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Matthew J. MacDougall and Alan Fine*
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Understanding the mechanisms by which long-term synaptic plasticity is expressed
remains an important objective in neuroscience. From a physiological perspective,
the strength of a synapse can be considered a consequence of several parameters
including the probability that a presynaptic action potential (AP) evokes the release of
neurotransmitter, the mean number of quanta of transmitter released when release is
evoked, and the mean amplitude of a postsynaptic response to a single quantum.
Various methods have been employed to estimate these quantal parameters from
electrophysiological recordings; such “quantal analysis” has been used to support
competing accounts of mechanisms of expression of long-term plasticity. Because
electrophysiological recordings, even with minimal presynaptic stimulation, can reflect
responses arising at multiple synaptic sites, these methods are open to alternative
interpretations. By combining intracellular electrical recording with optical detection of
transmission at individual synapses, however, it is possible to eliminate such ambiguity.
Here, we describe methods for such combined optical and electrical monitoring of
synaptic transmission in brain slice preparations and illustrate how quantal analyses
thereby obtained permit more definitive conclusions about the physiological changes
that underlie long-term synaptic plasticity.

Keywords: synaptic plasticity, synaptic potency, synaptic reliability, LTP (long-term potentiation), two photon
microscopy

INTRODUCTION

Physiological and anatomical characterization of synapses provides ongoing and central challenges
to neuroscience. Paramount among these challenges is clarification of the mechanisms that govern
activity-dependent changes in synaptic strength, such as long-term potentiation (LTP; Bliss and
Lømo, 1973; Bliss and Gardner-Medwin, 1973) and long-term depression (LTD; Dudek and Bear,
1992), the purported cellular basis of learning and memory, continues to be an essential objective.
While the induction of LTP at CA3-CA1 synapses is generally agreed to be chiefly a postsynaptic
phenomenon, controversy remains with respect to the locus and nature of changes responsible for
the expression of LTP at these synapses (Bliss and Collingridge, 2013; Granger and Nicoll, 2014;
MacDougall and Fine, 2014; see Bear and Abraham, 1996; Collingridge et al., 2010 for reviews on
LTD). Here, we present a brief summary of advances in the understanding of this issue, followed
by a description of optical quantal analysis, a powerful method employed by our laboratory to
investigate unitary synaptic function.

Classical Quantal Analysis
The pioneering work of Fatt and Katz (1952) and Del Castillo and Katz (1954) demonstrated
that the release of transmitter substances occur in multi-molecular packets, now known
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to be synaptic vesicles (Gray, 1959), at the frog neuromuscular
junction. According to this model, the smallest electrical
response at a synapse results from the release of a single
vesicle or quantum of transmitter (Del Castillo and Katz,
1954; Boyd and Martin, 1956). Postsynaptic responses to
evoked neurotransmitter release are therefore said to be quantal
in nature; i.e., they reflect the summation of a number of
discrete events due to the exocytosis of vesicular contents of
neurotransmitter. Quantal analysis is a statistical procedure used
to isolate the mechanistic components of synaptic transmission
and their modifications (Del Castillo and Katz, 1954; Boyd
and Martin, 1956). Attempts to assess the role of changes in
these components in synaptic plasticity via quantal analysis of
electrophysiological recordings of CA1 hippocampal synapses
before and after induction of plasticity have been inconclusive
(Voronin, 1994), with competing accounts supporting pre-
(Voronin, 1983; Bekkers and Stevens, 1990; Larkman et al.,
1991; Malinow, 1991; Tsien and Malinow, 1991; Voronin et al.,
1992), post- (Foster andMcNaughton, 1991; Isaac et al., 1996a,b),
and in some instances a combination of pre- and postsynaptic
components of plasticity expression (Kullmann and Nicoll,
1992; Larkman et al., 1992). All such attempts, however, have
been susceptible to alternative interpretations and have been
at the center of a continuing ‘‘locus debate’’ in LTP research
(Nicoll, 2003; Kerchner and Nicoll, 2008; MacDougall and Fine,
2014). The sources of divergence may include differences in
tissue preparation and times of analysis, but criticisms have
largely focused on the heterogeneity of central synapses, the
uncertain applicability of theoretical assumptions, and the fact
that postsynaptic responses, even with minimal presynaptic
stimulation, result from an unknown number of activated
synapses, all of which complicate conclusions about unitary
responses (Redman, 1990; Faber and Korn, 1991; Korn and
Faber, 1991; Walmsley, 1995).

