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Hypoxic-ischemic encephalopathy (HIE) is one of the most frequent causes of brain
injury in the newborn. From a pathophysiological standpoint, a complex process takes
place at the cellular and tissue level during the development of newborn brain damage
in the absence of oxygen. Initially, the lesion is triggered by a deficit in the supply
of oxygen to cells and tissues, causing a primary energy insufficiency. Subsequently,
high energy phosphate levels recover transiently (the latent phase) that is followed by
a secondary phase, in which many of the pathophysiological mechanisms involved in
the development of neonatal brain damage ensue (i.e., excitotoxicity, massive influx of
Ca?*, oxidative and nitrosative stress, inflammation). This leads to cell death by necrosis
or apoptosis. Eventually, a tertiary phase occurs, characterized by the persistence of
brain damage for months and even years after the HI insult. Hypothermia is the only
therapeutic strategy against HIE that has been incorporated into neonatal intensive
care units with limited success. Thus, there is an urgent need for agents with the
capacity to curtail acute and chronic damage in HIE. Melatonin, a molecule of unusual
phylogenetic conservation present in all known aerobic organisms, has a potential role
as a neuroprotective agent both acutely and chronically in HIE. Melatonin displays a
remarkable antioxidant and anti-inflammatory activity and is capable to cross the blood-
brain barrier readily. Moreover, in many animal models of brain degeneration, melatonin
was effective to impair chronic mechanisms of neuronal death. In animal models, and
in a limited number of clinical studies, melatonin increased the level of protection
developed by hypothermia in newborn asphyxia. This review article summarizes briefly
the available therapeutic strategies in HIE and assesses the role of melatonin as
a potentially relevant therapeutic tool to cover the hypoxia-ischemia phase and the
secondary and tertiary phases following a hypoxic-ischemic insult.

Keywords: hypoxic-ischemic encephalopathy, hypothermia, melatonin, oxidative stress, inflammation,
neurodegeneration

INTRODUCTION

According to the World Health Organization, for every day in 2015, 16,000 children aged
under 5 died (World Health Organization [WHO], 2015). Forty-five per cent of those deaths
were in newborns, mainly due to intrapartum-related complications and prematurity. In
particular, hypoxic-ischemic encephalopathy (HIE) remains as a significant problem particularly in

Frontiers in Synaptic Neuroscience | www.frontiersin.org 1

December 2019 | Volume 11 | Article 34


https://www.frontiersin.org/journals/synaptic-neuroscience/
https://www.frontiersin.org/journals/synaptic-neuroscience#editorial-board
https://www.frontiersin.org/journals/synaptic-neuroscience#editorial-board
https://doi.org/10.3389/fnsyn.2019.00034
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnsyn.2019.00034
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsyn.2019.00034&domain=pdf&date_stamp=2019-12-10
https://www.frontiersin.org/articles/10.3389/fnsyn.2019.00034/full
http://loop.frontiersin.org/people/9362/overview
https://www.frontiersin.org/journals/synaptic-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/synaptic-neuroscience#articles

Cardinali

Melatonin in Hypoxic-Ischemic Encephalopathy

low-resource countries, where the rate of asphyxia is about
10-fold higher (10-20 per 1000 live births) than in developed
countries (Lawn et al., 2005).

Intrapartum hypoxic-ischemic  (HI) including
placental abruption, umbilical cord prolapse, obstructed
labor, uterine rupture, and fetal infection result in impaired
oxygenation and perfusion of vital organs in the fetus and
newborn infant (Yildiz et al,, 2017). HI injury to peripheral
organs is often reversible (Yildiz et al., 2017). In contrast,
HIE injury may lead to permanent neurological impairment.
Survivors with long-term disability commonly have cerebral
palsy including spastic quadriplegic and dyskinetic types
(Schreglmann et al., 2019).

Knowledge of HIE pathophysiology derived in the description
of potential therapeutic targets to reduce cerebral damage
after asphyxia, with the consequent postulation of therapeutic
strategies. This review article summarizes briefly the available
therapeutic strategies in HIE and assesses the role of melatonin,
a potentially relevant therapeutic tool to cover the hypoxia-
ischemia phase and the secondary and tertiary phases following a
HI insult. Medical literature was identified by searching databases
including (MEDLINE, EMBASE), bibliographies from published
literature and clinical trial registries/databases. Searches were last
updated on September 1, 2019.

events

PATHOPHYSIOLOGY AND
THERAPEUTIC STRATEGIES IN HIE

A complex process takes place at the cellular and tissue level due
to lack of oxygen (Yildiz et al., 2017).

