIIα and zipcode
binding protein 1 (ZBP1), are relevant to synaptic plasticity.
(Mayford et al., 1996; Tiruchinapalli et al., 2003; Sutton
et al., 2006; Butko et al., 2012; Steward et al., 2015; Yoon
et al., 2016). In particular, dendritic localization of CaMKIIα
mRNA has been suggested to be important for LTP and
learning (Miller et al., 2002). Translationally inhibited mRNAs
make complexes called ribonucleoprotein (RNP) particles, a
transport type RNA granule (RNG) that contains mRNA,
RNA binding proteins (RBPs) and microRNA (miRNA/miR;
Kiebler and Bassell, 2006; Darnell, 2013; Figure 4). RNPs are
actively transported by motor proteins along the cytoskeleton
(Bramham and Wells, 2007). The association of trans-acting
RBPs on cis-acting elements in 3’-untranslated region (UTR)
of mRNA is critical for mRNA transport and translational
repression (Kanai et al., 2004; Hüttelmaier et al., 2005;

FIGURE 4 | Schematic diagram of local translation in dendrites. mRNA is
transported in the ribonucleoprotein (RNP) particle, which includes mRNA,
translation initiation factors, ribosomal subunits, RNA binding proteins (RBPs)
and microRNA (miRNA). Association with RNA binding proteins (RBPs) at
3’-UTR (representing as AAA) and eukaryotic translation initiation factor 4E
(eIF4E) at 5’-cap (representing as m7G). RBP binding is critical for dendritic
trafficking of mRNA, while repressing translation. Cap-dependent translation
initiation is regulated by the interaction of mRNA with eIF4E binding protein
(4E-BP). Kinesin and dynein actively transport RNP toward anterograde and
retrograde directions along microtubules, respectively. Unloading of β-actin
mRNA and translation initiation are simultaneously regulated at the base of
stimulated spines. Newly synthesized β-actin translocates to the peripheral
region of the stimulated spine head. Warm color depicts dynamic actin pools.
Newly synthesized Arc preferentially increases in non-stimulated spines and
changing cytoskeletal dynamics via interacting ABPs including WAVE1,
ADF/cofilin, CaMKIIβ and drebrin A. Arc promotes AMPA receptor (AMPAR)
endocytosis through interaction to dynamin-2 (Dyn2).
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Doyle and Kiebler, 2011; Darnell and Richter, 2012). Indeed,
CaMKIIα mRNA lacking the 3’-UTR is not trafficked to the
dendrite and impairs late-LTP and learning (Miller et al., 2002).
‘‘Unloading’’ of mRNA at the correct location is regulated
by RBP phosphorylation, which causes mRNA dissociation
and initiates the translation (Fernandez-Moya et al., 2014).
In addition, inhibition of cap-dependent translation initiation
during consolidation of aversive conditioning impairs the
accumulation of polyribosomes in spines in the hippocampus
(Ostroff et al., 2017). Thus, mRNA transport and cap-dependent
translation may coincide specifically at activated spines during
memory consolidation.

Recent advances in single mRNA imaging techniques have
revealed a number of fine details about RNP transport in
dendrites (Glock et al., 2017). Single-molecule fluorescence
in situ hybridization (smFISH) revealed that, in dendrites,
β-actin mRNA in RNA granules is sterically masked from the
translation machinery as well as FISH probes, and unmasked
by neuronal activity (Buxbaum et al., 2014). Live-cell imaging
of RNA granules also became possible using a knock-in mouse
line in which multiple MS2 binding site (MBS) stem loops are
inserted at 3’-UTR of β-actin mRNA. By expressing MS2-GFP
in these mice, endogenous mRNA can be fluorescently labeled.
This technique has revealed that many of the RNPs in dendrites
move in a bidirectional manner (Lionnet et al., 2011; Yoon
et al., 2016), indicating that RNPs are transported along
microtubules by both kinesin and dynein molecular motors
(Kanai et al., 2004; Gagnon and Mowry, 2011). When sLTP
is induced at a single spine with glutamate uncaging, mobile
mRNA particles are stopped at the base of the stimulated
spine, and newly synthesized actin appears at the tip of
the stimulated spine (Buxbaum et al., 2015; Yoon et al.,
2016). These events may correspond to mRNA unloading
and translation near or in the stimulated spine by activity-
dependent phosphorylation of RBPs in dendrites (Rangaraju
et al., 2017).

Recently techniques to simultaneously monitor single
mRNAs and newly translated polypeptides in intact cells have
been developed (Chekulaeva and Landthaler, 2016; Morisaki
et al., 2016; Wang et al., 2016; Wu et al., 2016; Yan et al.,
2016). These techniques may further improve our knowledge
about the regulation of local dendritic translation required for
morphogenesis of dendritic spines.