Fluorescence Microscopy and Dendritic
Spines
The long-term visualization of individual dendritic spines
using confocal fluorescence microscopy before and after LTP
(Hosokawa et al., 1995) as well as the visualization of dendritic
and spine Ca2+ signals (Connor et al., 1994; Malinow et al.,
1994; Yuste and Denk, 1995; Emptage et al., 1999; Mainen et al.,
1999; Yuste et al., 1999; Kovalchuk et al., 2000; Reid et al.,
2001; Sabatini et al., 2002) during synaptic stimulation have
greatly influenced the field of synaptic plasticity and have become
indispensable techniques used to probe synaptic function. These
technological and analytical developments, coupled with the
statistical approach of classical quantal analysis, opened the
possibility of optical quantal analysis of LTP at individual
hippocampal synapses (Emptage et al., 2003).

Optical Quantal Analysis
Optical quantal analysis combines classical electrophysiological
recording with optical monitoring of fluorescent Ca2+ indicators
in dendritic spines. Optical detection of synaptically-evoked
postsynaptic Ca2+ transients [EPSCaTs (pronounced epps’kats);
Malinow et al., 1994; Yuste and Denk, 1995; Emptage et al., 1999]

has given researchers a means to overcomemany of the analytical
and interpretational difficulties associated with classical quantal
analysis. EPSCaTs in CA1 pyramidal cells are triggered by
small synaptically-evoked Ca2+ influx throughNMDA receptors,
amplified by Ca2+-induced Ca2+ release (CICR) from internal
stores (Emptage et al., 1999) and display stochastic failures (Yuste
and Denk, 1995; Emptage et al., 1999) corresponding to the
statistical nature of transmitter release. Postsynaptic EPSCaT
detection thus serves as a readout of presynaptic transmitter
release from the directly apposed synaptic bouton. Here we
review technical aspects of the procedure including simultaneous
electrophysiological and optical recording, explain statistical
aspects of their conjoint analysis, and illustrate some important
conclusions thereby obtained.

MATERIALS AND METHODS

Hippocampal Slices
Transverse 350 µm slices of hippocampus, which retain much
of the functional and structural integrity of the original tissue,
are cut from 2 to 3-week-old male Wistar rats, according to
standard protocols (e.g., Skrede and Westgaard, 1971; Geiger
et al., 2002; Bischofberger et al., 2006; see Aitken et al., 1995
for discussion). We dissect hippocampal tissue in ice-cold
sucrose-based cutting solution containing (in mM): 105 Sucrose,
50 NaCl, 1.25 NaH2PO4, 2.5 KCl, 26 NaHCO3, 13 Glucose,
0.5 CaCl2, 7 MgCl2. Dissected hippocampi are then laid out
in an agar block perpendicular to the cutting blade, and slices
cut perpendicular to the longitudinal axis of the hippocampus
using a vibrating tissue slicer (Leica VT1200, Leica Biosystems,
Nussloch). Slices are then transferred to a custom interface
chamber with supporting mesh and allowed to recover for
30–60 min at 32–33◦C while oxygenated with 95% O2/5% CO2.
Under these conditions, the slices remain viable for up 8 h.
Alternatively, organotypic hippocampal slice cultures may be
cut from 7 to 21 day-old male Wistar rat pups according to
published methods (Yamamoto et al., 1989; Stoppini et al.,
1991), placed on Millicell CM inserts (Millipore, Bedford, MA,
USA) with media replaced every 2–3 days, and maintained for
1–3 weeks in vitro prior to recording. For recording, acute slices
or organotypic slice cultures on their supporting membranes
are transferred to a specially designed chamber where they
are continually superfused (∼2 ml/min) with oxygenated (95%
O2/5% CO2) artificial cerebrospinal fluid (ACSF) containing (in
mM): 120 NaCl, 3 KCl, 1 MgCl2, 2–3 CaCl2, 1.2 NaH2PO4,
23 NaHCO3, 11 glucose. ACSF should be maintained at
near physiological temperatures (32–33◦C) using a temperature
control unit throughout the duration of experiments. Both
methods of tissue preparation have been shown to yield
similar physiological synaptic properties, with organotypic slices
displaying greater connectivity (De Simoni et al., 2003), including
aberrant recurrent connections.