The harmful mechanisms during the development of newborn
brain damage by hypoxia can be grouped based on the time
elapsed since their appearance (Yildiz et al., 2017). They comprise
four phases (Figure 1): (a) hypoxia-ischemia phase; (b) latent
phase; (c) secondary phase; (d) tertiary phase. At first, the
injury is triggered by a deficit in the supply of oxygen to
cells, causing a primary energy insufficiency. Subsequently, high
energy phosphate levels may transiently recover (the latent
phase), this phase elapsing for 3-15 h. In the secondary phase
that followed, many of the pathophysiological mechanisms of
neonatal brain damage are triggered. Excitotoxicity, massive
influx of Ca’?T, oxidative stress, inflammatory reaction and
eventually cell death by apoptosis or necrosis are characteristics
of the secondary phase that elapses from some hours to days.
Finally, a tertiary phase ensues, characterized by persistent
cerebral damage for months and years after the HI injury
(Yildiz et al., 2017).

Insufficient oxygen delivery to the CNS is the initial
event in HIE. It is produced either by hypoxia or by
impaired cerebral blood flow due to hypovolemia or impaired
circulation. Commonly, a combination of both events takes
place (Yildiz et al, 2017). A decrease production of ATP
and lactic acidosis occur in the primary energy failure after
injury (Torres-Cuevas et al., 2019). Disruption of neuronal
cell membrane leads to massive calcium entry to the cell, an
event mediated by activation of N-methyl-D-aspartate (NMDA)

receptor by excitotoxic neurotransmitters (glutamate, aspartate)
(Pregnolato et al., 2019). Only very few therapeutic strategies
have the capacity to control the primary energy failure. As
discussed below, melatonin may be one of them.

A period of latency that lasts for some hours after
primary energy failure gives the possibility for interventions
to curtail prospective brain damage. If they are not provided,
a secondary energy failure leads to HIE (Yildiz et al., 2017).
Excitotoxicity, oxidative stress, inflammation and cell death
characterize the secondary energy failure that ensues 6-48 h
after hypoxic/ischemia (HI). In some infants, a tertiary phase of
brain damage arises due to the presence of active mechanisms
preventing regeneration of neurons. These mechanisms include
a low-degree inflammation, impairment of oligodendrocyte
maturation, impaired neurogenesis and axonal growth, and
disrupted synaptogenesis. Myelin deficits and reduced plasticity
can persist for months to years after the initial injury
(Fleiss and Gressens, 2012).

The ischemia-reperfusion phenomenon that occurs after
perinatal asphyxia triggers the increase in reactive oxygen species
(ROS), a subsequent lipid and protein peroxidation and the
stimulation of apoptotic or necrotic pathways in brain cells
(Castillo-Melendez et al., 2004; Miller et al., 2012; Aridas et al,,
2016; Martinez-Biarge et al., 2019). The increase in ROS is
detectable very early after asphyxia (i.e., up to 30 min) and
may elapse for several days (Yan et al., 2005). Poorly developed
innate antioxidative defense systems turn the newborn CNS
very prone to oxidative stress (du Plessis and Volpe, 2002;
Castillo-Melendez et al., 2013).

Neuroinflammation and oxidative damage interact each
other. ROS trigger pro-inflammatory cytokine release and
microglial activation, and conversely, microglia release free
radicals and pro-inflammatory cytokines (Miller et al., 2012). The
control of these early mechanisms of brain injury is generally
considered an avenue for any promising neuroprotective strategy
(Hassell et al., 2015).

The use of hypothermia as a neuroprotective therapy in
neonatal HIE derives from the discovery of endogenous cooling
mechanisms that are triggered by brain damage at birth (Burnard
and Cross, 1958). The neuroprotective effect of hypothermia
is related mainly to the reduction of brain metabolism (a 5%
decrease for each degree of temperature), a situation the
moderates several metabolic routes triggered after suffocation
(Laptook et al., 1995).

Only a modest improvement in mortality and long-term
neurological morbidity is provided by hypothermia therapy in
HIE (Roka and Azzopardi, 2010; Jacobs et al., 2013; Alonso-
Alconada et al., 2015). In addition, there are data indicating that
hypothermia in low-income countries does not reduce mortality
but rather it may aggravate prognosis in the presence of sepsis
(Pauliah et al., 2013). Therefore, there is an urgent need to
identify therapeutic agents effective to treat HIE.