Interactions Between Regulators of
Protein Synthesis and That of Actin
Cytoskeleton
The finding of activity-dependent β-actin translation near
stimulated spines provides a direct link between protein synthesis
and actin dynamics during spine morphogenesis (Yoon et al.,
2016). Recent studies also suggest more intricate interactions
between cytoskeletal proteins and synthesized proteins. One
form of interaction is through the synthesis of actin regulating
proteins. For example, it has been reported that oligophrenin-1
(OPHN1), a Rho GTPase activating protein (Rho-GAP), is
rapidly upregulated by activity, regulating actin cytoskeleton

during mGluR-dependent LTD (Nadif Kasri et al., 2011). In
addition, RhoA appears to be locally synthesized in response to
BDNF application or neuronal activity, and plays an important
role in LTP (Briz et al., 2015). Interestingly, local translation of
Arc, an activity-dependent immediate early gene, is also reported
to regulate actin cytoskeleton and control spine morphology
during LTP and LTD (Newpher et al., 2018). It has been known
that newly synthesized Arc can interact with actin regulatory
proteins such as WAVE1, ADF/cofilin, CaMKIIβ and drebrin
A, regulating actin filaments (Messaoudi et al., 2007; Okuno
et al., 2012; Zhang et al., 2015; Nair et al., 2017; Figure 4).
Arc is also known to interact with dynamin-2 to promote
endocytosis of AMPA receptor (AMPARs; Chowdhury et al.,
2006; Newpher et al., 2018). The location of Arc synthesis and its
regulation of actin cytoskeleton has been also studied extensively.
It has been suggested that newly synthesized Arc is accumulated
in non-stimulated spines and suppresses synaptic potentiation
by decreasing surface expression of AMPA receptors (Okuno
et al., 2012). This is in general consistent with the role of Arc
expression in inhibiting LTP (Plath et al., 2006; Rial Verde et al.,
2006).

Another interesting interaction between local translation and
cytoskeletal remodeling involves the dual roles of cytoplasmic
fragile X mental retardation protein (FMRP) interacting
protein 1 (CYFIP1, Sra1). It has been demonstrated that
CYFIP1 regulates spine remodeling both through promoting
translation initiation and Arp2/3-mediated rapid actin
nucleation (De Rubeis et al., 2013; Figure 5). CYFIP1 has
been identified as a non-canonical eukaryotic translation
initiation factor 4E (eIF4E) binding protein (4E-BP), which
repress cap-dependent translation by forming a complex
with FMRP and eIF4E (Napoli et al., 2008; Udagawa et al.,
2012; Panja and Bramham, 2014). BDNF stimulation induces
the dissociation of CYFIP1 from the FMRP-CYFIP1-eIF4E
complex at synapses, which upregulates translation initiation
of Arc, MAP1B and CaMKIIα (Napoli et al., 2008; De Rubeis
and Bagni, 2011). The release of CYFIP1 occurs through the
activity of Mnk1, a downstream molecule of MAPK/ERK
signaling (Genheden et al., 2015; Bramham et al., 2016).
In addition to the induction of translation initiation, the

FIGURE 5 | Dual roles of cytoplasmic fragile X mental retardation protein
(FMRP) interacting protein 1 (CYFIP1) for translation initiation and rapid actin
remodeling. CYFIP1 makes FMRP-CYFIP1-eIF4E complex on mRNA and
plays a role as a non-canonical eukaryotic initiation factor 4E (eIF4E) binding
protein (4E-BP) which represses the translation initiation by interfering the
association of eukaryotic initiation factor 4G (eIF4G). Binding of active form
Rac1 (GTP-Rac1) dissociates CYFIP1 from the mRNA complex and initiates
the translation. Dissociated CYFIP1 from mRNA complex forms WAVE
complex, which promotes actin nucleation and branching via activating
Arp2/3 complex. PABP, poly (A)-binding protein.
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dissociated CYFIP1 can form a WAVE regulatory complex
(WRC) that triggers Arp2/3-dependent actin nucleation
with interacting Rac1 (Derivery et al., 2009; De Rubeis
and Bagni, 2011). Indeed, either knockdown of Cyfip1 or
mutations of interacting regions with eIF4E or WRC impairs
structural maturation of dendritic spines (De Rubeis et al.,
2013), suggesting that interplay of CYFIP1 controls both
translation-dependent and -independent remodeling of the
spine structure.

Finally, the mTOR complex 2 (mTORC2) pathway, a major
pathway that regulates protein synthesis, is also found to regulate
dynamics of actin cytoskeleton through Rac1 activation (Huang
et al., 2013; Switon et al., 2017). Although the precise mechanism
of mTORC2-mediated remodeling of actin cytoskeleton remains
elusive, it has been proposed that the recruitment of Tiam1,
a Rac1-specific guanine exchange factor (GEF), by Rictor, an
essential component of mTORC2, regulates Rac1 activity and
subsequent actin polymerization (Huang et al., 2013).