Microscopy
Slices are viewed through an upright microscope (e.g.,
Olympus BX51W1) equipped with a high numerical aperture
water immersion objective (e.g., Olympus 60×, N.A. 0.9)
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via a confocal laser scan head (MRC1024MP, Bio-Rad
Microsciences). Two-photon excitation is achieved using
an ultrafast (100 fs pulses) Ti:Sapphire laser (Mai Tai, Spectra
Physics: 3 W; 80 MHz). Emitted fluorescence is detected
with a photomultiplier tube (PMT; H7422P-40 Hamamatsu)
connected to a signal amplifier. If detection at an additional
wavelength is required, a dichroic mirror is used to direct
one waveband to a second PMT. Care should be taken when
selecting fluorophores, to ensure that the emission spectra
are non-overlapping. Two-photon excitation fluorescence
images (‘‘xy’’ and ‘‘xt’’ images) are acquired at 810 nm
excitation and 15–20 mW average laser power in the focal
plane, using LaserSharp software with 6× digital zoom. The
microscope is also equipped with ordinary transmitted light and
widefield fluorescence illuminators, digital camera, remotely
controlled stage and micromanipulators, and temperature
control units (Figure 1).

Electrophysiological and Optical
Recording
For electrophysiological recording, sharp microelectrodes
minimize undesirable diffusion of cytoplasmic constituents out
of, and micropipette solution into, the target neuron (Malinow
and Tsien, 1990; Enoki and Fine, 2005). A disadvantage of
sharp microelectrode recordings is that a small but persistent
non-selective leak conductance may occur around the site of
impalement; if patch-clamp recordings are required, perforated
patch configuration (Lindau and Fernandez, 1986; Horn
and Marty, 1988) is preferable, to minimize perturbation
of the intracellular milieu. Selected pyramidal cells in the
CA1 region of the hippocampus are impaled with sharp glass
microelectrodes (80–120 MΩ) under widefield illumination and
visual control via a digital camera. Microelectrodes are filled
with a fluorescent Ca2+ probe (e.g., 0.5–1 mM Oregon Green
488 BAPTA-1 in H2O), optionally also with spectrally-distinct
Ca2+-insensitive fluorophore (e.g., Alexa 594; Goldberg and
Yuste, 2005) to serve as a morphological marker, and backfilled
with 3 M KCl. Ionophoretic loading of cells is achieved by
delivering low frequency (2 Hz) hyperpolarizing current pulses
(∼100–200 pA) via the intracellular amplifier (e.g., Multiclamp
700B, Molecular Devices, San Jose, CA, USA). After 5–20 min
of loading, fluorescence in the soma and processes can be easily
visualized (Figure 2A).

Dye loading of the target cell can be followed by two-photon
excitation imaging using the lowest possible power. Once
sufficient loading is achieved, hyperpolarizing pulses are
discontinued; note that leakage from the pipette tip may
contribute to additional loading over time. To assess the
adequacy of loading, an action potential (AP) is evoked by
depolarizing current injection, and corresponding fluorescent
Ca2+ responses examined in the soma and proximal dendrites.
As a useful guide, for adequate detection of EPSCaTs in dendritic
spines, it should generally be the case that back-propagating
APs cause a fractional change (%∆F/F) >80% in Ca2+ probe
fluorescence in the spines.

The extracellular stimulating electrode (SE), a sharpened,
insulated, tungsten electrode (or theta-glass micropipette

backfilled with 1 mM NaCl for minimal stimulation; Enoki
et al., 2009), is placed in the stratum radiatum (sr) at distances
not less than 50 µm (but <500 µm) from the soma, at a depth
similar to the target dendrite and typically 50–200 µm from the
border of the stratum pyramidale (Figure 2A). The extracellular
stimulating pulses are increased to an intensity sufficient to elicit
an AP-evoked Ca2+ transient in the soma and dendrites and
then decreased by 50%–70% to a level at which subthreshold
excitatory postsynaptic potentials (EPSPs) are reliably evoked.