Recent research focuses in the development of therapies that
can be used in combination with hypothermia thus fostering
synergy between therapeutic strategies (Hassell et al., 2015).
They include erythropoietin (EPO), allopurinol, stem cells, noble
gases, and melatonin.
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FIGURE 1 | Melatonin activity in HIE. Insult results in primary (acute phase) and secondary energy failure (secondary phase) in the brain while brain damage (tertiary
phase) continues to occur months to years after the injury with decreased plasticity and reduced number of neurons. Melatonin has the unique property to cover all
phases including attenuation of tertiary brain damage, hence expanding the therapeutic window to long-term outcome. CFB, cerebral blood flow.
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Erythropoietin is a cytokine that is synthesized during the
fetal period by the liver and postnatally by the kidney and the
brain, and that acts as a growth factor and neuroprotective agent
(Juul and Pet, 2015). The beneficial effect of EPO in HIE is based
on its action on specific receptors present in neurons and glia,
capable of developing a powerful antiapoptotic activity (favoring
gene transcription of antiapoptotic, anti-inflammatory and
antioxidant components) (Juul and Pet, 2015). Moreover, EPO
promotes long term reparative phenomena like neurogenesis,
oligodendrogenesis and angiogenesis (Jantzie et al., 2015). Up
today, three phase III clinical trials are in progress on a total of
840 infants to assess the safety and efficacy of high doses of EPO
(1,000 U/kg) in combination with hypothermia (Erythropoietin
in Management of Neonatal Hypoxic Ischemic Encephalopathy,
NCT03163589; High-dose Erythropoietin for Asphyxia and
Encephalopathy, NCT02811263; Erythropoietin for Hypoxic
Ischaemic Encephalopathy in Newborns, NCT03079167).

The inhibitory effect on xanthine oxidase, an enzyme involved
in oxidative damage, is the base for the use of allopurinol as a
therapy against HIE. In addition, allopurinol has the capacity
to chelate free iron and acts as a scavenger of hydroxyl radicals
(Ko and Godin, 1990). In a group of infants with severe HIE,
the i.v. administration of 40 mg/kg of allopurinol decreased the
formation of free radicals (Van et al., 1998). In line with these
results, administration of allopurinol i.v. to the mother during
the birth of fetuses with hypoxia or incipient hypoxia has been
shown to reduce the blood levels of S-100 protein in the umbilical
artery (a biomarker of cerebral damage) (Torrance et al., 2009).

A clinical trial is currently underway (Effect of Allopurinol for
Hypoxic-ischemic Brain Injury on Neurocognitive Outcome,
NCT03162653), to assess the therapeutic potential of allopurinol
administered in the first minutes of life.

Interest in the use of stem cells to treat all kinds of diseases,
among them HIE, is increasing (Nitkin et al., 2019). This
therapy could facilitate repair and regeneration of damaged
brain tissue after HI aggression via its interaction with immune
system cells located in distant organs of the brain (e.g., spleen),
thereby altering the immune/inflammatory response, as well as
by interaction between the transplanted cells and the brain tissue
to increase cell proliferation and neurogenesis (Bennet et al.,
2012). Stem cell therapy of HIE, exclusive or associated with
hypothermia, is still requires clinical trials to determine, among
others, the most effective type of cells, the optimal dose and
the most appropriate administration period for obtaining the
best therapeutic results. One of these works in progress in the
recruitment phase (Study of hCT-MSC in Newborn Infants With
Moderate or Severe HIE, NCT03635450) will include a sample
of 6 infants of 36 or more weeks of gestation with moderate-
severe HIE, treated with hypothermia and infusion of two doses
of stromal mesenchymal cells derived from umbilical cord.

Noble gases such as xenon and argon displayed
neuroprotective activity in experimental models of HIE
(Lobo et al., 2013). Their effect is mediated via their ability to
decrease excitotoxicity by modulating glutamatergic NMDA
receptors (Ma et al., 2007). The Total Body multicenter clinical
trial hypothermia plus Xenon (TOBY-Xe) employed this gas plus
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hypothermia in 92 infants from 36 and 43 weeks (Azzopardi
et al,, 2016). To further examine some of the variables that may
have influenced the treatment with this gas (i.e., dose or duration
of treatment), a phase II clinical trial called CoolXenon3 Study
(NCT02071394) is presently undergone.