Local Translational Repression and
Degradation
miRNAs are short (21–25 nucleotides) non-coding RNAs,
which have important roles for specific translational control at
synapses. miRNAs silence translation and induce degradation
via making RNA-induced silencing complex (RISC) and binding
corresponding sequences in 3’-UTR of mRNAs (Wahid et al.,
2010). Since miRNAs have moderate specificity due to their
short sequences, they can target a group of mRNAs. Many
miRNA have been identified as regulators of actin related
proteins and synaptic plasticity (Ryan et al., 2015). For
example, miR-134 makes RISC with association of Argonaute
(Ago) protein and represses translation of LIMK1 in dendritic
spines of hippocampal neurons by NMDAR-dependent manner,
decreasing the size of dendritic spines (Schratt et al., 2006;
Rajgor et al., 2018). miR-132 is upregulated in an activity-
dependent manner through the MAPK/ERK pathway, and
represses translation of p250GAP, a brain-enriched Rho-GAP
(Wayman et al., 2008). p250GAP is known to regulate spine
morphology and is implicated in wide range of neuropathologies
(Nakazawa et al., 2008; Impey et al., 2010; Qian et al., 2017).
In dendrites, miR-138 represses acyl-protein thioesterase 1
(APT1), a depalmitoylation enzyme, and thus inhibits spine
growth via increasing membrane localization of α13 subunits
of G proteins (Gα13), which upregulates RhoA activity and
presumably promotes actin depolymerization (Siegel et al.,
2009).

Interestingly, miRNA maturation process appears to
be localized near and in stimulated spines (Sambandan
et al., 2017). The study by Sambandan et al. (2017) used
a cleavage-inducible fluorescent sensor to measure the
activity of Dicer and demonstrated that the maturation
of miR-181a occurs in spines stimulated with glutamate
uncaging. Thus, miRNAs may act locally to regulate
activity-dependent tuning of the translation in stimulated
spines. Moreover, the authors visualized newly synthesized
CaMKIIα by using proximity ligation assay (PLA)-based

technique (tom Dieck et al., 2015) and found that nascent
CaMKIIα showed marked reduction in the area generated
the mature miRNA (Sambandan et al., 2017). Thus,
precise spatiotemporal maturation of miRNA regulates
local translation of key signaling molecules in dendritic
subcompartments. Taken together with the important role
of miRNAs in regulating the actin cytoskeleton, miRNA-
mediated translation repression and degradation may be a
key regulatory system for structural plasticity of dendritic
spines.

CONCLUDING REMARKS

Structural plasticity of dendritic spines is regulated by the
reorganization of actin cytoskeleton through interaction with
ABPs and their regulatory molecules. Ca2+ elevation in spines
activates multiple signaling pathways that relay short Ca2+

signals into much longer signals. These signaling pathways have
specific spatiotemporal patterns that orchestrate different aspect
of dynamic cytoskeletal regulation, such as polymerization,
depolymerization, nucleation, cross-linking and capping in the
stimulated spines. In addition, activity-dependent signaling such
as RNA trafficking andmiRNAs regulate local protein translation
of β-actin and actin regulatory proteins, providing an efficient
local supply of the necessary material (Holt and Schuman, 2013;
Rangaraju et al., 2017). The regulation of cytoskeletal elements
and translational regulation appear to be coupled, providing an
additional layer of regulation to structural plasticity (De Rubeis
et al., 2013; Buxbaum et al., 2015; Yoon et al., 2016; Rangaraju
et al., 2017; Sambandan et al., 2017).

Many neurological disorders, including autism spectrum
disorders (ASDs), schizophrenia and Fragile X syndrome
(FXS), are thought to be associated with dysregulation of
cytoskeletal and translational signals (Buffington et al., 2014;
Huber et al., 2015; Bhambhvani et al., 2017; Joensuu et al.,
2018). These two signaling systems appear to be tightly coupled
and important for regulating spine structural plasticity (De
Rubeis et al., 2013; Hadziselimovic et al., 2014). Further
studies of the interplay between the local regulation of
cytoskeleton and translation during spine structural plasticity
will be provide us with a better understanding of these
diseases as well as basic understanding of spine structural
plasticity.

Signal transduction regulating structure and function of
dendritic spines are exceedingly complicated, and it will be
long way to understand the whole signaling system. Due to
the morphological complexity of neurons, the spatiotemporal
dynamics of signaling play particularly important roles in
neuronal plasticity. While quantitative measurements of more
detailed signaling pathways will lead to a better understanding of
overall signaling system, it would be critical to create theoretical
frameworks that can integrate the spatiotemporal dynamics of
many different signaling pathways (Brown et al., 2011). As we
observe more sub-spine signal compartmentalization, the theory
needs to include sub-spine structure and compartmentalization
(Colgan and Yasuda, 2014). Finally, since most of our efforts
of measuring signal transduction is still limited to in vitro
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models such as cultured neurons and brain slices, developments
of systems to measure signaling activity in live animals
with high spatiotemporal resolution would be necessary to
connect biochemical events single dendrite with neuronal circuit
plasticity in specific behavioral paradigm.
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