Optically Searching for EPSCaTs
Pairs or triplets of extracellular stimuli (each 100–300 µs
square pulses of intensity described above) separated by 70 ms
are delivered to the tissue preparation and maintained at a
constant level throughout the searching procedure. Multiple
stimuli are used to increase the likelihood of finding low pr
synapses. The proximal region of the secondary and tertiary
apical dendrites of the dye-filled CA1 pyramidal neuron is
then systematically searched using fast raster scanning (e.g.,
128 × 128 pixels), while simultaneously stimulating at a
low frequency (∼0.05–0.1 Hz), until a spine exhibiting an
EPSCaT is located (Figure 2B). Low stimulation frequencies
are maintained during the searching procedure to prevent
unintended plasticity induction. When optically searching the
dendritic branches it is important to follow a consistent strategy
to avoid unintentionally neglecting or re-searching branches.
A strategy widely used in our lab is the ‘‘wall follower’’ (right or
left-hand rule). Given the remote positioning of the SE relative
to the apical branches, the location of responsive spines and
the time needed to find them can be highly variable; spines
positioned proximally, however, tend to be more easily found
than those at more distal locations. With this in mind, searching
for responsive spines should take no longer than 45 min per
cell, and if no responsive spine can be found within that
time the cell is abandoned; another cell, far enough away to
minimize overlap of its dendritic arbor with that of the previous
cell, is impaled and filled, and the search for a responsive
spine is repeated.

Once a responsive spine has been identified, line scanning
(‘‘xt’’ images, Figure 2C) can be used to image with better
temporal resolution in order to record EPSCaTs with greater
fidelity. Line scans ranging from 100 to 200 successive sweeps
at 2 ms intervals are obtained along a line passing through
the center of the activated spine (Figure 2B) and subjacent
parent dendrite. It is important to minimize the duration
and intensity of target irradiation to reduce phototoxicity and
indicator bleaching. A scan rotator (Scientific Systems Design,
Mississauga, ON, Canada) can be used to orient the scan
trajectory, and an LED near the photodetector can be used to
insert into the xt image a precise optical marker of onset of
electrical stimulation (Figure 2C). The stimulating intensity is
continually decreased until the threshold for EPSCaT detection
is established; once established, the stimulating intensity is
then incrementally increased for the experiment to a level
(approximately 20% above this threshold) that minimizes the
likelihood of stimulation failures of the afferent fibers (see
‘‘Conclusions and Perspective’’ section).
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FIGURE 1 | Schematic of two-photon excitation microscopy imaging and recording configuration. Excitation beam (red) is focused by a 60×, NA 0.9 objective to a
diffraction limited spot that excites the fluorescent intracellular calcium indicator (e.g., Oregon Green 488 BAPTA-1). The target neuron’s membrane potential is
constantly monitored through a somatic microelectrode. Excitation of inputs to the cell is achieved via a remote extracellular stimulating electrode (SE). Fluorescence
is detected by a photomultiplier tube (PMT). A second fluorophore and secondary detector (PMT2 and dichroic) can be employed depending on the experiment.
External control units for the micromanipulators, stage, and temperature are necessary components.

Estimating Release Probability
We (Emptage et al., 1999) and others (Yuste and Denk, 1995;
Yuste et al., 1999) have provided evidence that the probability
of a presynaptic stimulus evoking an EPSCaT in a postsynaptic
spine (pCa) is equivalent to pr, the probability that the stimulus

evoked transmitter release from the unlabeled, and thus invisible,
presynaptic bouton. A useful estimate of pr (a measure of
the ‘‘reliability’’ of the synapse) can therefore be achieved by
delivering a sufficient number of stimuli (∼20–25 trials) to
afferent fibers while recording EPSPs and EPSCaTs from the
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FIGURE 2 | Optical detection of synaptic transmission. (A) CA1 pyramidal neuron, filled with fluorescent Ca2+ indicator. Presynaptic axons are activated by a SE in
stratum radiatum (sr); evoked excitatory postsynaptic potentials (EPSPs) are recorded via a somatic microelectrode (not visible). Fluorescence changes due to
calcium transients evoked by the same stimulus in an apical dendritic segment (region of interest indicated by the white box) are seen at higher magnification in (B).
(B) Evoked postsynaptic calcium transients (EPSCaTs) are restricted to an individual dendritic spine (arrowhead), seen below at higher magnification in video frames
at rest (bottom left) and immediately after synaptic activation (bottom right). (C) EPSCaTs monitored via line-scan (x-t) imaging across the spine (black arrowhead)
and adjacent dendritic shaft. Successful synaptic transmission (left), visible as a fluorescence increase, can be clearly distinguished from transmission failure (right).
EPSPs during transmission failure at this synapse are due to successful transmission at some of the other synapses activated by the same extracellular stimulus.
Traces show (top to bottom) single-trial fluorescence from the spine, averaged EPSP, and averaged fluorescence from the spine, during success (red, left) and failure
(black, right). sp, stratum pyramidale; so, stratum oriens. Figure adapted from Enoki et al. (2009).