Melatonin has been proposed as a promising strategy for
HIE (Paprocka et al, 2019). A key point for melatonin
efficacy to be used as therapy in HIE lies in its remarkable
antioxidant and anti-inflammatory effects and in its capacity
to cross readily the blood brain barrier (Hardeland et al,
2015; Reiter et al., 2017). Melatonin increased the level of
protection developed by hypothermia by improving brain energy
metabolism in a study employing piglets (Robertson et al., 2013).
Clinically, treatment of asphyctic newborns with hypothermia
and melatonin orally, reduces serum levels of oxidants more
efficiently than hypothermia alone (Aly et al., 2015) and improved
survival (Ahmad et al., 2018).

BASIC BIOLOGY OF MELATONIN
RELEVANT TO HIE

Circulating melatonin is produced primarily by the pineal gland
at night (Claustrat and Leston, 2015). It provides circadian and
seasonal timing cues of the length of the night by acting as a
chronobiotic (Pandi-Perumal et al., 2008). In addition, almost
every cell in the body having mitochondria produces melatonin
and the intracellular concentrations of melatonin are much
higher than those circulating in blood (Venegas et al., 2012; Reiter
et al., 2017; Suofu et al., 2017). Intracellular melatonin does not
get the extracellular space and doses of melatonin much higher
than those employed as a chronobiotic are needed to modify its
intracellular levels (Cardinali, 2019a).

MT,; and MT, melatonin receptors belong to the superfamily
of membrane receptors associated with G proteins (G-protein
coupled receptors, GPCR) (Dubocovich et al., 2010). Another
GPCR member, GPR50, was recently added to the melatonin
receptor subfamily displaying high sequence homology with M T
and MT) but showing null binding capacity to melatonin. Homo-
and heteromers among each other and also with other GPCRs are
formed (Cecon et al., 2017).

Neuroprotection by melatonin is mediated via receptor
and non-receptor mechanisms like antioxidant defense,
improvement of energy metabolism and immune function, as
well as anti-inflammatory, antiapoptotic and antiexcitotoxic
effects (for ref. see Cardinali, 2019b).

Melatonin scavenges directly ROS (Hardeland et al., 1993;
Reiter et al., 2000) and is further metabolized into strong
antioxidant molecules (Galano et al,, 2013; Tan et al., 2015).
It also induces the upregulation of antioxidant enzymes like
glutathione peroxidase, glutathione reductase, and superoxide
dismutase (Fischer et al., 2013; Reiter et al., 2017). Melatonin
decreases the release of pro-apoptotic proteins in response to
injury and prevents apoptosis via stabilization of mitochondrial
function (Tan and Reiter, 2019).

In rodent immature brain HI drives cell death via apoptosis
through Bcl-2 family members (Morciano et al., 2016). As a

consequence, mitochondria permeabilize, and proapoptotic
factors, such as cytochrome C and the apoptosis-inducing factor
are released into the cytoplasm. By increasing Bcl-2 protein
expression and blocking Bax proapoptotic activity via the sirtuin
(SIRT)-1/nuclear factor kB (NF-kB) axis, melatonin inhibits
significantly cytochrome C release and caspase 3 activation (Sun
et al., 2002; Tan and Reiter, 2019).

Mitochondria permeabilize due to the opening of
mitochondrial permeability transition pore (mPTP). This
is a pathophysiological event that leads to mitochondrial
depolarization, swelling, and the activation of the apoptotic
and necrotic pathways (Morciano et al., 2017). Melatonin
protects from mitochondrial swelling and membrane
depolarization (Waseem et al., 2016) and prevents cytochrome
C release and cardiolipin peroxidation (Petrosillo et al,
2009) in isolated rodent brain mitochondria subjected to
Ca**-induced mPTP.

Melatonin is also an immunological modulator that shows
remarkable anti-inflammatory properties (Carrillo-Vico et al,
2013; Hardeland, 2018). Because these properties are observed
in high-grade inflammation such as sepsis, ischemia/reperfusion
and brain injury, and in the low-grade inflammation seen in
neurodegenerative disorders and aging, the anti-inflammatory
actions are of great medical interest. Melatonin inhibits the
binding of NF-kB to DNA, thus decreasing the synthesis of
proinflammatory signals (Carrillo-Vico et al., 2013). It also
inhibits cyclooxygenase (Cox) (Cardinali et al., 1980), particularly
Cox2 (Deng et al,, 2006), and decreases mRNA of inducible
nitric oxide synthase (Costantino et al., 1998). Among the
several signaling pathways involved in the anti-inflammatory
action of melatonin (Hardeland, 2018), the upregulation of
SIRT-1, which shares various effects known from melatonin
and further interferes with the proinflammatory signaling,
is considered of major importance (Tan and Reiter, 2019).
Ultimately, these effects of melatonin lead to down-regulation
of proinflammatory and up-regulation of anti-inflammatory
cytokines (Hardeland, 2018).