postsynaptic neuron. A failure method can be used, whereby pr
is related to the number of successes within a sample of trials
assessed over a given period of time:

pr = Nsuccess/Ntrials

where Nsuccess is the number of successful transmission events
over Ntrials, the total number of trials.

The Ca2+ transient amplitude is usefully expressed as

%4F/F = 100
(
Ftransient − Fbackground

) / (
Finitial − Fbackground

)
where Finitial is the mean fluorescence intensity of the imaged
spine over a 20–40 ms time window prior to stimulation,
Ftransient is the mean fluorescence intensity after stimulation, and
Fbackground is the mean intensity in regions devoid of labeled
structures. To improve the signal-to-noise ratio, Ftransient is
measured over a 10–30 ms window encompassing the peak of
the Ca2+ transient (Enoki et al., 2009). Using this approach, an
event may be counted as a success if the EPSCaT amplitude
exceeds the unstimulated noise amplitude, a threshold that is
typically %∆F/F >20%. Once sufficient recordings of EPSCaTs
and EPSPs have been obtained, yielding a stable ratio of successes

to failures, long-term synaptic plasticity may be induced using
any of several available protocols. Importantly, we select spines
with baseline pr neither too high (<0.7) nor too low (>0.3) to
avoid ceiling or floor effects that could mask the outcome of the
chosen plasticity protocol.

Modifications of Synaptic Efficacy
Various protocols can be used to induce long-term changes
in synaptic efficacy. LTP may be induced using a spike-
timing dependent plasticity (STDP; Song et al., 2000) protocol,
wherein postsynaptic spiking is evoked shortly after a presynaptic
stimulus (Markram et al., 1997; Bi and Poo, 1998; Nevian
and Sakmann, 2006). Specifically, each EPSP is followed by
(∆t = ∼10–50 ms) the delivery of three pulses (at 100 Hz)
of 2–10 ms postsynaptic depolarization (amplitude sufficient
to evoke at least one AP), with 100 repetitions of this
pairing at 0.33 Hz. LTD can also be induced with an
STDP protocol, involving repetitive delivery of a postsynaptic
AP preceding a single presynaptic stimulus (Feldman, 2012).
Alternatively, a high-frequency stimulation (HFS) protocol
may be used to induce LTP, where three bursts, at 1.5 s
intervals, of 20 presynaptic pulses @ 100 Hz (with, if needed,
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FIGURE 3 | Subtractive analysis of unitary EPSP as an estimate of quantal size. (A) EPSCaT amplitudes (above) and EPSP amplitudes (below) recorded before and
after long-term potentiation (LTP) induction. Corresponding EPSP and EPSCaT amplitudes are color-coded on the basis of EPSCaTs, with successes in red and
failures in black. (B) Mean EPSP traces corresponding to EPSCaT successes (red) and failures (black). The difference between these averages (Subtraction, green)
represents the mean contribution to the EPSP (i.e., the unitary EPSP) from the imaged active synapse. Traces shown are means before (Baseline; left) and 20–60 min
after (right) LTP induction. LTP results in large increases in the overall mean EPSP and pr at the imaged synapse. The unitary EPSP amplitude from this imaged
synapse, however, does not significantly change. (C) Values of compound EPSP, pr, EPSPs grouped according to success (S) or failure (F), and unitary EPSP
amplitude from the imaged synapse. As revealed by such subtractive analysis, LTP induction in these experiments led to significant and corresponding increases in
pr at the imaged synapse and in the (multi-synaptic) EPSP, with no significant change in the unitary EPSP from the imaged synapse. Figure adapted from
Enoki et al. (2009).

sufficient simultaneous postsynaptic depolarization such that
at least some of the presynaptic stimuli evoke APs (Emptage
et al., 2003; Enoki et al., 2009); conversely, a low-frequency
stimulation (LFS; e.g., 1 Hz) protocol may be used to induce
LTD. It should be borne in mind that distinct mechanistic
processes may result from different patterns of neuronal activity
(Padamsey and Emptage, 2014).

Re-evaluating Release Probability
Once the induction protocol is finished, pr can be reassessed
at desired time points using procedures outlined above

(see ‘‘Estimating Release Probability’’ section). Statistical
comparisons between initial pr and post-plasticity pr are made
off-line using appropriate statistics. Using these experimental
procedures, our results have consistently indicated that
long-term synaptic plasticity in non-silent synapses involves
changes in pr. The precise molecular processes governing such
changes and the contribution of altered modes of vesicular
fusion (Choi et al., 2003) remain important unsettled questions
even under these experimental circumstances. Furthermore,
the presence of changes in pr does not in itself establish the
relative contribution of other possible mechanisms, such as
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alterations in quantal amplitude q, to changes in the compound
EPSP amplitude.

Estimating Synaptic Potency
Electrical recording by itself has proven inadequate to resolve
unambiguously the magnitude of the evoked response from
an individual synapse (sometimes called the ‘‘potency’’ of
the synapse) that contributes to a compound EPSP. Conjoint
EPSCaT recording, however, permits a subtractive analysis that
can effectively address the ambiguity. On average, compound
EPSP amplitudes are larger in trials where the imaged synapse
releases transmitter than in those where the imaged synapse fails;
indeed, subtracting themean EPSP in failure trials from themean
EPSP in successes yields an estimate of the mean unitary EPSP
from the EPSCaT-generating synapse (Figures 3A,B):

EPSPsuccess − EPSPfailure = EPSPunitary

With adequate sample sizes, this procedure can provide a
reliable estimate of the mean unitary amplitude of the evoked
response at the imaged synapse, and its potential modifications.
Using this subtractive analysis, we have demonstrated that LTP
at mature CA3-CA1 synapses is associated with increases in
synaptic reliability (i.e., in pr) while changes in potency (i.e., in
EPSPunitary) are negligible (Enoki et al., 2009; Figure 3C).

Optically Confirmed Minimal Stimulation
The above conclusion is supported by other methods also
enabled by conjoint optical and electrical recording. As noted

previously, minimal presynaptic axon stimulation procedures
(Raastad, 1995) suffer from ambiguity as to the actual number
of synapses activated (Dobrunz and Stevens, 1997), as even single
CA3 axonsmaymakemultiple contacts with a single CA1 neuron
(Sorra and Harris, 1993). By combining optical quantal analysis
with minimal presynaptic stimulation, however, such ambiguity
can be eliminated, permitting a direct comparison of the
contributions of pr and unitary EPSP amplitude: in those cases
where only the imaged synapse is being activated, there will
be perfect correspondence between EPSCaTs and EPSPs for
both successes and failures (Figures 4A,B). In all such cases,
LTP-inducing stimuli increased pr but had no effect on the
amplitude of unitary EPSPs (Figure 4C; Enoki et al., 2009).
These optical quantal analyses provide strong evidence that
LTP at CA3-CA1 synapses is expressed chiefly through an
increase in synaptic reliability, i.e., through an increase in pr.
We note, however, that these experiments have been mainly
restricted to synapses on proximal dendrites, and to effects
on transmission at low frequencies, so that the generality
of these results, even for this class of synapse, remains
to be established.

CONCLUSIONS AND PERSPECTIVE

Here we have outlined the procedures necessary to carry
out optical quantal analyses at individual synapses within
hippocampal slice preparations, and have summarized results
on the mode of expression of LTP obtained by these methods.