Anti-excitotoxic actions also arise after melatonin
administration. Relevant to this, melatonin curtails neuronal
death induced by the ionotropic glutamate receptor
agonist kainate (Giusti et al., 1996). In addition, melatonin
administration reduces the injury of hippocampal CA1 neurons
brought about by ischemia (Cho et al, 1997) or by high
doses of glucocorticoids (Furio et al, 2008). Melatonin anti-
excitotoxic activity does not involve melatonin receptors
(Escames et al., 2004).

Another neuroprotective mode of action involves the
y-aminobutyric acid (GABA)-ergic system. Melatonin has anti-
excitatory, and at enough dosage, sedating effects via GABAergic
mechanisms (Golombek et al., 1996; Caumo et al., 2009) exerted
via allosteric modulation of melatonin of GABA, receptors
(Cheng et al., 2012).

As far as a potential therapy for HIE in newborns, melatonin
has many advantages. It crosses readily the blood-brain barrier, its
antioxidant and anti-inflammatory effects are readily exerted and
it has an excellent safety profile (Gitto et al., 2001, 2009; Welin
et al., 2007; Foley and Steel, 2019).
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TABLE 1 | Melatonin activity in animal models of HIE.

Findings

Melatonin dose

References

Melatonin provides neuroprotection in the late-gestation fetal sheep brain in response to umbilical cord
occlusion

Melatonin protects from the long-term consequences of a neonatal hypoxic-ischemic brain injury in rats
(behavioral asymmetry, learning deficits)

In 1-day-old Wistar rats subjected to hypoxia melatonin treatment reduced VEGF and NO levels as well as
leakage of horseradish peroxidase in choroid plexus

Melatonin normalizes free iron, total isoprostanes, and total neuroprostanes in a rat model of neonatal HI
encephalopathy

Melatonin was not able to reduce cortical infarct volume in a rat neonatal stroke model but strongly reduces
inflammation and promotes subsequent myelination in the white matter

In neonatal rats subjected to HI melatonin reduced the percent infarcted brain volume and TUNEL positivity

Treatment with melatonin after neonatal HI in rats led to a neuroprotective effect reducing cell death, white
matter demyelination and reactive astrogliosis

Melatonin reduces oxidative stress and inflammatory cells recruitment and glial cells activation in cerebral cortex
after neonatal HI damage of rats

In a neonatal rat model of HI brain injury, melatonin, and topiramate, administered either alone or in combination
significantly reduced the percent infarcted brain volume and number of TUNEL positive cells

In a piglet model of perinatal asphyxia, melatonin-augmented hypothermia significantly reduced the
hypoxic-ischemic-induced increase of lactate/N-acetyl aspartate and lactate/total creatine ratios in the deep
gray matter. Melatonin-augmented hypothermia increased levels of brain nucleotide triphosphate/exchangeable
phosphate pool. Correlating with improved cerebral energy metabolism, TUNEL-positive nuclei were reduced in
the hypothermia plus melatonin group compared with hypothermia alone in the thalamus, internal capsule,
putamen and caudate, and there was reduced cleaved caspase 3 in the thalamus

In neonatal rats subjected to HI, melatonin administration reduced the neuron splicing of XBP-1 mRNA, the
increased phosphorylation of elF2a, and elevated expression of chaperone proteins GRP78 and Hsp70.
Melatonin also prevented the depletion of SIRT-1 induced by HI

Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during
ischemic-stroke in mice

No improvement of neuronal metabolism in the reperfusion phase with melatonin treatment after HI brain injury
in the neonatal rat was seen

In a neonatal rat model of HI brain injury, the integrity of the auditory pathway in the brainstem was preserved by
melatonin treatment

In a rat neonatal model of HIE, melatonin reduced necrotic cell death and decreased activation of the early
phases of intrinsic apoptosis, with a concomitant increased expression and activity of SIRT1, reduced
expression and acetylation of p53, and increased autophagy activation

Melatonin alleviates brain and peripheral tissue edema in a neonatal rat model of HIE, as assessed by
expression of the edema related proteins AQP-4, ZO-1, and occludin