FIGURE 4 | Minimal stimulation and optical quantal analysis. (A) Representative sequential traces showing the perfect correspondence between success or failure
of EPSCaTs (left) and EPSPs (right) before (Baseline) and After LTP. This constant correspondence provides strong evidence that the stimulus in this experiment
activated only the imaged synapse and that EPSCaTs are reliable reporters of transmitter release. (B) EPSCaT (above) and EPSP amplitudes (below) recorded from
this synapse before and after LTP induction. LTP induction increased pr but not the unitary EPSP amplitude. (C) Values of pr (left) and unitary EPSP (right) from the
imaged synapse for this and two other experiments (black) are shown before and after LTP (weighted means shown in blue). Such optically confirmed minimal
stimulation demonstrates that LTP induction leads to significant increases in pr, with no significant change in unitary EPSP amplitude. Figure adapted from
Enoki et al. (2009).
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Despite the distinct advantages of optical over traditional
electrophysiological quantal analyses, several items must be
kept in mind in interpreting such experiments. Buffering of
intracellular Ca2+ by Ca2+ indicators could in principle interfere
with calcium-dependent postsynaptic aspects of LTP expression,
though this is unlikely given that the magnitude of LTP is
unaltered by indicator loading (Enoki et al., 2009). Selection
of spines for analysis may exclude small spines beyond the
limit of optical resolution, or spines with small EPSCaTs (e.g.,
less mature spines lacking endoplasmic reticulum; Spacek and
Harris, 1997). Observed spines, however, appear to account
for the majority of the evoked response (Enoki et al., 2009).
Additionally, although our extracellular stimulation protocols
reliably induced APs, we have not excluded the possibility that
some EPSCaT failures reflect factors other than pr, e.g., failure of
APs to reach the terminal, or stochasticity of Ca2+ store release,
though this seems unlikely given that the probability of evoking
EPSCaTs is influenced by the same factors that influence pr.
Thus, notwithstanding the experimental constraints that limit
trial numbers and thus the precision of pr determination, our
estimates of pr using the procedures described here have been
reliably and predictably influenced by manipulations known
to alter vesicular release (Emptage et al., 1999; Reid et al.,
2001). Moreover, the fact that increasing stimulus intensity
does not alter our estimate of pr (Emptage et al., 1999)
provides a compelling argument against the spurious effects of
axon excitability.

Controversies remain regarding possible roles of changes
in the number of transmitter release sites (Walmsley et al.,
1987) and alteration in the amount of transmitter released per
quantum (Choi et al., 2003; Midorikawa and Sakaba, 2017) in
the expression of LTP and LTD (see MacDougall and Fine,
2014) for a unified model and more extensive discussion).
Unfortunately, because CICR from internal stores contributes
significantly and nonlinearly to the EPSCaT (Emptage et al.,

1999), fluctuations in EPSCaT amplitude cannot resolve
these controversies.

Although we have described this technique specifically in
area CA1 of the hippocampus, optical quantal analysis can
be carried out at other synapses (Reid et al., 2004; Chalifoux
and Carter, 2010) and in other preparations (Sinnen et al.,
2016) and model organisms (Newman et al., 2017). Importantly,
this method can be adapted for in vivo investigations and
functional mapping of cortical (Svoboda et al., 1997; Chen et al.,
2011; Wilson et al., 2016; Scholl et al., 2017) and subcortical
tissue, including the hippocampus (Mizrahi et al., 2004; Gu
et al., 2014). Such applications have been facilitated by ongoing
improvements in the useful depth of multiphoton excitation
fluorescence microscopy (Theer et al., 2003; Kobat et al., 2009,
2011; Horton et al., 2013), adaptive micro-optics (Andermann
et al., 2013; Velasco and Levene, 2014), genetically encoded
voltage, Ca2+, and other optogenetic sensors (Akerboom et al.,
2013; Storace et al., 2016; Yang and St-Pierre, 2016) and
two-photonmicroendoscopy (Jung and Schnitzer, 2003; Bocarsly
et al., 2015; Sato et al., 2017; Ohayon et al., 2018). At the
same time, rapidly advancing developments in optical sensors
for the detection of neurotransmitters, including but not limited
to glutamate (Marvin et al., 2013; Helassa et al., 2018) and
GABA (Masharina et al., 2012), provide exciting complementary
strategies for optical quantal analyses both in organized tissue
preparations (Borghuis et al., 2013; Jensen et al., 2017) and
in vivo applications (Helassa et al., 2018). We expect that
the wide applicability and power of optical quantal analysis
will lead to its increasing use to reveal the mechanisms of
synaptic transmission and their modifications in learning and
other phenomena.
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