In postnatal day 7 rat pups subjected to unilateral HI, pre-treatment with melatonin significantly reduced brain
damage with 30% recovery in tissue loss compared to vehicle-treated animals. Autophagy and apoptotic cell
death were significantly inhibited after melatonin treatment

Characterization of gene expression in the rat brainstem after neonatal HI injury melatonin has retarded effects
on gene activation

After acute HI insult in preterm fetal sheep, melatonin administration decreased apoptosis, infammation and
oxidative stress within the white matter. It also increased oligodendrocyte cell number within the periventricular
white matter only and improved myelin density within the subcortical but not the striatal white matter

Melatonin acts in synergy with hypothermia to reduce oxygen-glucose deprivation-induced cell death in rat
hippocampal slices

Melatonin protects from newborn hypoxic-ischemic brain injury melatonin in murine experimental models
through MT+ receptor

Repetitive neonatal melatonin treatment prevents from functional deficits in a rat model of cerebral palsy

In a lamb model of perinatal asphyxia melatonin (i.v. or as a transdermal patch) alleviated acidosis and altered
determinants of encephalopathy. Asphyxia significantly increased brain white and gray matter apoptotic cell
death, lipid peroxidation and neuroinflammation, all effects mitigated by melatonin

Melatonin was administered at 2 h and 6 h after hypoxia-ischemia with cooling in a piglet model.
Neuroprotection was dose dependent; 15 mg/kg melatonin started 2 h after HI, given over 6 h, was well
tolerated and augmented hypothermic protection in sensorimotor cortex

1 mg bolus i.v., then
1 mg/h for 2 h

15 mg/kg i.p.

10 mg/kg i.p.

15 mg/kg i.p.

20 mg/kg i.p. (two
doses)

20 mg/kg i.p.

15 mg/kg i.p.

15 mg/kg i.p.

20 mg/kg i.p.

5 mg/kg/h over 6 h
started at 10 min
after resuscitation
and repeated at 24 h

15 mg/kg i.p.

10 mg/kg twice

10 mg/kg i.p.

15 mg/kg i.p.

15 mg/kg i.p.

10 mg/kg i.p.

15 mg/kg i.p.

15 mg/kg i.p.

0.2 mg bolus i.v. to
the fetus at 2 h after
HI followed by an
infusion of 0.1 mg/h
for 24 h

25 uM

5-10 mg/kg i.p.

20 mg/kg i.p.

60 mg in 24 h; i.v. or

transdermal patch

5or 156 mg/kg i.v.

Miller et al. (2005)
Carloni et al. (2008)
Sivakumar et al. (2008)
Signorini et al. (2009)
Villapol et al. (2011)
Cetinkaya et al. (2011)
Alonso-Alconada et al.
(2012)

Balduini et al. (2012)

Ozyener et al. (2012)

Robertson et al. (2013)

Carloni et al. (2014)

Yang et al. (2015)

Berger et al. (2016)

Revuelta et al. (2016)

Carloni et al. (2017b)

Xu et al. (2017)

Hu et al. (2017)

Revuelta et al. (2017)

Yawno et al. (2017)

Carloni et al. (2018)
Sinha et al. (2018)
Jantzie et al. (2018)

Aridas et al. (2018)

Robertson et al. (2019)

VEGF, vascular endothelial growth factor; NO, nitric oxide; AQP-4, aquaporin 4.
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TABLE 2 | Studies including treatment of HIE patients with melatonin.

Subjects

Design

Melatonin dose

Measured

Results

References

20 asphyxiated newborns

74 preterm infants with
respiratory distress
syndrome

120 preterm infants with
respiratory distress
syndrome

110 preterm infants with
respiratory distress
syndrome

18 preterm infants

30 HIE newborns, 15
healthy newborns

15 preterm infants; 5
preterm infants with low
dose, 5 preterm infants
with medium dose, 5
preterm infants with high
dose

80 HIE newborns

5 neonates with HIE
undergoing hypo-thermia

Open-label study

Open-label study

Open-label study

Open-label study

Open-label study

Randomized
prospective trial

Open-label study

Randomized
prospective trial

Open-label study

10 HIE newborns were treated
with a total of 80 mg as eight oral
doses

40 preterm infants were treated
with a total of 100 mg/kg as 10
infusions

60 preterm infants were treated
with a total of 100 mg/kg as 10
infusions

55 HIE newborns were treated
with a total of 100 mg/kg as 10
infusions

Total of 0.04-0.6 pg/kg over
0.5-6 h as an infusion

15 HIE newborns were treated
with a total of 50 mg/kg as five
daily enteral doses

Total of 0.5 mg/kg or 3 mg/kg or
15 mg/kg as 1 or 3 intragastric
boluses

40 HIE newborns received
melatonin 10 mg orally via
nasogastric tube at admission
Melatonin was infused at

0.5 mg/kg

Serum malondi-aldehyde and
nitrite/nitrate concentration

IL-6, IL-8, TNFa in
tracheobronchial aspirate and
serum nitrite/nitrate concentration

Serum IL-6, IL-8, TNFa and
nitrite/nitrate concentration

IL-6, IL-8, TNFa in
trachea-bronchial aspirate and
serum nitrite/nitrate concentration

Pharmaco-kinetic profiles

Serum melatonin, plasma SOD,
serum NO, EEG, MRI, neurologic
evaluations

Pharmacokinetic profiles

Newborns were followed for
28 days to see the effect of
melatonin in terms of survival rate

Pharmacokinetic profiles

In the asphyxiated newborns given melatonin, there were
significant reductions in malondialdehyde and nitrite/nitrate
levels at both 12 and 24 h. Three of the 10 asphyxiated
children not given melatonin died within 72 h after birth; none
of the 10 asphyxiated newborns given melatonin died

Compared with the melatonin-treated respiratory distress
syndrome newborns, in the untreated infants the
concentrations of IL-6, IL-8, and TNFa 7 days after onset of
the study were higher. In addition, nitrite/nitrate levels at all
time points were higher in the untreated respiratory distress
syndrome newborns than in the melatonin-treated babies

Melatonin treatment reduced the proinflammatory cytokines
and improved the clinical outcome

Melatonin treatment reduced the proinflammatory cytokines
and improved the clinical outcome

The pharmacokinetic profile of melatonin in preterm infants
differs from that of adults so dosage of melatonin for preterm
infants cannot be extrapolated from adult studies

At day 5, the melatonin/hypothermia group had greater
increase in melatonin and decline in NO and less decline in
SOD. The melatonin/hypothermia group had fewer seizures

on follow-up EEG and less white matter abnormalities on MRI.

At 6 months, the melatonin/hypothermia group had improved
survival without neurological or developmental abnormalities

A different pharmacokinetic profile in premature newborns,
compared to adults. The high peak plasma concentrations
and the long half-life indicate that in the neonatal clinical
setting, it is possible to obtain and maintain high serum
concentrations using a single administration of melatonin
repeated every 12/24 h

Administration of melatonin as an adjunct therapy in the
management of newborns with HIE led to improved survival
rate

Melatonin half-life and clearance were prolonged, and the
distribution volume decreased compared to adults.
Hypothermia did not affect melatonin pharmacokinetics

Robertson et al. (2019)

Fulia et al. (2001)

Gitto et al. (2004b)

Gitto et al. (2004a)

Gitto et al. (2005)

Aly et al. (2015)

Merchant et al. (2013)

Ahmad et al. (2018)

Carloni et al. (2017a)

IL, interleukin; TNF, tumor necrosis factor; SOD, superoxide dismutase; NO, nitric oxide.
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MELATONIN IN EXPERIMENTAL
MODELS OF HIE

Table 1 summarizes information on melatonin activity in animal
models of HIE. With a few exceptions (Berger et al., 2016),
a compelling amount of evidence supports the efficacy of
melatonin on long-term consequences of a neonatal HI brain
injury in rats and mice (behavioral asymmetry, learning deficits,
etc.) (Jantzie et al., 2018).

Treatment with melatonin after neonatal HI in rats led
to a neuroprotective effect reducing cell death, white matter
demyelination and reactive astrogliosis (Alonso-Alconada et al.,
2012; Hu et al, 2017). Melatonin prevents cell death and
mitochondrial dysfunction via a SIRT1-dependent mechanism
during ischemic-stroke (Yang et al., 2015; Carloni et al., 2017b).
Melatonin reduced necrotic cell death and decreased activation
of the early phases of intrinsic apoptosis, with a concomitant
increased expression and activity of SIRT1, reduced expression
and acetylation of p53 and increased autophagy activation
(Xu et al., 2017).

The effect of melatonin was also apparent in other models
of HIE. In a piglet model of perinatal asphyxia, melatonin-
augmented hypothermia reduced the HI-induced increase of
lactate/N-acetyl aspartate and lactate/total creatine ratios in the
deep gray matter. Apoptosis was reduced in the hypothermia
plus melatonin group in the thalamus, internal capsule, putamen
and caudate, and there was reduced cleaved caspase 3 in the
thalamus (Robertson et al, 2013). In the late-gestation fetal
sheep brain in response to umbilical cord occlusion melatonin
provided neuroprotection by decreasing lipid peroxidation
(Miller et al., 2005). In another study with acute HI insult
in preterm fetal sheep, melatonin administration decreased
apoptosis, inflammation and oxidative stress within the white
matter (Yawno et al., 2017).

MELATONIN IN HIE: CLINICAL STUDIES

Table 2 summarizes melatonin-related clinical observations
in HIE.

An initial observation indicated that in asphyxiated newborns
with HIE, oral administration of melatonin (80 mg in eight
doses) reduced serum malondialdehyde and nitrite/nitrate
concentrations and improved survival (Fulia et al, 2001).
Subsequent reports from the same group of investigators
indicated that in preterm infants with respiratory distress
the treatment with 100 mg/kg in 10 infusions improved
the clinical outcome and reduced IL-6, IL-8, and TNFa
concentrations in tracheobronchial aspirate and serum
nitrite/nitrate concentration (Fulia et al, 2001; Gitto et al.,
2004a,b, 2005; Hu et al., 2017; Revuelta et al., 2017; Yawno et al,,
2017; Aridas et al., 2018; Carloni et al., 2018; Sinha et al., 2018;
Robertson et al., 2019).

In a randomized prospective trial including 30 HIE newborns
treatment with 50 mg/kg of melatonin as five daily enteral
doses the melatonin/hypothermia group had greater increase in
melatonin and decline in circulating oxidants, fewer seizures in

EEG and less white matter abnormalities in magnetic resonance
imaging. At 6 months, the melatonin/hypothermia group
had improved survival without neurological or developmental
abnormalities (Aly et al, 2015). A similar improvement of
survival was reported in another randomized prospective trial
including 40 HIE newborns receiving melatonin 10 mg orally via
nasogastric tube (Ahmad et al., 2018).

Concerning the melatonin doses employed, it must be noted
that the pharmacokinetic profile of melatonin in preterm infants
differs from that of adults, making it impossible to applied
allometric calculations for establishment of the optimal doses
derived from studies in adults (Merchant et al., 2013). The high
peak plasma concentrations and the long half-life of melatonin in
newborn indicate that in the neonatal clinical setting, it is possible
to obtain and maintain high serum concentrations of melatonin
using a single administration repeated every 12/24 h (Carloni
et al., 2017a). Moreover, hypothermia does not affect melatonin
pharmacokinetics (Balduini et al., 2019).

CONCLUDING REMARKS

A remarkable number of melatonin effects strongly suggest
that it may have an important role therapeutic role in HIE.
Melatonin has antiexcitotoxic, anti-apoptotic, anti-inflammatory
and antioxidant effects in a number of animal models of HIE
and modulates normal glial development (Table 1). Clinically,
randomized controlled pilot trials evaluating melatonin as
an adjuvant to hypothermia in HIE indicated that the
melatonin/hypothermia group show a reduced number of
seizures, less evidence of white matter injury and a lower rate of
mortality without developmental or neurological abnormalities
(Aly et al,, 2015; Ahmad et al., 2018).

Melatonin is remarkably non-toxic, and its safety is very
high. The lethal dose 50 for the i.p. injection of melatonin was
determined for rats and mice (1168 and 1131 mg/kg), but failed
to be measured after the oral administration of up to 3200 mg/kg
to rats or of the s.c. injection of up to 1600 mg/kg to rats and mice
(Sugden, 1983).

Melatonin shows a high safety profile in humans (Cardinali,
2019b; Foley and Steel, 2019) and, in general, is very well
tolerated. Therefore, melatonin holds a promise in management
of infants with HIE (Hendaus et al, 2016). Currently, the
MELPRO study (NCT03806816) is in the process of recruiting
patients, with the aim to include 100 newborns. This and
additional phase III clinical trials are essential for the subsequent
application of melatonin in newborn with HIE. Unfortunately,
the pharmaceutical industry is refractive to support studies on
melatonin because of the lack of protective patents for a natural
compound. Hence, only with the involvement of governmental
and non-profit organizations such a goal can be achieved.
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